Section 1.2 Example 2 with general right hand sides: $\mathrm{Ax}=\mathrm{y}$.
Standard forward pivoting, unscaled pivots.
Consistency condition derived and used halfway: some y are slaved.

The smaller reduced augmented matrix pivoted backward, again with unscaled pivots.
Pivots scaled at the end.

Full solution at the end. Some x are killed.

Killing the free x and forgetting the slaved y .

Linearly independent v's that span $\mathrm{N}(\mathrm{A})$.
Linearly independent w's that span $\mathrm{R}(\mathrm{A})$.
LLet's see how. Introduce augmented matrix with general y's, one in every column:

$$
\left[\begin{array}{ccccccccc}
0 & -3 & -6 & 4 & 9 & y_{1} & 0 & 0 & 0 \\
-1 & -2 & -1 & 3 & 1 & 0 & y_{2} & 0 & 0 \\
-2 & -3 & 0 & 3 & -1 & 0 & 0 & y_{3} & 0 \\
1 & 4 & 5 & -9 & -7 & 0 & 0 & 0 & y_{4}
\end{array}\right]
$$

[Extract the rows
[and build the equations:

$$
\begin{gather*}
-3 x_{2}-6 x_{3}+4 x_{4}+9 x_{5}=y_{1} \\
-x_{1}-2 x_{2}-x_{3}+3 x_{4}+x_{5}=y_{2} \\
-2 x_{1}-3 x_{2}+3 x_{4}-x_{5}=y_{3} \\
x_{1}+4 x_{2}+5 x_{3}-9 x_{4}-7 x_{5}=y_{4} \tag{2}
\end{gather*}
$$

ENote that

$$
A=\left[\begin{array}{ccccc}
0 & -3 & -6 & 4 & 9  \tag{3}\\
-1 & -2 & -1 & 3 & 1 \\
-2 & -3 & 0 & 3 & -1 \\
1 & 4 & 5 & -9 & -7
\end{array}\right]
$$

[The augmented matrix:

$$
\left[\begin{array}{ccccccccc}
0 & -3 & -6 & 4 & 9 & y_{1} & 0 & 0 & 0  \tag{4}\\
-1 & -2 & -1 & 3 & 1 & 0 & y_{2} & 0 & 0 \\
-2 & -3 & 0 & 3 & -1 & 0 & 0 & y_{3} & 0 \\
1 & 4 & 5 & -9 & -7 & 0 & 0 & 0 & y_{4}
\end{array}\right]
$$

We do row operations.
Every row operation leads to a new augmented matrix coding an equivalent new system of linear equations.

Forward pivot phase.
Choose a pivot row with the pivot in position 1 and put it on top:
[> R[0]:=R[1]:R[1]:=R[2]:R[2]:=R[0]:

$$
\left[\begin{array}{ccccccccc}
-1 & -2 & -1 & 3 & 1 & 0 & y_{2} & 0 & 0  \tag{5}\\
0 & -3 & -6 & 4 & 9 & y_{1} & 0 & 0 & 0 \\
-2 & -3 & 0 & 3 & -1 & 0 & 0 & y_{3} & 0 \\
1 & 4 & 5 & -9 & -7 & 0 & 0 & 0 & y_{4}
\end{array}\right]
$$

[Don't scale the pivot yet and let it kill below in its (first) pivot column:
-> R[2]:=R[2]-R[2][1]*R[1]/R[1][1]:
[> R[3]:=R[3]-R[3][1]*R[1]/R[1][1]:
[> R[4]: $=R[4]-R[4][1] * R[1] / R[1][1]:$

$$
\left[\begin{array}{ccccccccc}
-1 & -2 & -1 & 3 & 1 & 0 & y_{2} & 0 & 0  \tag{6}\\
0 & -3 & -6 & 4 & 9 & y_{1} & 0 & 0 & 0 \\
0 & 1 & 2 & -3 & -3 & 0 & -2 y_{2} & y_{3} & 0 \\
0 & 2 & 4 & -6 & -6 & 0 & y_{2} & 0 & y_{4}
\end{array}\right]
$$

[Choose the next pivot in column 2 and row 2 and let it kill below in its (second) pivot column:
$\Rightarrow R[3]:=R[3]-R[3][2] * R[2] / R[2][2]:$
[>R[4]:=R[4]-R[4][2]*R[2]/R[2][2]:

$$
\left[\begin{array}{ccccccccc}
-1 & -2 & -1 & 3 & 1 & 0 & y_{2} & 0 & 0  \tag{7}\\
0 & -3 & -6 & 4 & 9 & y_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{5}{3} & 0 & \frac{y_{1}}{3} & -2 y_{2} & y_{3} & 0 \\
0 & 0 & 0 & -\frac{10}{3} & 0 & \frac{2 y_{1}}{3} & y_{2} & 0 & y_{4}
\end{array}\right]
$$

