Section 1.2 Example 2	with general right hand sides: Ax=y.											
Standard forward pivoting, unscaled pivots.												
Consistency condition derived and used halfway: some y are slaved.												
The smaller reduced augmented matrix pivoted backward, again with unscaled pivots.												
Pivots scaled at the end.												
Full solution at the end. Some x are killed.												
Killing the free x and forgetting the slaved y												
Killing the free x and forgetting the slaved y.												
Linearly independent v's that span N(A).												
Linearly independent w's that span R(A).												
Let's see how. Introduce	Let's see how. Introduce augmented matrix with general y's, one in every column:											
	$\begin{bmatrix} 0 & -3 & -6 & 4 & 9 & y_1 & 0 & 0 \end{bmatrix}$											
	-1 -2 -1 3 1 0 y_2 0 0	(4)										
	-2 -3 0 3 -1 0 0 y_3 0	(1)										
	1 4 5 -9 -7 0 0 0 y_4											
Extract the rows												
and build the equations:	-3x - 6x + 4x + 9x = v											
	$-x_1 - 2x_2 - x_3 + 3x_4 + x_5 = y_2$											
	$-2x_1 - 3x_2 + 3x_4 - x_5 = y_3$											
	$x_1 + 4 x_2 + 5 x_3 - 9 x_4 - 7 x_5 = y_4$	(2)										
Note that												
	0 -3 -6 4 9											
	$A = \begin{bmatrix} -1 & -2 & -1 & 3 & 1 \\ 2 & 2 & 0 & 3 & 1 \end{bmatrix}$	(3)										
	$\begin{bmatrix} -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$											
F												

The augmented matrix:

0	-3	-6	4	9	y_1	0	0	0
-1	-2	-1	3	1	0	<i>y</i> ₂	0	0
-2	-3	0	3	-1	0	0	<i>y</i> ₃	0
1	4	5	-9	-7	0	0	0	<i>y</i> ₄

We do row operations.

Every row operation leads to a new augmented matrix coding an equivalent new system of linear equations.

Forward pivot phase.

Choose a pivot row with the pivot in position 1 and put it on top:

>
$$R[0]:=R[1]:R[1]:=R[2]:R[2]:=R[0]:$$

-	-1	-2	-1	3	1	0	y_2	0	0
	0	-3	-6	4	9	<i>y</i> ₁	0	0	0
-	-2	-3	0	3	-1	0	0	<i>y</i> ₃	0
	1	4	5	-9	-7	0	0	0	y_4

Don't scale the pivot yet and let it kill below in its (first) pivot column:

>
$$R[2] := R[2] - R[2][1] * R[1] / R[1][1]:$$

> $R[3] := R[3] - R[3][1] * R[1] / R[1][1]:$
> $R[4] := R[4] - R[4][1] * R[1] / R[1][1]:$

$$\begin{bmatrix} -1 & -2 & -1 & 3 & 1 & 0 & y_2 & 0 & 0 \\ 0 & -3 & -6 & 4 & 9 & y_1 & 0 & 0 & 0 \\ 0 & 1 & 2 & -3 & -3 & 0 & -2y_2 & y_3 & 0 \\ 0 & 2 & 4 & -6 & -6 & 0 & y_2 & 0 & y_4 \end{bmatrix}$$

Choose the next pivot in column 2 and row 2 and let it kill below in its (second) pivot column: R[3]:=R[3]-R[3][2]*R[2]/R[2][2]: R[4]:=R[4]-R[4][2]*R[2]/R[2][2]:

(6)

The next pivot is in column 4 and row 3. Let it kill below in its (third) pivot column: R[4] := R[4] - R[4] [4] * R[3] / R[3] [4]:

$$\begin{bmatrix} -1 & -2 & -1 & 3 & 1 & 0 & y_2 & 0 & 0 \\ 0 & -3 & -6 & 4 & 9 & y_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{5}{3} & 0 & \frac{y_1}{3} & -2y_2 & y_3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 5y_2 & -2y_3 & y_4 \end{bmatrix}$$

$$(8)$$

Build the new equations:

$$-x_{1} - 2x_{2} - x_{3} + 3x_{4} + x_{5} = y_{2}$$

$$-3x_{2} - 6x_{3} + 4x_{4} + 9x_{5} = y_{1}$$

$$-\frac{5x_{4}}{3} = \frac{y_{1}}{3} - 2y_{2} + y_{3}$$

$$0 = 5y_{2} - 2y_{3} + y_{4}$$
(9)

The consistency condition is:

$$y_4 := -5 y_2 + 2 y_3 \tag{10}$$

It makes the last equation 0=0 and lets us forget about the last y. It is slaved to the first 3 y's.

