“Fundamentals of analysis”

The course went from YBC7289 and the pyramids until Chapter@ the notes were scrutinized by Bob, Harold and Thomas
Section is the first return to YBC7289, the second return is in
Chapter@is back to 1l-variable calculus
Chapter is the implicit function theorem from a 1l-variable perspective
Chapter is mainly about the Morse lemma, in the end avoiding the implicit function theorem
Chapter@ multivariate calculus, analysis unpacked
Chaptermcontains the basic statements about measures of parallelotopes
Chaptermis about Lagrange multipliers
Chaptcris about integration with more variables and a quick version of Green’s Theorem

Chapteris about Fourier series, to be adapted to the present context

Working on and rearranging Chapterand Chapter (line/surface) integrals and all that, also with forms

Section [2H] relates to PDE’s

Chaptermis about the general Stokes Theorem and borrows a little from Chapterm

jhf400@vu.nl, Oegstgeest, Amsterdam (2019)

© 2019 text Joost Hulshof
(© 2019 illustrations Ruud Hulshof

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
consent of the author.

Eventuele auteursinkomstelﬂ komen ten goede aan de “geluksmachine”:

http://orchestral8c.com

LAls het ervan komt...



The Hague, March 3, 1945

Contents

1__Introductionl 13
(1.1 'T'he square root of two| . . . . . . . . ... ... ... ..... 14
(1.2 One third of what?l . . . . ... .. .. ... ... ....... 15
(1.3 The Archimedean Principle| . . . . ... ... ... ... ... 19
(1.4 The geometric series| . . . . . . ... ... ... ... ..... 22
(1.5 Outlook: beyond the real numbers|. . . . . . . ... ... ... 24
(L6 Fxercisesl. . . . . . . . .. 25

2 What Heron tells us about sequences in IR| 29
[2.1  Bounded monotone sequences have limits!| . . . .. ... ... 30
(2.2 The limit definition: epsilons|. . . . . . . . . . ... ... ... 33
2.3 What about Heron’s imit? . . . . . .. ... .. ... .. ... 37
[2.4  Suprema and infima of sets[. . . . . .. ... 38
[2.5  Examples of convergent sequences| . . . . . . . ... ... ... 40
[2.6 Basic theorems about convergent sequences|. . . . . . . . . .. 42
R7 FExercises. . . . . . .. 46



[3 Contractions and non-monotone sequences|

[3.2  Properties of Heron’s sequence due to contraction| . . . . . . .
[3.3 Cauchy sequences, monotone subsequences| . . . . . . . . . ..
(3.4 The Banach contraction theorem in IRl . . . .. ... ... ..
[3.5 Convergent subsequences| . . . . . . ... ... ... .. ....
[3.6 Closed and opensets| . . . . . ... .. ... ... ... ...,
[3.7  Absolute convergence of series| . . . . . . ... ... ... ...
[3.8  Unconditional convergence of series| . . . . . . ... ... ...
[3.9 Extra: another diagonal argument|. . . . . . . ... ... ...

[ Metric spaces and continuity]
.1 The Banach Contraction Theorem|. . . . . . .. ... ... ..
[5.2  More of the same: continuity in metric spaces| . . . . . . ...
[5.3  Outlook: topology| . . . . ... ... . ... ... .......

[6 Integration of monotone functions|
[6.1 Integrals of monomials| . . . . . ... ... ... ... ... ..
[6.2 Integrals of monotone functions via finite sums|. . . . . . . . .
[6.3 Non-equidistant partitions; common refinements| . . . . . . . .

6.4 A Timit theoreml . . . . . . . . . . ... ...

[7 Integration of bounded functions?|
(7.1 Bounded integrable functions . . .. ... ... ... ... ..
[7.2  Variations and elementary properties . . . . . . . . ... ...
(7.3 Improper integrals| . . . . ... ... .. ... ... ... ...
(.4 Another limit theorem| . . . . . . . . .. ... ... ... ...
[7.5 Integrals are continuous linear functionals| . . . . . . .. . ..
7.6 Integral equations|. . . . . . . .. ... ... ... ... ...

49
49
51
52
o4
96
o7
29
60
62
63

67
68
70
74

79
81
83
84
86
89

94
94
97
100
103
104
106



[8  Epsilons and deltas|
(8.1  Uniform continuity and integrability|] . . . . .. .. ... ...
[8.2  Reflection: uniform epsilon statements . . .. ... ... ...
(8.3 Uniform convergence and equicontinuity| . . . . . . ... ...
[8.4  Extra: more on continuity and integration| . . . . . . . . ...
[8.5 Extra: global monotone inverse function theorem| . . . . . ..

[9 Differential calculus for power series|
[9.1  Linear approximations of monomials| . . . . . ... ... ...
[9.2  Linear approximations of polynomials{. . . . . . . . . ... ..
9.3 Power series: the fundamental theorem| . . . . . . . . ... ..
[9.4  Extra: Taylor’s formula for power series|. . . . . . . .. . ...
[9.5 Power series solutions of differential equations| . . . . . . . ..
[9.6 Extra: integral calculus for power series|. . . . . . . ... ...

(10 Differentiability via linear approximation|
(10.1 Critical points and the mean value theorem| . . . . . . . . ..

[10.4 Some strange examples| . . . . . ... ... L.

1T Tes Tor i —Tionl
(11.1 The sum and product rules[. . . . . . .. ... ... ... ...
[12 The chainrulel. . . . . . .. . ... .. ... ... ... .. ..

[11.3 Extra: differentiability of inverse functions| . . . . . . . . . ..

(12 Extra: differentiation in normed spaces|

I3 Extra: Newton’s method revisited|
(13.1 The generalised mean value formula) . . . . . .. ... ... ..
[13.2 Convergence of Newton’s method| . . . . . . . ... ... ...

14 Back to calculus|
(14.1 MoreonexpandlIn|. . . . ... ... .. ... ... .. ....
[14.2 Integrals with parameters] . . . . ... . ... ... ... ...
[14.3 Partial integration and Taylor polynomials| . . . . . . . . . ..
(14.4 Asymptotic formulas| . . . . . . . ... ...

128
129
131
132
135
136
138

142
143
144
145
148
150
153

156
157
158
160
161

162
162
164
166

170

175
176
177



(15 Implicit functions|

[15.1 A simpler version of Newton’s method| . . . . ... ... ...

[15.2 Estimating the steps: convergence|. . . . . . . . . . ... ...

{15.3 Differentiable implicit functions|
[15.4 Application to integral equations|

[15.5 For later: partial difterentiability

— 7 ..

[15.6 Stationary under a constraint| .

[16 Quadratic functions and Morse’ Lemmal

[16.1 Intermezzo: second order partial derivatives| . . . . . . . . ..

[16.2 Second derivatives of functions on normed spaces| . . . . . . .

[16.3 The second derivative as symmetric bilinear form| . . . . . . .

[16.4 An equation for a change of coordinates] . . . ... ... ...

[16.5 A solution via the implicit function theorem?|. . . . . . . . ..

[16.6 Yes, but main result via power se

ries instead| . . . . ... ...

(17 A short introduction to real Hilbert spaces|

[17.1 Projections on closed convex sets|

[17.2 Riesz representation of linear Lipschitz functions/. . . . . . . .