TThe next pivot is in column 4 and row 3. Let it kill below in its (third) pivot column:
[> R[4]: =R[4]-R[4][4]*R[3]/R[3][4]:

$$
\left[\begin{array}{ccccccccc}
-1 & -2 & -1 & 3 & 1 & 0 & y_{2} & 0 & 0  \tag{8}\\
0 & -3 & -6 & 4 & 9 & y_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{5}{3} & 0 & \frac{y_{1}}{3} & -2 y_{2} & y_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 5 y_{2} & -2 y_{3} & y_{4}
\end{array}\right]
$$

EBuild the new equations:

$$
\begin{gather*}
-x_{1}-2 x_{2}-x_{3}+3 x_{4}+x_{5}=y_{2} \\
-3 x_{2}-6 x_{3}+4 x_{4}+9 x_{5}=y_{1} \\
-\frac{5 x_{4}}{3}=\frac{y_{1}}{3}-2 y_{2}+y_{3} \\
0=5 y_{2}-2 y_{3}+y_{4} \tag{9}
\end{gather*}
$$

[The consistency condition is:

$$
\begin{equation*}
y_{4}:=-5 y_{2}+2 y_{3} \tag{10}
\end{equation*}
$$

It makes the last equation $0=0$ and lets us forget about the last y . It is slaved to the first 3 y 's.
Skip last row and last column of the augmented matrix:

$$
\text { Aug }:=\left[\begin{array}{cccccccc}
-1 & -2 & -1 & 3 & 1 & 0 & y_{2} & 0  \tag{11}\\
0 & -3 & -6 & 4 & 9 & y_{1} & 0 & 0 \\
0 & 0 & 0 & -\frac{5}{3} & 0 & \frac{y_{1}}{3} & -2 y_{2} & y_{3}
\end{array}\right]
$$

[Build the remaining equations:

$$
\begin{gather*}
-x_{1}-2 x_{2}-x_{3}+3 x_{4}+x_{5}=y_{2} \\
-3 x_{2}-6 x_{3}+4 x_{4}+9 x_{5}=y_{1} \\
-\frac{5 x_{4}}{3}=\frac{y_{1}}{3}-2 y_{2}+y_{3} \tag{12}
\end{gather*}
$$

[Backward pivot phase for the smaller augmented matrix:

$\left[\begin{array}{cccccccc}-1 & 0 & 3 & 0 & -5 & -\frac{3 y_{1}}{5} & \frac{3 y_{2}}{5} & \frac{y_{3}}{5} \\ 0 & -3 & -6 & 0 & 9 & \frac{9 y_{1}}{5} & -\frac{24 y_{2}}{5} & \frac{12 y_{3}}{5} \\ 0 & 0 & 0 & -\frac{5}{3} & 0 & \frac{y_{1}}{3} & -2 y_{2} & y_{3}\end{array}\right]$
[Scale the pivots:


$$
\left[\begin{array}{cccccccc}
1 & 0 & -3 & 0 & 5 & \frac{3 y_{1}}{5} & -\frac{3 y_{2}}{5} & -\frac{y_{3}}{5}  \tag{15}\\
0 & 1 & 2 & 0 & -3 & -\frac{3 y_{1}}{5} & \frac{8 y_{2}}{5} & -\frac{4 y_{3}}{5} \\
0 & 0 & 0 & 1 & 0 & -\frac{y_{1}}{5} & \frac{6 y_{2}}{5} & -\frac{3 y_{3}}{5}
\end{array}\right]
$$

Do you see which variables are free? We will kill them later.
Extract the equations:

$$
\begin{gather*}
x_{1}-3 x_{3}+5 x_{5}=\frac{3 y_{1}}{5}-\frac{3 y_{2}}{5}-\frac{y_{3}}{5} \\
x_{2}+2 x_{3}-3 x_{5}=-\frac{3 y_{1}}{5}+\frac{8 y_{2}}{5}-\frac{4 y_{3}}{5} \\
x_{4}=-\frac{y_{1}}{5}+\frac{6 y_{2}}{5}-\frac{3 y_{3}}{5} \tag{16}
\end{gather*}
$$

[Solve backwards with free variables replaced by t's:

$$
\begin{gather*}
x_{5}:=t_{5}  \tag{17}\\
x_{4}:=-\frac{y_{1}}{5}+\frac{6 y_{2}}{5}-\frac{3 y_{3}}{5}  \tag{18}\\
x_{3}:=t_{3}  \tag{19}\\
x_{2}:=-\frac{3 y_{1}}{5}+\frac{8 y_{2}}{5}-\frac{4 y_{3}}{5}-2 t_{3}+3 t_{5}  \tag{20}\\
x_{1}:=\frac{3 y_{1}}{5}-\frac{3 y_{2}}{5}-\frac{y_{3}}{5}+3 t_{3}-5 t_{5} \tag{21}
\end{gather*}
$$