Skip last row and last column of the augmented matrix:

$$Aug := \begin{bmatrix} -1 & -2 & -1 & 3 & 1 & 0 & y_2 & 0 \\ 0 & -3 & -6 & 4 & 9 & y_1 & 0 & 0 \\ 0 & 0 & 0 & -\frac{5}{3} & 0 & \frac{y_1}{3} & -2y_2 & y_3 \end{bmatrix}$$
(11)

Build the remaining equations:

$$x_{1} - 2x_{2} - x_{3} + 3x_{4} + x_{5} = y_{2}$$

- 3x_{2} - 6x_{3} + 4x_{4} + 9x_{5} = y_{1}
$$-\frac{5x_{4}}{3} = \frac{y_{1}}{3} - 2y_{2} + y_{3}$$
 (12)

Backward pivot phase for the smaller augmented matrix: **R[2]:=R[2]-R[2][4]*R[3]/R[3][4]:R[1]:=R[1]-R[1][4]*R[3]/R[3][4]:**

$$\begin{bmatrix} -1 & -2 & -1 & 0 & 1 & \frac{3y_1}{5} & -\frac{13y_2}{5} & \frac{9y_3}{5} \\ 0 & -3 & -6 & 0 & 9 & \frac{9y_1}{5} & -\frac{24y_2}{5} & \frac{12y_3}{5} \\ 0 & 0 & 0 & -\frac{5}{3} & 0 & \frac{y_1}{3} & -2y_2 & y_3 \end{bmatrix}$$
(13)

R[1]:=R[1]-R[1][2]*R[2]/R[2][2]: [>

$$\begin{bmatrix} -1 & 0 & 3 & 0 & -5 & -\frac{3y_1}{5} & \frac{3y_2}{5} & \frac{y_3}{5} \\ 0 & -3 & -6 & 0 & 9 & \frac{9y_1}{5} & -\frac{24y_2}{5} & \frac{12y_3}{5} \\ 0 & 0 & 0 & -\frac{5}{3} & 0 & \frac{y_1}{3} & -2y_2 & y_3 \end{bmatrix}$$
 (14)

Scale the pivots:

- > R[1]:=R[1]/R[1][1]: > R[2]:=R[2]/R[2][2]: > R[3]:=R[3]/R[3][4]:

$$\begin{bmatrix} 1 & 0 & -3 & 0 & 5 & \frac{3y_1}{5} & -\frac{3y_2}{5} & -\frac{y_3}{5} \\ 0 & 1 & 2 & 0 & -3 & -\frac{3y_1}{5} & \frac{8y_2}{5} & -\frac{4y_3}{5} \\ 0 & 0 & 0 & 1 & 0 & -\frac{y_1}{5} & \frac{6y_2}{5} & -\frac{3y_3}{5} \end{bmatrix}$$
(15)

Do you see which variables are free? We will kill them later.

Extract the equations:

$$x_{1} - 3x_{3} + 5x_{5} = \frac{3y_{1}}{5} - \frac{3y_{2}}{5} - \frac{y_{3}}{5}$$

$$x_{2} + 2x_{3} - 3x_{5} = -\frac{3y_{1}}{5} + \frac{8y_{2}}{5} - \frac{4y_{3}}{5}$$

$$x_{4} = -\frac{y_{1}}{5} + \frac{6y_{2}}{5} - \frac{3y_{3}}{5}$$
(16)