[17.3 Bilinear forms and the Lax-Milgram theorem|. . . . . . . . ..

[18 Analysis unpacked: more variable

s|

[18.1 Intermezzo: algebra’s main theorem|. . . . . . . . . .. .. ..

[18.2 Complex and multivariate differential calculus| . . . . . . . ..

[18.3 Cauchy-Riemann equations, harmonic functions| . . . . . . . .

[18.4 Monomials and power series again| . . . . . . . ... ... ...

[18.5 Application: the Hopf biturcation| . . . . . . . . . .. ... ..

(19 Measures of parallelotopes|
[19.1 Matrix products|. . . . . . . ..

[19.3 Quadratic forms and operator norms| . . . . . . . . . .. ...

[19.4 Eigenvalues of compact symmetri

c operators| . . . . . . . ...

[19.5 Singular values and measures of parallelotopes . . . . . . . ..

[20 Stationary under constraints|
[20.1 The method of Lagrange| . . . .
[20.2 The Lagrange multiplier method|
[20.3 Application: Holder’s inequality]

189
190
191
194
198
199
201

203
204
205
206
208
209
211

214
215
216
218

223
224
226
229
231
234

238
239
240
242
244
246



21 Green’s Theoreml
[21.1 Integrals over blocks . . . . ... .. ..
[21.2 Integrals over bounded smooth domains

[22 Fourier theory|

[22.3 Fourier series with multiple variables| . .

[22.4 Derivation of the integral Fourier transtorm| . . . . . .. . ..

[22.5 T'he Fourier transform as a bijection| . .
[22.6 Connection with probability theory| . . .

[22.7 Convolutions and Fourier solution methodsf . . . . . . . . . ..

[25 Some integral equations in two variables|

26 Parameterisations and integrals|
[26.1 The length ot a curvel . . . . . . . . . ..

[26.2 Line integrals of vector fields along curves

[27 Varieties in Euclidean space]

[27.1 Implicit function theorem in Euclidean spaces| . . . . . . . ..

[27.3 Images of ball boundaries) . . . . .. ..
27.4 Coordinate transtormations . . .. . . .

[27.5 Higher order derivatives of the implicit functionl . . . . . . ..

[28 Integration over manifolds|
[28.1 More integration of differential forms| . .

255
256
257
259

264
264
266
269
271
274
279
280
287
289

301

303
304
307

309

311
311
312
314
315

317
318
320
323
324
324



[29 Cut-off functions and partitions of unity| 345
[29.1 Partitions of compact manifolds| . . . . . . . . ... ... ... 346
[29.2 Changing partitions|{. . . . . . . . . . . . ... ... ... ... 347
[29.3 Again: local descriptions of a manitold| . . . . . . . ... ... 349
29.4 Coordinate transformations . . . ... .. ... ... ... .. 350

[30 Applications| 353
[30.1 Integraalrekening in poolcoordinaten| . . . . . . . . .. . ... 353
[30.2 Gradient, kettingregel, coordinatentransformatiesf . . . . . .. 356

[30.2.1 Gradient, divergentie en Laplaciaan| . . . . . . . . . .. 357
[30.2.2 Kettingregel uitgeschreven voor transtormaties| . . . . . 360
[30.2.3 Kettingregel met Jacobimatrices|. . . . . . .. ... .. 361
[30.2.4 Omschrijven van differentiaaloperatoren| . . . . . . . . 362
[30.3 Harmonische polynomen| . . . . . . . .. ... ... ... ... 365
[30.4 Derivation of the heat equation| . . . . . . ... .. ... ... 369
[30.5 Intermezzo: het waterstofatoom| . . . . . . . . . .. ... ... 371

31 Functional calculus| 372
[31.1 Lijnintegralen over polygonen en Goursat|. . . . . . . . . . .. 372
[31.2 Machtreeksen via een Cauchy integraaltormule| . . . . . . . .. 377
[31.3 De Cauchy Integraal Transformatiel . . . . . . ... ... ... 382
[31.4 Kromme lijnintegralen| . . . . . . . .. ... .. ... ... .. 383
[31.5 Calculus in Banachalgebras van operatoren| . . . . . . . . . .. 387

[32 Standing at the crossroads of PDE and FA| 395

[33 Lebesgue spaces| 400
[33.1 T'he Lebesgue’s Difterentiation Theorem| . . . . . . . . . . .. 401
[33.2 The proof of the good set theorem|. . . . . . . . ... ... .. 404
[33.3 Vitali coverings and Hardy-Littlewood’s again| . . . . . . . .. 407
[33.4 Via Cauchy sequences instead?| . . . . ... .. ... .. ... 410
[33.5 Pointwise limits of the Cauchy sequence?| . . . . . . . . . ... 413

(34 Riesz or no Riesz?l 417
[34.1 Other standard Hilbert spaces| . . . . . . . .. ... ... ... 418
[34.2 Double dealing with Rieszl . . . . . . .. ... ... ... ... 419
[34.3 A more general abstract perspectivel. . . . . . . ... ... 420
[34.4 The operator remains the same?| . . . . . . . . ... ... ... 422




[35 Sobolev spaces|

[35.1 Mollifiers and density tricks) . . . . .. ... ... ... .. ..
35.2 Sobolev spaces of functions with weak derivatives . . . . . . .
35.3 Compactness for W P(U)| . . . . ... ... ... ... ....
[35.4 T'he need tfor extension operators| . . . . ... ... ... ...
[35.5 Mollifiers and weak derivatives. . . . . . ... ... ... ..
[35.6 Shifts and localisation] . . . . . ... .. ... ... ... ..
35.7 Global density of smooth functions| . . . . . .. ... ... ..
35.8 Estimates and embeddings for W, ?(U)| . . . . . . . ... ...
35.9 Statements for W*P(U) via extension; traces| . . . . . . . . . .

[36 Evans’ Chapter 6 and Navier-Stokes|
[36.1 Existence of weak solutions via Lax-Milgram| . . . . . . . . ..

[36.1.2 The Lax-Milgram Theorem| . . . ... ... ... ...
[36.1.3 Lax-Milgram; boundedness condition| . . . . . . . . ..
[36.1.4 Lax-Milgram; coercivity] . . . . . . .. ... ... ...
[36.1.5 The general case with first order terms| . . . . . . . ..
[36.2 The selfadjoint case| . . . . . . . ... .. ... ... ... ...
[36.2.1 Second hand in homework setl . . . . .. ... ... ..
[36.2.2 Maximum principles| . . . . . ... ... ... .. ...
[36.3 The Navier-Stokes equations| . . . . . . . . ... ... ... ..
[36.4 Navier-Stokes related exercises . . . . . . .. ... ... .. ..

B7 Geostuff

[37.3 Tangent vectors as derivatives| . . . . . . . .. ... ... ...
[37.4 Commutators of tangent vector fields| . . . . . . ... ... ..
[37.5 Covariant differentiation of tangent vectors| . . . . . . . . . ..
[37.6_Second fundamental form| . . . . ... ... ... ...
B7.7 Curvaturel . . . . . . . . ..
B7.8 Geodesic curves . . . . . ... oL
[37.9 The Jacobi equations| . . . . . . ... ... ... ... ... ..