[In vector form the solution is:

$$
\left[\begin{array}{c}
x_{1}  \tag{22}\\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
\frac{3 y_{1}}{5}-\frac{3 y_{2}}{5}-\frac{y_{3}}{5}+3 t_{3}-5 t_{5} \\
-\frac{3 y_{1}}{5}+\frac{8 y_{2}}{5}-\frac{4 y_{3}}{5}-2 t_{3}+3 t_{5} \\
t_{3} \\
-\frac{y_{1}}{5}+\frac{6 y_{2}}{5}-\frac{3 y_{3}}{5} \\
t_{5}
\end{array}\right]
$$

[Introduce the vectors

$$
\begin{gather*}
v_{3}:=\left[\begin{array}{c}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right] \\
p:=\left[\begin{array}{c}
-5 \\
3 \\
0 \\
0 \\
1
\end{array}\right]  \tag{23}\\
v_{5}:=\left[\begin{array}{c}
\frac{3 y_{1}}{5}-\frac{3 y_{2}}{5}-\frac{y_{3}}{5} \\
-\frac{8 y_{2}}{5}-\frac{4 y_{3}}{5} \\
0
\end{array}\right]
\end{gather*}
$$

[Then the solution is given by

$$
\begin{equation*}
x=p+t_{3} v_{3}+t_{5} v_{5} \tag{24}
\end{equation*}
$$

We have seen why these v's are linearly independent. Note that $\mathrm{Ax}=0$ has the same solution with $\mathrm{p}=0$.
Solving $\mathrm{Ax}=0$ we have also seen that the columns of A are linearly independent only if there are no free variables, that is, if $\mathrm{x}=0$ is the only solution of $\mathrm{Ax}=0$.
=Recalling that the (slaving) consistency condition was
$\left[\quad y_{4}=-5 y_{2}+2 y_{3}\right.$

Lwe note that $p$ is a linear combination of

$$
\left[\begin{array}{c}
\frac{3}{5} \\
-\frac{3}{5} \\
0 \\
-\frac{1}{5} \\
0
\end{array}\right],\left[\begin{array}{c}
-\frac{3}{5} \\
\frac{8}{5} \\
0 \\
\frac{6}{5} \\
0
\end{array}\right],\left[\begin{array}{c}
-\frac{1}{5} \\
-\frac{4}{5} \\
0 \\
-\frac{3}{5} \\
0
\end{array}\right]
$$

(26)
with y-coefficients. These 3 vectors are linearly independent.
Why's that? Well, just run the pivoting scheme again with the free variables set equal to zero.
Let's go.
=Killing the free by

$$
\begin{align*}
& x_{3}:=0 \\
& x_{5}:=0 \tag{27}
\end{align*}
$$

Ethe equations reduce to

$$
\begin{gather*}
-3 x_{2}+4 x_{4}=y_{1}  \tag{28}\\
-x_{1}-2 x_{2}+3 x_{4}=y_{2} \\
-2 x_{1}-3 x_{2}+3 x_{4}=y_{3}
\end{gather*}
$$

[The augmented matrix is then

$$
\left[\begin{array}{cccc}
0 & -3 & 4 & y_{1}  \tag{29}\\
-1 & -2 & 3 & y_{2} \\
-2 & -3 & 3 & y_{3}
\end{array}\right]
$$

[Do the pivoting
= $>\mathrm{R}[0]:=\mathrm{R}[1]: \mathrm{R}[1]:=\mathrm{R}[2]: \mathrm{R}[2]:=\mathrm{R}[0]:$
[> R[2]:=R[2]-R[2][1]*R[1]/R[1][1]:
[> R[3]:=R[3]-R[3][1]*R[1]/R[1][1]:
[> R[4]:=R[4]-R[4][1]*R[1]/R[1][1]:
[> R[3]: $=R[3]-R[3][2] * R[2] / R[2][2]:$
[> R[4]:=R[4]-R[4][2]*R[2]/R[2][2]:

$$
\left[\begin{array}{cccc}
-1 & -2 & 3 & y_{2}  \tag{30}\\
0 & -3 & 4 & y_{1} \\
0 & 0 & -\frac{5}{3} & \frac{y_{1}}{3}-2 y_{2}+y_{3}
\end{array}\right]
$$