Solve backwards with free variables replaced by t's:

$$x_5 \coloneqq t_5 \tag{17}$$

$$x_4 := -\frac{y_1}{5} + \frac{6y_2}{5} - \frac{3y_3}{5}$$
(18)

$$x_3 \coloneqq t_3 \tag{19}$$

$$x_2 := -\frac{3y_1}{5} + \frac{8y_2}{5} - \frac{4y_3}{5} - 2t_3 + 3t_5$$
(20)

$$x_1 \coloneqq \frac{3y_1}{5} - \frac{3y_2}{5} - \frac{y_3}{5} + 3t_3 - 5t_5$$
(21)

In vector form the solution is:

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{bmatrix} = \begin{bmatrix} \frac{3y_{1}}{5} - \frac{3y_{2}}{5} - \frac{y_{3}}{5} + 3t_{3} - 5t_{5} \\ -\frac{3y_{1}}{5} + \frac{8y_{2}}{5} - \frac{4y_{3}}{5} - 2t_{3} + 3t_{5} \\ t_{3} \\ -\frac{y_{1}}{5} + \frac{6y_{2}}{5} - \frac{3y_{3}}{5} \\ t_{5} \end{bmatrix}$$
(22)

Introduce the vectors

 $p := \begin{bmatrix} 3 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ $v_{5} := \begin{bmatrix} -5 \\ 3 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ $p := \begin{bmatrix} \frac{3y_{1}}{5} - \frac{3y_{2}}{5} - \frac{y_{3}}{5} \\ -\frac{3y_{1}}{5} + \frac{8y_{2}}{5} - \frac{4y_{3}}{5} \\ 0 \\ -\frac{y_{1}}{5} + \frac{6y_{2}}{5} - \frac{3y_{3}}{5} \\ 0 \end{bmatrix}$ (23)

_Then the solution is given by

 $x = p + t_3 v_3 + t_5 v_5$ (24)

We have seen why these v's are linearly independent. Note that Ax=0 has the same solution with p=0.

Solving Ax=0 we have also seen that the columns of A are linearly independent only if there are no free variables, that is, if x=0 is the only solution of Ax=0.

Recalling that the (slaving) consistency condition was

$$y_4 = -5 y_2 + 2 y_3$$
(25)

we note that p is a linear combination of

	$\left[-\frac{1}{5}\right]$		$\left[-\frac{3}{5}\right]$		$\frac{3}{5}$
	$-\frac{4}{5}$		$\frac{8}{5}$		$\frac{3}{5}$
(26)	0	,	0	,	0
	$-\frac{3}{5}$		$\frac{6}{5}$		$\frac{1}{5}$
	0		0		0

with y-coefficients. These 3 vectors are linearly independent.

Why's that? Well, just run the pivoting scheme again with the free variables set equal to zero.

Let's go.

Killing the free by

$$x_3 := 0$$

 $x_5 := 0$ (27)

the equations reduce to

$$-3 x_{2} + 4 x_{4} = y_{1}$$

$$-x_{1} - 2 x_{2} + 3 x_{4} = y_{2}$$

$$2 x_{1} - 3 x_{2} + 3 x_{4} = y_{3}$$
(28)

The augmented matrix is then

Do the pivoting

$$\begin{bmatrix} > R[0] :=R[1]:R[1]:=R[2]:R[2]:=R[0]: \\ > R[2]:=R[2]-R[2][1]*R[1]/R[1][1]: \\ > R[3]:=R[3]-R[3][1]*R[1]/R[1][1]: \\ > R[4]:=R[4]-R[4][1]*R[1]/R[1][1]: \\ > R[3]:=R[3]-R[3][2]*R[2]/R[2][2]: \\ > R[4]:=R[4]-R[4][2]*R[2]/R[2][2]: \\ \begin{bmatrix} -1 & -2 & 3 & y_2 \\ 0 & -3 & 4 & y_1 \\ 0 & 0 & -\frac{5}{3} & \frac{y_1}{3} - 2y_2 + y_3 \end{bmatrix} \\ \begin{bmatrix} 0 & 0 & -\frac{5}{3} & \frac{y_1}{3} - 2y_2 + y_3 \end{bmatrix}$$
(30)
$$= R[2]:=R[2]-R[2][3]*R[3]/R[3][3]:$$