[38 Newton’s method the hard way|
[38.1 Newton’s method: a convergence proofl . . . . . .. ... ...
[38.2 The optimal result| . . . . . ... ... ... ... ... ...
[38.3 A suboptimal result|. . . . ... ... ...
[38.4 Alternative proof of convergence|. . . . . . . . . .. ... ...
[38.5 T'he optimal alternative result{ . . . . . . ... ... ... ...




[38.6 A suboptimal alternative result| . . . . . ... ... ... ... 479

[38.7 A lousy alternative result{. . . . . . .. ... ... ... .. .. 480
[38.8 A much better suboptimal alternative result| . . . . . . . . .. 480
[39 Nash”™ modification of Newton’s method 482
(39.1 T'he modified schemel . . . . . . . . ... ... 483
[39.2 The new error terml . . . . . . . . ... ... .. ... ... 483
[39.3 The system of inequalities| . . . . . . . ... .. .. ... ... 485
[39.4 Estimating the increments| . . . . . . . .. ... .. ... ... 486
[39.5 Estimating the error terms| . . . . . . . . ... ... L. 486
[39.6 Sufficient conditions for a convergence result| . . . . . . . . .. 489
[39.7 Suthcient convergence condition on initial value] . . . . . . .. 490
[39.8 The optimal choice of parameters| . . . . . . .. .. ... ... 491
[39.9 Continuity| . . . . . . . . . . . ... 493
[40 The Nash embedding theorem| 494
[41 Hartman-Grobman stelling| 495
[42 Airy functions| 500
[43 Al of niet metrische topologie] 514
[43.1 Metrische ruimten; continue atbeeldingen| . . . . . . . . . . .. 514
43.2 Metrische ruimtenl. . . . . . . . ... oo oo 532
[43.3 Omgevingen, open en gesloten verzamelingen|. . . . . . . . . . 534
44 Welke fundamenten?| 539
[44.1 Academisch speelkwartier: kolomcijferen| . . . . . . . . . . .. 540
[44.1.1 Optellen| . . . . .. o000 544

44.1.2 Vermenigvuldigen? . . . . . . .. ... ... ... ... 948

44.1.3 Andere aftelbare sommen? . . . . . ... .00 552

[44.1.4 Een cijter keer een kommagetall . . . . . . . ... ... 5H4

[44.1.5 Produkten van kommagetallen|. . . . . . . . . . . . .. 555

[44.2 Kleinste bovengrenzen| . . . . . . . . .. ... ... ... ... 558
[44.3 Absoluut convergente reeksenl . . . . . .. ... ... 560
[44.4 Verzamelingen in de praktijk{. . . . ... ... ... ... ... 561
[44.5 Equivalentierelaties| . . . . . . . ... ... 564
[44.6 Analyse in en van wat? . . . . . . .. ... ... 566




[45 Terug naar het platte vlak|
[45.1 Punten en vectoren in het platte vlakl . . . . . ... ... ...

@7 Foun =

[47.2 Functiesop de cirkell . . . . . . ... 0oL
[47.3 Dat andere inprodukt met atgeleiden| . . . . . . .. ... ...
[47.4 Bliptuncties| . . . . . . . . ...
[47.5 Intermezzo: out ot Hilbertspace| . . . . . . . . ... ... ...

10



After the first 11 chapters, the student...

1. ... knows basic definitions concerning limits and continuity (convergence,
Cauchy sequence, limit, completeness, continuity, uniform continuity) and
is able to determine whether a sequence, series or function satisfies these
definitions;

2. ... knows the definition of differentiability (i.e., that a function can be
approximated by a linear one), can determine whether a function is differen-
tiable, and is familiar with the more algebraic approach for power series);

3. ... knows the definition of Riemann integrability and can prove that certain
functions (in particular, polynomials, monotone and uniformly continuous
functions) are Riemann integrable, and knows the limit theorems about limits
of integrals of uniformly convergent sequences of functions on [a,b], and of
point wise convergent monotone functions;

4. ... knows the definition of basic concepts from metric topology (metric,
convergence, completeness, Banach space) and can prove that certain sets of
functions satisfy these definitions, such as C([a, b]), the space of continuous
functions f : [a, b] — IR with the uniform metric, and knows that convergence
in this space corresponds to uniform convergence;

5. ... knows the statement of the Banach Fixed Point Theorem, and can
apply this theorem to solve fixed point equations, in particular integral equa-
tions in C'(a, b)) for solutions of differential equations.

Course content

This course treats the rigorous mathematical theory behind Calculus: lim-
its, continuity, linear approximation, differentiability, integrability, and the
mutual relation between these concepts. The mathematical tools that are
necessary for formulating and proving the essential results of Calculus are
first presented in the context of real valued sequences and real valued func-
tions of a real variable, in such a way that everything can later be generalised
(to Y-valued functions of variables in X, with X and Y Banach spaces). The
space C([a,b]) of real valued continuous functions on an interval [a,b] will
appear as the first example of such a Banach space.

Starting point of the course are an ancient iterative scheme for solving equa-
tions, and the fundamental properties of (the set of) real numbers. High-
lights: a fairly complete exposition of power series directly based on a sys-
tematic algebraic approach for monomials, and if time permits an early in-
troduction of the Implicit Function Theorem via a contraction argument and
the Banach Fixed Point Theorem.
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‘I like fonctions of one variable’

Xavier Cabré adressing Abel prize winner Louis Nirenberg and a small analysis group at Tor Vergata in June 2015.

1 Introduction

These lecture notes for an analysis course for first year students of mathe-
matics and what can follow later. First year topics covered are

1. Cauchy sequences, convergence, limits;

2. Completeness of the real numbers; theorem of Bolzano-Weierstrass;
3. Continuity and uniform continuity;

4. The concept of differentiability;

(including differentiability of power series);

5. The concept of Riemann integrability (including Riemann integrability
of monotone and uniformly continuous functions);

6. The language of metric topology;

7. Completeness of the space C([a, b]), uniform convergence;

8. The Banach Fixed Point Theorem (with applications to integral
and differential equations, and the implicit function theorem).

Some of these terms may mean nothing to you yet. This introduction is meant
to give you a flavour of how and what we do in analysis, with some historical
perspective. We introduce some of the notation along the way, as well as
a few basic principles. Some familiarity with what used to be highschool
calculus is assumed: limits, continuity, differentiability and integration, in
the context of real valued functions f(x) of a real variable z. In particular
you have probably seen the integration formula

/ f(x)dz = F(b) - F(a),

in which F'is a primitive function of f, meaning that the derivative of F'(x)
is given by F'(z) = f(x).
Perhaps you have also seen the Newton scheme

— _ g<$n—1) — f(e
0 = 0y = G = f ) (11

for solving the equation g(x) = 0 numerically.

13



Exercise 1.1. Consider the graph defined by y = g(z). Use your highschool maths
to write down a formula for the line tangent to the graph of g in the point (z,y) =
(n-1,9(xn—1)). Intersect this line with the x-axis and denote the z-value in the
intersection point by x,. Show that it is given by . Hint: make a picture first,
for instance if g is given by g(z) = 2% — 2.