$R[2]:=R[2]-R[2][3] * R[3] / R[3][3]:$
$R[1]:=R[1]-R[1][3] * R[3] / R[3][3]:$

$$
\left[\begin{array}{cccc}
-1 & -2 & 0 & -\frac{13 y_{2}}{5}+\frac{3 y_{1}}{5}+\frac{9 y_{3}}{5}  \tag{31}\\
0 & -3 & 0 & \frac{9 y_{1}}{5}-\frac{24 y_{2}}{5}+\frac{12 y_{3}}{5} \\
0 & 0 & -\frac{5}{3} & \frac{y_{1}}{3}-2 y_{2}+y_{3}
\end{array}\right]
$$

[Now we have that

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & \frac{3 y_{1}}{5}-\frac{3 y_{2}}{5}-\frac{y_{3}}{5} \\
0 & 1 & 0 & -\frac{3 y_{1}}{5}+\frac{8 y_{2}}{5}-\frac{4 y_{3}}{5} \\
0 & 0 & 1 & -\frac{y_{1}}{5}+\frac{6 y_{2}}{5}-\frac{3 y_{3}}{5}
\end{array}\right]
$$

$$
\begin{equation*}
x_{1}=\frac{3}{5} y_{1}-\frac{3}{5} y_{2}-\frac{1}{5} y_{3} \tag{34}
\end{equation*}
$$

$$
x_{2}=-\frac{3}{5} y_{1}+\frac{8}{5} y_{2}-\frac{4}{5} y_{3}
$$

$$
x_{4}=-\frac{1}{5} y_{1}+\frac{6}{5} y_{2}-\frac{3}{5} y_{3}
$$

[but these are the solution formula's for the reduced system

$$
\begin{gather*}
-3 x_{2}+4 x_{4}=y_{1}  \tag{35}\\
-x_{1}-2 x_{2}+3 x_{4}=y_{2}  \tag{36}\\
-2 x_{1}-3 x_{2}+3 x_{4}=y_{3} \tag{37}
\end{gather*}
$$

Killing the free and forgetting the slaved we're back to a square matrix and its inverse. Which matrices?
In particular we see that the range $R(A)$ is given by all vectors of the form

$$
\begin{aligned}
& \text { [>R[1]:=R[1]-R[1][2]*R[2]/R[2][2]: } \\
& {\left[\begin{array}{cccc}
-1 & 0 & 0 & \frac{3 y_{2}}{5}-\frac{3 y_{1}}{5}+\frac{y_{3}}{5} \\
0 & -3 & 0 & \frac{9 y_{1}}{5}-\frac{24 y_{2}}{5}+\frac{12 y_{3}}{5} \\
0 & 0 & -\frac{5}{3} & \frac{y_{1}}{3}-2 y_{2}+y_{3}
\end{array}\right]} \\
& \text { [> } R[1]:=R[1] / R[1][1]: \\
& \rightarrow R[2]:=R[2] / R[2][2]: \\
& \text { [> R[3]:=R[3]/R[3][3]: }
\end{aligned}
$$

$$
y=\left[\begin{array}{c}
\frac{3 y_{2}}{5}-\frac{3 y_{1}}{5}+\frac{y_{3}}{5}  \tag{38}\\
\frac{9 y_{1}}{5}-\frac{24 y_{2}}{5}+\frac{12 y_{3}}{5} \\
\frac{y_{1}}{3}-2 y_{2}+y_{3} \\
-5 y_{2}+2 y_{3}
\end{array}\right]
$$

EEach vector y in $\mathrm{R}(\mathrm{A})$ is thereby a unique linear combination
$\left[\quad y=s_{1} w_{1}+s_{2} w_{2}+s_{3} w_{3}\right.$
[of the linearly independent vectors

$$
w_{1}=\left[\begin{array}{c}
-\frac{3}{5}  \tag{40}\\
\frac{9}{5} \\
\frac{1}{3} \\
0
\end{array}\right], w_{2}=\left[\begin{array}{c}
\frac{3}{5} \\
-\frac{24}{5} \\
-2 \\
-5
\end{array}\right], w_{3}=\left[\begin{array}{c}
\frac{1}{5} \\
\frac{12}{5} \\
1 \\
2
\end{array}\right]
$$

$$
\begin{equation*}
y_{1}=s_{1}, y_{2}=s_{2}, y_{3}=s_{3} \tag{41}
\end{equation*}
$$

Ewith parameters
$=\quad y_{1}=s_{1}, y_{2}=s_{2}, y_{3}=s_{3}$
Ejust like the null space $\mathrm{N}(\mathrm{A})$ was given by

$$
\begin{gather*}
{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
3 t_{3}-5 t_{5} \\
-2 t_{3}+3 t_{5} \\
t_{3} \\
0 \\
t_{5}
\end{array}\right]}  \tag{42}\\
x=t_{3} v_{3}+t_{5} v_{5} \tag{43}
\end{gather*}
$$

Ewith parameters the free variables

$$
\begin{equation*}
x_{3}=t_{3}, x_{5}=t_{5} \tag{44}
\end{equation*}
$$