R[1] := R[1] - R[1] [3] * R[3] / R[3] [3]:

$$\begin{vmatrix} -1 & -2 & 0 & -\frac{13}{5} \frac{y_1}{5} + \frac{3y_1}{5} + \frac{9y_3}{5} \\ 0 & -3 & 0 & \frac{9y_1}{5} - \frac{24y_2}{5} + \frac{12y_3}{5} \\ 0 & 0 & -\frac{5}{3} & \frac{y_1}{3} - 2y_2 + y_3 \end{vmatrix}$$

$$= R[1]:=R[1]-R[1][2]*R[2]/R[2][2]:$$

$$\begin{bmatrix} -1 & 0 & 0 & \frac{3y_2}{5} - \frac{3y_1}{5} + \frac{y_3}{5} \\ 0 & -3 & 0 & \frac{9y_1}{5} - \frac{24y_2}{5} + \frac{12y_3}{5} \\ 0 & 0 & -\frac{5}{3} & \frac{y_1}{3} - 2y_2 + y_3 \end{bmatrix}$$

$$= R[1]:=R[1]/R[1][1]:$$

$$= R[2]/R[2][2]:$$

$$= R[3]/R[3][3]:$$
Now we have that
$$\begin{bmatrix} 1 & 0 & 0 & \frac{3y_1}{5} - \frac{3y_2}{5} - \frac{y_3}{5} \\ 0 & 1 & 0 & -\frac{3y_1}{5} + \frac{8y_2}{5} - \frac{4y_3}{5} \\ 0 & 0 & 1 & -\frac{y_1}{5} + \frac{6y_2}{5} - \frac{3y_3}{5} \end{bmatrix}$$

$$= \text{encodes the equations}$$

$$x_1 = \frac{3}{5}y_1 - \frac{3}{5}y_2 - \frac{1}{5}y_3$$

$$x_2 = -\frac{3}{5}y_1 + \frac{8}{5}y_2 - \frac{4}{5}y_3$$

$$x_4 = -\frac{1}{5}y_1 + \frac{6}{5}y_2 - \frac{3}{5}y_3$$

$$= \text{but these are the solution formula's for the reduced system$$

$$= -3x_2 + 4x_4 = y_1$$

$$= -3x_2 + 3x_4 = y_2$$

$$= -3x_1 + 3x_4 = y_3$$

$$= -2x_1 - 3x_2 + 3x_4 = y_3$$

$$= -2x_1 - 3x_2 + 3x_4 = y_3$$

$$= 3x_1 + 3x_4 = y_3$$

$$= -3x_1 + 3x_3 = y_3$$

$$= -3x_1 + 3x_3$$

In particular we see that the range R(A) is given by all vectors of the form

$$y = \begin{bmatrix} \frac{3y_2}{5} - \frac{3y_1}{5} + \frac{y_3}{5} \\ \frac{9y_1}{5} - \frac{24y_2}{5} + \frac{12y_3}{5} \\ \frac{y_1}{3} - 2y_2 + y_3 \\ -5y_2 + 2y_3 \end{bmatrix}$$
(38)

Each vector y in R(A) is thereby a unique linear combination

Г

y

$$= s_1 w_1 + s_2 w_2 + s_3 w_3$$
(39)

of the linearly independent vectors

$$w_{1} = \begin{bmatrix} -\frac{3}{5} \\ \frac{9}{5} \\ \frac{1}{3} \\ 0 \end{bmatrix}, w_{2} = \begin{bmatrix} \frac{3}{5} \\ -\frac{24}{5} \\ -2 \\ -5 \end{bmatrix}, w_{3} = \begin{bmatrix} \frac{1}{5} \\ \frac{12}{5} \\ \frac{1}{2} \\ 1 \\ 2 \end{bmatrix}$$
(40)

with parameters

or

$$y_1 = s_1, y_2 = s_2, y_3 = s_3$$
 (41)

$$\begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{vmatrix} = \begin{vmatrix} 3 t_3 - 5 t_5 \\ -2 t_3 + 3 t_5 \\ t_3 \\ 0 \\ t_5 \end{vmatrix}$$
(42)

$$x = t_3 v_3 + t_5 v_5$$
(43)

with parameters the free variables

$$x_3 = t_3, x_5 = t_5 \tag{44}$$