Starting with some x( this scheme produces a sequence xi, xs, ..., which
typically converges to a solution of g(x) = 0 very fast, see Chapter m

Exercise 1.2. Show for g(x) = 22 — 2 that ([L.1)) reduces to

Tp—1 1

Ty = f(Tp-1) = 5 P

and experiment, with xg = 1 as starting value for instance.

1.1 The square root of two

The example in Exercises takes us way back to Babylonian times,
and the origins of differential calculus. It concerns \/5, a geometric number
which appears as the length of the diagonal in the unit square.

The first recorded attempiﬂ to compute the positive number r defined by
r? = 2 can be found on the Babylonian clay tablet YBC7289. Dating back
around 37 centuries, it contains the picture of a square with its diagonals,
and several number sequences written in cuneiform.

In decimal notation one of these number sequences is

1 24 51 10

and stands forl

1+ 24 N o1 N 10
60 3600 216000

= 1.41421296,

which is a remarkably good hezagesimal approximation of
V2 =1.4142135 . . .,

the irrational square root of 2.

'That I know of.
2The repeating part of the decimal expansion is underlined.
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In our notation this approximation is believed to have resulted from rather
clever calculations employing the approximation

\/1+x%1+E

2
for small x. The clarifying formula would be that

VaR Ty 2ty ol 10
~ 108 60 ' 3600 ' 216000°

in which the Babylonian approximation is a truncated hexigesimal expansion

for 2(7); This works as follows.

Let 7 > 0 be a possibly not so very good approximation of /2. Then

— 12— 1
VI—VETT ey (143 "“):f+-,
2
which is possibly a better approximation of v/2. You should recognise the
example of Newton’s method in Exercises [LIJ[T.2] Starting with the bad

approximation r = 1 the new approximation of \/§ is 5, which is not that

bad really. Redoing the approximation with r = 2 gives %, much better,
and r = % in turn gives

17+12_289—|—288 577 1_1_24_’_514_10

24 17 24 x 17 408 60 602 603

the approximation on YBC7289, which is where the Babylonians apparently
stopped.

This method for approximating v/2 is also known as Heron’s method. In
this course we will take these methods to the limit. In Chapter 2 we will
give a proper formulation and proof of the statement that the sequence z,
defined in Exercise has the property that

Tn— V2 as n— oo, (1.3)

to be pronounced as “r, goes to v/2 as n goes to infinity”. We shall show
that it does so extremely fast.

1.2 One third of what?

Another geometric number is % It appears as the volume V of a pyramid with
unit square base and unit height. To see how and why we divide this pyramid
into 10 horizontal layers of height %0 and write n for 10. The maximal width
of each layer varies from 1 at the bottom to % = % at the top.

15



Exercise 1.3. Draw a picture and convince yourself that from top to bottom these
maximal widths are

SN

3
3*7"'71'
n

)

S|

Thus the total volume V' of the “unit” pyramid is certainly less than
1L/1 4 9 1 <
e+ 4 41 == k2.
n(n2+n2+n2+ +> n3kz;

Likewise the minimal widths of the layers are

0123 n—1
n7n7n7n7 Y n 3
so V is larger than
n—1
1 2
EZ/@ :
k=0
Combining the two bounds we have
1 & 1 & |
L 2 S 2_.3& : g _ ¢ " Y 1
ﬁn'_"?’kzzok <V<n3;k =5, while §,-8,=—-—5=—,

in which we don’t really have to exhaust ourselves to understand that this is
also true for values of n different from 10 as large as we like.

How many numbers V' can satisfy this inequality for all n? At most one
according to Archimedes. Because for two such numbers, say V < W, we
would have

- 1
O<W—V<Sn—§nzﬁ for all n e IN. (1.4)

Archimedes took it for granted that therefore the difference of V" and W must
be zero, and who are we to dispute? As a consequence of what we now call
the Archimedean Principle there is indeed at most one number that qualifies
as the volume of the pyramid.

By the way, Archimedes also knew the identity

" n®> n® n
C, =l
( ) ; 3 + 2 + 6

16



so the inequalities become

and we see that V = % fits. If we agree that the unit pyramid has a volume,

then its volume must be % because it is the only value that ﬁt. It’s quite

amusing that we actually found this value as the coefficient of n® in (C,,).
In modern language we say that V is the integral

! 1
/ (1—2)*dz = =,
0 3

in which (1 — 2)? is the area of the intersection of the pyramid with a hori-
zontal plane at height z. The integration variable z ranges from z = 0 at the
bottom to z = 1 at the top of the pyramid.

Having guessed (C),) one way or another you can prove it by induction:
starting with n = 1 and (C}) being a statement that is trivially true, the
implication

(Cn) = (Cn-i-l)

is easy to verify. Indeed, using (C,,) we have that

s 9 “ 2 9 n3 TL2 n 2
k2 = k 2=+ 4= 1
kgl kgl +(n+1) s to +(n+1)7,

which happens to be equal to

m+12 (+1)?* n+1
+ + .
3 2 6

So (Ch41) holds if (C,) holds. This is called the induction step, which here
is valid for every n > 1. Verifying (C1) via

1
Zk2:12:1:_+_+_
k=1

we then conclude that for every natural number n the identity (C,) holds

because
01:>02:>03:>C4:>"'

This trick to prove (C,) for all positive integers n is also called proof by
induction. Think of the n'® statement (C,) as being written on the n'®

3There is no obvious way to think of this volume as one third of the unit cube!
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domino. Put all dominos in a never ending queue. Kick the first domino
(n = 1) over and watch. The statements still to be checked are the dominos
still standing.

You may have noted thatf]

1 1
/ (1—2)*dz = / z* dx.
0 0

This integral belongs to a family

1 1 1 1 1 1
le/oxdx:? JQZ/OIEQCZ{L':ga J3:/Ox3d$217"'7

expressions that you must have seen before for the area .J, of the set
Ay={(zy): 0<y<ar <1}

in the xy-plane.

Archimedean type expressions for sums of powers can be used to show di-
rectly that the sequence Jp, Js, Js, ... continues as suggested. Unfortunately
the sum formulas for exponents p larger than 3 become a bit cumbersome.
The inequalities

np+l n

n—1
kP < < kP

do a quicker job. They hold for all positive integers p, n and dividing by nP*!
it follows that

n—1 n

1 1 1
p p

k=1

for lower and upper approximations of J,. Since these approximations differ
by %, Archimedes tells us that

1
1
J, = ’dr = ——. 1.5
= [ e — (15)
holds for every positive integer p.

An important goal in this course will be to give a rigorous meaning to
integrals such as ([1.5)). The above reasoning will guide us in Chapter @

4Via the substitution z = 1 — x.
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1.3 The Archimedean Principle

We continue this introduction with an overview of the different number sets
that we use in analysis, tied up with Archimedes’ principle. You are of course
familiar with

T=1{.  —4,-3,-2-1,01,2,3,4,...}C Q:{g:pe Z,qe]N},

the set of all integers and the set of all rationals. We think of Z as a bi-
infinite sequence of marked points on a number line with no endpoints. The
other numbers of @ lie in the intervals between. If r € @ is not in Z then
r=m-+qwithmeZ ge Qand0<qg< 1.

Many geometrically defined numbers such as 7 and v/2 are not rational
and correspond to other points on the number line, which we think of as
corresponding to the set IR of all real numbers. Thus

NcZc QcCIR.

Beginning with IN all of these are sets with infinitely many elements, as they
all contain the infinite set IN enumerated by 1,2,3,.... It is also easy to
enumerate @, but you really should convince yourself that such a one-to-one
correspondence between IN and the set of all points on the real number line
cannot exist.
To wit, assume
T1,T9,T3,...

is an enumeration of IR. Then IR is completely covered by the intervalsﬁ

1 n 1 1 n 1 1 n 1
X1 4,1’1 4 y | L2 87x1 g , | T3 167'7"3 16 )

Lo Lo L
T gy T T ag o\ T g™ Ty ) \ 6T 10876 T 108 )

etcetera. The total length of these covering intervals is at most

11 1 1 1 1 1 1

5 178716732 "6 "1 Tas6 T
which I hope you agree is 1. Similar reasoning would bound the total length
by %, Z—i, %, 1—16, and so on. This is an absurdity that we are not willing to
accept: the total lengthﬂ of the real number line should be larger than any
positive number. Have we proved the following theorem?

°For numbers a < b we denote by (a,b) the set of all real numbers z with a < = < b.
5We touch upon measure theory here, see Section
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Theorem 1.4. The set IR of real numbers is not enumerable. In other words,
IR is not a sequence of numbers.

A more direct proof of Theorem is via never ending decimal expansions.
Indeed: one possible and very natural definition of the set IR of real numbers
is by means of such expansions. Assume that the real numbers between 0
and 1 are enumerated by

0o dnj
Ty = W for n—1,2,3,...,

Jj=1
and put the digit{]| d,; in a block

dll d12 d13 d14 d15 d16 dl? d18

Now choose d,, with |d,, — d,,,| = 2 and observe that the real number

oo
>
107
= 10
does not appear as any x,, in our enumeration, a contradiction.
To make decimal representations unique, we may choose to exclude ex-

pansions which only have finitely many nonzero digits. The number 1 € IN
is then represented in IR as

9 9 9
1=0. =y 1.
0.9999999 TR RET R (1.6)

"Which can be any of 0,1,2,3,4,5,6,7,8,9.
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whence for example

R PR EE L LS DAL IR S I SR INTPPR o
9 10 100 1000 ~ 10 102 103 A
This is just like
1 1 1 1 1
1:— — — _ e e e — - 1
SR T 2o (1.7)

which relates to binary representations of the real numbers.
The equalities in the above expressions relate to the Archimedean prin-
ciple again. For instance, the absolute value of the difference between 1 and
11 1 1

21T T

is clearly smaller than every power of %, and thus smaller than every %

According to Archimedes it must thus be zero. We shall honour Archimedes

by stating his principle as a theorem in which we use the modern symbols V
and 4.

Theorem 1.5. The Archimedean Principle:

V€>0 ElNE]N : N < E.

Theorem implies that there is no strictly positivd®| real number smaller
than every %, which is what we used to conclude from that the only
candidate for the volume of the pyramid is % Our task will be to understand
the mathematical proof of what was obvious to Archimedes}

1

Remark 1.6. If we use the Archimedean Principle with € = , in which

x € IR s positive, we obtain the equivalent statement
\V/z>0 EING]N : N > .
Exercise 1.7. We used the symbol N to exhibit that the statements in Theorem

and Remark [1.6] concern the existence of a single N. For which n other than n = N
do these Archimedean statements also hold?

8By positive we mean strictly positive from now on!
9Don’t we do important work?
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1.4 The geometric series

See
https://en.wikipedia.org/wiki/Geometric_series

for the title of this subsection. We have seen in Section [I.3] that in the set
IR it must hold that

1 1 1 1 1 1
[T A T A T A T A T &
Substituting 10 = n we “discover” that
1 1 1 1 1 1

e T S R T 1.8
n+n2+n3+n4+n5+ (1.8)

n—1
It’s easy to convince yourself why should be true for every integer n > 1:
order one pizza for n — 1 persons, slice it in n pieces, eat, slice, eat, and so. If
you have been born with n fingers (n > 1) you are likely to discover as
a fact of every day arithmetic life, long before you eat pizza’s. Have a look
at

https://en.wikipedia.org/wiki/Zeno_of_Elea

before we continue but don’t spend too long there.
For x € IR the more general expression

Zx":1+x+x2+x3+x4+--- (1.9)
n=0

is called a geometric series. The formula

N 1 — :L,N+1
Zm”:1+m+x2+~-+x]\7: N (1.10)
—x
n=0
for the finite sums leads to a remarkable conclusion.
Theorem 1.8. For x € IR it holds that
Y oat=—— if |2/ <1 (1.11)
—~ 1—=x

Exercise 1.9. Sketch the graphs defined by
1
y=1— Yy=1l+z y=14+zx+2% y=1l+a+22+2° . ..
— X

to see what this actually means.
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In particular it follows for all # with |z| < 1 that

Zx":x+x2+x3+~':

n=1

Y

1l—=x

which reduces to 1) for x = %, but is a far more general statemen.
A mathematical proof of Theorem first of all requires an algebraic

proof of (1.10)), i.e. that

N
. 1—$N+1 1_1.N+1
E xr = == )
l—u l—x

n=0

TV
LaTey sucks

and then a limit argument for N — oo, which boils down to the statement
that
N =0 as N oo if |z|<1. (1.12)

You should contrast this with™?]
Vr—1 as n—oo if x>0. (1.13)

Making such and other limits statements mathematically sound is another
important task for this course, but let’s also not forget the algebraic beauty
in ((1.10)).

Exercise 1.10. We turn (1.10]) around. Show that for every x # 1 it holds that

" —1

r—1

=l4+az+a’+ - +a",

and observe that the right hand side is equal to n if x = 1. Generalise to

" —a”

r—a

with a and x in IR. What does this tell you about the line tangent to the graph defined
by y=2a"inx =a?

Your answer to Exercise [1.10| will be our starting point for the theory of
differentiation and guide us in an approach that avoids the usual limits.

10SQubtracting 1 on both sides, or multiplying by .
1Play with this formula, for instance, replace by —z and draw some graphs.

12How would you use to prove ?
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1.5 Outlook: beyond the real numbers
A small detour: you will see elsewhere that ((1.11)) is true even in the form

iA”: (I—A)™, (1.14)

where A is a square matrix, and in which A" is a matrix produc@, ie.
AP =AA AP =AAA A*=AAAA,

and so on. To give a rigorous meaning to (({1.14), we will in fact need a
condition of the form |A| < 1. A possible “absolute value” of a matrix is

|A|Fmb - ZA%]"
V 12

the square root of the sum of all the squared entries of A. This norm is
called the Frobeniud™ norm of A. The Frobenius norm has the remarkable
properties that

|AB|Frob S |A| |B|Iﬁrob and |A+B|Frob S |A|Frob + |B|Frob (115)

Frob

for all squarelﬂ matrices A and B of the same size.

In this course we will not so much study matrices and matrix norms.
However, we will often work with the “absolute value” of functions f : [a, b] —
IR, many of which you have seen before. This absolute value or norm is

defined as
| [l = max |f(x)], (1.16)

a<z<b

if this maximum exists. For two functiond™ we will have that

\fal... <Iflalgl... and [f+gl . <I|fl. +19l.. (1.17)

where in general |fg| —<|f| |g| .

We will speak about f, — f for sequences of such functions, just like
we speak of convergent sequences of real numbers z,,. This concept of con-
vergence of sequences of functions will be extremely useful for solving many
problems in analysis, including integral and differential equations.

13Matrix products are explained in Section

4To some dismay of Euclides and Pythagoras perhaps.

15Tn general AB # BA! In fact the estimates only require AB or A + B to be defined.
16 A function and a gunction, with clearly fg = gf.
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1.6 Exercises

Exercise 1.11. Look at ([1.1). Verify that
g(a) = —"— gives flx)=a".
(1—a7)7

What does the scheme z,, = f(x,—1) do in relation to g? Play with the obvious
similar examples.

Exercise 1.12. Use long division to find the expansion
ey
7 L1079
7j=1

What's the periodic part in the expansion? Divide the sum by that periodic part to
obtain ([1.8)) with n a power of 10 and check that your answer was right.

Exercise 1.13. Find the complete hexigesimal expansiorE] of

17 12 289 +2838 577

2017 2ux17 408
Hint: use hexigesimal long division to write
12 i h;
17 =607’

J=1

which should come out periodic. Then add the finite hexigesimal expansion of %—Z.

Exercise 1.14. Find a formula for

n

> K

k=1

Hint: try an® + bn® + cn? + dn, find a,b, ¢,d from n = 1,2, 3, 4, then use dominos.

1"You need the multiplicative tables in base 60.
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Exercise 1.15. You may enjoy proving that

Z 21—71

SRS

for all n € IN. This tells us that

1
V5>0 HNE]N : 2]\[7_1 < e.

Hint: domino principle. When you're done do this next one:

Exercise 1.16. This exercise and will be crucial in . Recall that we
accept as the obvious inequality below, supplemented with an Archimedean
argument that the inequality cannot be strict. Let's examine the inequality more
closely and cut it up in pieces, for instance

$L_1,1,1.1, 1,1, 1,
2 2 4 8 16 32 64 128 -
n=1 ~——
: H=ti<ist
to draw additional conclusions such as for example
11
D5 <;
k=4
Generalise and prove that
1 1
vmm’NGN m>n>N — 27< oN—1
k=n
Then take N as in Exercise [[.15] to conclude that
m
1
Ves0 INEN Vmpnen: m=>n> N — Z o <& (1.18)
k=n

Exercise 1.17. Let p € IN. Complete the expression

-

Il
=)

ap+1 _bp+1 _ (CL—b)

J
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and show that
ap—l-l _ bp—l—l

a—>b
fora > b > 0. Then puta = k+1 and b = k and take the sumover k =0,1,...,n—1
to show that™d

(p+1)p* < < (p+1)aP

n—1 Tlp+1 n
Sw e
k=0 P+ k=0

for p,n € IN. NB In Chapter [0] these inequalities lead to

1 1
/ 2P dy = ——.
0 p—l—l

Exercise 1.18. Use (1.10|) to show for n € IN that

na" < if 0<a<l.

1—=x

Exercise 1.19. Write -

1+=x

as a power series for z with |z| < 1, and as a power series in 1 for z with |z| > 1. Asin
Exercise[1.9; draw graphs to examine how well the partial sums do as approximations.

Exercise 1.20. Referring to Exercise take n = 7. Use long division to show

that
a’ —d’ 6 5 2.4 3.3 4.2 5 6
=z +azx”+a’x" +a’z” +ax" +a’r+a’,

T—a
and then whatever algebra you like to deduce that

2" =a" +7a%(x — a) + (2° + 2az* + 3023 + 4032 + 5a'z + 64°) (x — a)?.

What's the formula for general n € IN?

18Frits Beukers showed me this neat trick.
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Exercise 1.21. This exercise relates to (1.12). Suppose that 0 < 2z < 1. From

it follows thaﬂT_gI

1
(N +1)zN < :

— X
for every N € IN. Combine with Theorem [1.5] to show that
Ves0INen Vps>n @ 2" < €.
Hint: first show that the statement
Jeso VNen ¢ N > e

is false.

Exercise 1.22. This exercise relates to ([1.13). Suppose that > 1. For each
n € IN let y = {/x be defined by y"™ = z. This implies that {/x < ¥/x if n > m. To
prove that

Ves0INeN Vst 0< Yz —1<¢

it therefore suffices to prove that
Vesodnen: 0< Vo —1<e.

Prove this latter statement. Hint: assume it is false; derive a contradiction with the
hint in Exercise [[.21]

Exercise 1.23. This exercise also relates to ((1.13]). Suppose that 0 < 2 < 1. Prove
that

Ves0INeNnVnsn : 0 <1 — Yz <e.

Exercise 1.24. This exercise introduces a happy couple for later. Let p > 1 and
q > 1 be real numbers. Show that
1 1 P q

-+ -=1<= p—-1)g—-1)=1 <= qg=—— <= p=——
i (p—1(@—1) P =)

9Compare to Exercise
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2 What Heron tells us about sequences in IR

In Exercise Heron’s scheme ((1.2)) with zy = 1 produced the numbers

B 7 _ 57T _ 665857
T2 12 408 T YT 470832

and so on. This sequence of numbers z,, indexed by n € IN was designed by
Heron to solve the equation

2? = 2. (2.1)
For z > 0 we now introduce the notation
T 1
7 — -4 2.2
= f) =2 (22)

which we think of as an input-output relation defined by the formulaE] f(z).
The input is some freely chosen x, and the output is some other Z, defined
by (2.2). With this notation every z,, in Heron’s sequence is obtained as an
Z from a previous x = z,,_1, starting from the fixed value zy = 1.

Note that
1\? z  1\?
29— (Z42) —o=(2_-2) >0
‘ (2+x 2 x

unless 22 = 2, and that # differs from x by

z 1 1 =z 1
F—r=-d-——x=——==—(2—2?). 2.
v 2+x v r 2 Qx( =) (23)
Thus it follows that
v2>2 and 0<ax, <, forall ne€lN. (2.4)

In particular Heron’s sequence (of rational numbers z,,) has

3 4
§:$1>$2>I3>"'>§,

in which % is a rather arbitrarily chosen rational lower bound for the decreas-
ing rational numbers in the sequence. Our goal is to show that this lower
bound may be replaced by the larger lower bound v/2, and that no larger
lower bound is possible.

1Or the function f if you like.
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Exercise 2.1. Prove that % is indeed a lower bound for the sequence, but that there
are larger rational lower bounds. Hint: maybe verify first that /2 > %. Or maybe
not. Simpler is to use that the squares are all larger than 2 and the reciprocals are all
bounded from below by % Write what x,,+1 is and factor out the reciprocal of x,,.

We shall want to be able to conclude that
T — V2 (2.5)

as n gets larger and larger. We therefore have an urgent need for (a meaning
of) the statement
Ty — T,

for some Z we usually don’t know yet a prior{] The reasoning should then
be that

and that therefore  is a solution of
T 1

a purposefully perverted equivalent version of the equation 2% = 2 we were
hoping to solve. In particular this will involve the implication

T, =T = f(x,) — f(Z), (2.7)

which will be called continuity of f in Z.

Exercise 2.2. Verify that for x # 0 the equation

T 1
=+ —
2 =z

is equivalent to the equation 22 = 2.

2.1 Bounded monotone sequences have limits!

We saw that Heron’s sequence is strictly decreasing and bounded from below.
Sequences of numbers?| x,, with either

rp<ry<w3<--- O Ty >Xp>T3>ccc,

2 Although in this example we do have a hunch.
3For the moment rational numbers.
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are called monotone sequences. There are two types of monotone sequences:
nondecreasing and nonincreasing.

If such a sequence is bounded we think of it as approximating a number,
be it rational or irrational. For instance, the sequence

1 1+1_3 1+1+1_7 1+1+1+1 15 1+1+1+1 1 31

2’2 4 4’2 48 82 48 16 16’2 4 8 16 32 327"
is bound to approximate the rational number 1. Most nondecreasing bounded
sequences however will define a number which is not rational, as you can infer

from Theorem [L.4]

Exercise 2.3. Show that there exists a sequence
rn=1l<zy=1ld<z3=14l<x4=1414 < x5 =1.4142 < 24 = 1.41421 < - - -,

such that for every n € IN the number z,, is the largest numberﬁ with n digits that
has the property that 22 < 2.

The idea behind the construction of IR is to add to @ all the lowest upper
bounds of bounded nondecreasing sequencesﬂ which do not approximate a
rational number. This is consistent with the decimal approach in the proof
of Theorem and in Exercise 2.3} The resultingl| set IR has the property
that it contains @, and is just like @ as far as the algebraic operations
addition and multiplication, and the ordering of the numbers are concerned.
Unlike @ the set IR has the important property that every nondecreasing
bounded sequence x,, in IR has a smallest upper bound (supremum)

S =supz, € R.
nelN

This number S turns out to be the unique limit of the sequence x,, (in terms
of a definition that will follow shortly). Likewise for every nonincreasing
bounded sequence z,, in IR , its largest lower bound (infimum)

L=infz,eR
nelN

must be the limit of that sequence. Let’s make these notions more precise.

4Counting 5 digits in 1.4142.
5And then also the real non-rational largest lower bounds of nonincreasing sequences.
6Details of this construction are omitted, we assume the existence of a such a set IR.
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Definition 2.4. Let x,, be a sequence of numbers in IR indexed by n € IN.
Then the sequence is called

e nondecreasing if
vnE]N - I S Tn+1,
.e. Ty < Tpyq for every natural number n;
e strictly increasing uf
vnE]N DT < Tpgl;

e nonincreasing if
VneN @ Tn 2> Tpyt;

e strictly decreasing if
vnE]N DTy > Tn41;

e bounded from above if
EIMG]RVnE]N - Iy S Ma

in which case the number M is called an upper bound; a number S € IR
is called a lowest upper bound (supremum) for the sequence x,, if it is
an upper bound and if there are no upper bounds M with M < S,
notation
S =supz, € R;
nelN

e bounded from below if
Jmer Vnen 1 T = m,

in which case the number m is called a lower bound; a number L € IR
is called a largest lower bound (infimum) if it is a lower bound and if
there are no lower bounds m with m > L, notation

L = inf z, € IR;
nelN

e bounded if it is bounded from below and bounded from above.

For example, Heron’s sequence is a strictly decreasing bounded sequence,
bounded from above by M = z; = %, and bounded from below by m = %.

3
In particular the following theorem applies to it.
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Theorem 2.5. FEvery nonincreasing bounded sequence in IR has a unique
infimum in IR. Equivalently: every nondecreasing bounded sequence in IR
has a unique supremum in IR.

We will not prove this theorem. It follows from every proper construction of
IR, for instance via decimal expansions as used in the proof of Theorem
and Exercise 2.3 Applied to Heron’s sequence Theorem gives us L, .
the largest lower bound of the Heron sequence. Our goal is to prove that

L, =12,

and we need some definitions to get started with this proof.

2.2 The limit definition: epsilons

The defining property of the infimum L of a sequence z,, is that z, > L for
all n € IN, but that there is no larger number for which this is also the case.
Thus, if € > 0, the number L + ¢ is not a lower bound, meaning there must
exist N € IN such that zy < L 4 €. Since the sequence is nonincreasing it
then also follows that

L<z,<xy<L+e forall n>N.
We conclude that
V5>Q EING]N vnzN : |£L’n — L| <eg, (28)

a statement to be pronounced as: for all (real numbers) £ > 0 there exists a
natural number N such that for all natural numbers n with n > N it holds
that

ghe distance between z,, and L

-~

d(zn,L)=|zn—L|

is smaller than . For the moment d(z,y) is only a short hand notation for
the distance between two real numbers x and y, and therefore defined by

d(z,y) = |z —yl. (2.9)

This formulation is based on algebrcﬂ with rea]ﬂ numbers.
By the way, the statement in (2.8) makes sense for every real L and every
real sequenceﬂ not just for monotone sequences.

"For now: a human activity with the operations +, —, x, / and certain algebraic rules.
8S0 it’s not really algebra....
9Tt does not matter that n runs from 1 upwards, any other starting integer is fine.
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Definition 2.6. A sequence of real numbers x,, indexed by n € IN is called
convergent if there exists an L € IR such that

Veso INen Vnsn ¢ |20 — L < e

We then write
T, — L (as n— 00),

or equivalently

lim x, = L.
n—oo

The number L is called the limit of the sequence. We say that x, converges
to L (as n goes to infinity). We often don’t explicitly write “asn — oo”.

Take note of the convention that Greek letters always stand for real numbers
and the lower case letters in the middle of the alphabet are integers, unless
otherwise specified.

Remark 2.7. Convergence of the sequence x, means that

Jier Veso Inen Visn - |z, — Z| <e. (2.10)
——

d(zn,T)

The negation of reads

Vzer Je>0 Vvew Tusn ¢ |Tn — 2] > & (2.11)
(zn,Z)
d(xn,T

The negation is obtained from by negating the statement following the

semi-colon, and changing every 3 to ¥V and vice versa. Sequences that are not

convergent, i.e. for which holds, are called divergent.

Remark 2.8. Is Definition[2.6 of any use? Heron’s method requires to know
that
lim v, = L = lim 22 = L*. (2.12)
n—oo n—oo
Proof of . We know that the left hand side of the implication in
says that |z, — L| is small for n large. To prove the right hand side
we have to show that |22 — L?| is small for n large. Note moreover that

|$i_L2’ = |$n+L‘ ) ‘xn _L‘ ) (2'13)
—— —— ——
small for n large? not too large? small for n large!

in which the multiplicative dot is included for the purpose of clarification
only. We first make the smallness of the second factor in (2.13)) precise using
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the definition of z,, — L. So let ¢ > 0. Then according to the definition of
,, — L there exists NV € IN such that

anN : |Z’n — L| < E. (214)

With the factor |z, — L| small there’s neither need nor reason for the first
factor in the right hand side of to be small. We do want get rid of
its n-dependence though, to make sure that the product of the two factors
is also small. To this end we apply the definition of x,, — L with just onﬂ
convenient choice of € > 0, say € = 1, and we obtainﬂ

EINlélenZ]\h : |ZL‘n — L| < 1.
The triangle inequalityE then gives
|z, + L| = |z, — L+2L| < |z, — L| + |2L| < 1+ 2|L|, (2.15)

for all n > N;. Note very carefully how we bring |z, — L| into play in the
first step of (2.15) by™| subtracting and adding L before we use the triangle
inequality.

Combining ([2.14) and ({2.15)) it follows from ([2.13]) that
|22 — L?| = |z, + L||z, — L| < (1 +2|L]) |z — L| < (14 2|L))e  (2.16)

for all n > max(N, Ny). Writing M = 1+ 2|L| we have thus established that

V€>0 ElNe]N vnzN : |fL’i — LQ‘ < Me. (217)
If it happens to be the case that M < 1 then the proof is complete with
, but here this only occurs if L = 0. For L # 0 we have M > 1.
Now recall that to estimate the second factor in we used
with the € > 0 that was given at the start of the proof. But we can also use
(2.14) with € > 0 replaced by

g= (2.18)

€
M?
which is also positiv This will give a different value of N, say N, such
that

€

anN : ’ZC’H—L’ < i

108ee also your proof Proposition below.

1With a subscript 1 on N to distinguish from the N for the arbitrary choice of € > 0.
12This triangle inequality will be reviewed in Exercise below.

13The subtract and add the same term trick.

14T et’s call this the M-trick.
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holds. It then follows that
€

Mo °

|22 — L?| = |z, + L||x, — L| < M|z, — L| < M

for all n with

n > max(Ny, N).

Since ¢ > 0 was arbitrary this then completes the proof that 2 — L2
Proposition records one of the twd ¥ important items in this proof. [

Proposition 2.9. Any convergent sequence is bounded, i.e. if x, is conver-
gent then there exists M > 0 such that |x,| < M for all n.

Exercise 2.10. Prove Proposition 2.9] Hint: apply the definition of convergence
with just one[T_7] convenient choice of € and use the triangle inequality. Don't forget
the n with n < N.

Proposition 2.11. A convergent sequence can only have one limit.

Exercise 2.12. Prove Proposition [2.11] Hint: if not then there are two limits, say
Ly and Lo, and you can apply the definition of convergence twice, with L1 and with
Lo; the subtract and add tric™] the triangle inequality, and the specific choicd'’]

€:|L1—L2|>0

allow you to derive a contradiction.

Exercise 2.13. Note that (2.8)) is the first occurrence of an absoluteFE] value in a
definition. We recall that |z| = x for x > 0 and |z| = —z for x < 0. In the proof of
(2.12)) we used the triangle inequality, which reads

a+b] < |a] + [b].
Prove that this inequality, as well as the reverse triangle inequalitﬂ

lla] = [b]] < |a —b]

15With a tilde on N to distinguish from the earlier (also arbitrary) choice of ¢.
16The other one being the trick with M.

17So you don’t use the full strength of the definition!

8as in the proof of .

19This requires the full strength of the definition!

20Recall |z| is also called the norm of x.

2L A nice statement about the map x — |z| from IR to [0, co).
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hold for all a,b € IR. Combined these statements are equivalent to

lla| = [b]] < la+b] < |af + [].

Exercise 2.14. Substitute a = x — z and b = z — y to obtain

[z =yl < | —z[+]z -y,
—_ Y~ =
d(z,y) d(z,z) d(z,y)

in which we indicate what the triangle inequality looks like if we implement the notation
introduced in the discussion of ([2.9)).

Theorem 2.15. If x,, is a convergent sequence with limit L, then |x,| is also
a convergent sequence, with limit |L|.

Exercise 2.16. Prove Theorem [2.15| Hint: use the reverse triangle inequality.

Exercise 2.17. Let N € IN. Prove that
lz1 4 oy < o]+ + |z

forall z1,...,zy € IR.

2.3 What about Heron’s limit?
We note from ([2.3)) that Heron’s sequence has

1 Ty

Tkl T = T
n

whence
20 (Tpy1 — Tn) = 2 — 2. (2.19)

Exercise 2.18. Recall that Heron's sequence is convergent. Use this to prove’)
that zp+1 — x,, — 0.

22And give an example of a divergent sequence for which x,, 1 — x,, — 0.
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Exercise 2.19. Prove that it holds for Heron's sequence that z7 — 2. Hint:

combine (2.19) and Exercise 2.18]

Exercise 2.20. Recall that

L = inf 2z, = lim z,.
‘Heron, nelN n N300 n

Prove that Lfbm = 2. Hint: combine Exercise with 1)

Exercise 2.21. Prove there is only one positive real number L such that L? = 2.
No hint.

Exercise 2.22. By construction L, is a positive number because L, = > %. Prove
that L, is the only positive real number which squares to 2. This then justifies the
conclusion that I, = /2.

Exercise 2.23. Exercise produced a bounded nondecreasing™| sequence which
therefore has a supremum S. Prove that S =2. Thus S =L, = V2.

2.4 Suprema and infima of sets
Every sequence x,, € IR indexed by n € IN defines a nonempty subset
{z,: ne N} C R.
Likewise every function f : [a,b] — IR defines a set
Ry = {f(z): a < v < b},

called the range of f. This section will be a bit of an abstract project on the
properties of subsets of IR, and is necessary for Theorem in Chapter
and for the theory of integration in Chapter [6]

23Ts that sequence strictly increasing?

38



Definition 2.24. A nonempty subset A of IR is called bounded from above
if there exists My € IR such that a < My for all a € A. Such an My is called
an upper bound for A. Likewise, A is called bounded from below if there

exists mg € IR such that a > mq for all a € A. Such an myq is called a lower
bound for A.

We want to show that every nonempty subset A of IR which is bounded from
above has a lowest upper bound. Suppose that A is such a set, and let M,
be an upper bound for A. Take an ay € A and consider

a0+M0

mo = 9

If my is also an upper bound for A define a; = ag € A and M; = mg. If mg
is not an upper bound then there exists a; > mgy with a; € A and therefore
ap < my < a; < My. In this case define M; = M. In both cases if follows
that
ay > ag, My < My, OSMl—%SM-

Repeat the argument. This gives as € A and an upper bound M, a3 and
Ms, and so on. We thus obtain two bounded monotone sequences. The
nondecreasing sequence a,, has a supremum a and the nonincreasing sequence
M, has an infimum that we will call S.

Exercise 2.25. Prove that S = @, and that S is the lowest upper bound of A.

It may or may not happen that S € A, but in both cases the conclusion is
the same:

Theorem 2.26. Let A be a nonempty subset of IR which is bounded from
above. Then A has a lowest upper bound S in IR, notation

S =sup A.

Likewise, if A is bounded from below then A has a largest lower bound I in
R, denoted”] by
I =inf A.

Remark 2.27. Thus S en I are real numbers, if they exist. If A is not
bounded from above we say that sup A = oco. If A is not bounded from below
we say that inf A = —oo. Neither oo nor —oo exists, for that matter.

24Before we used L, for reasons of presentation.
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2.5 Examples of convergent sequences

In Section [2.2] we tailored the definition of convergence so that the following
theorem has already been proved.

Theorem 2.28. Every bounded monotone sequence in IR is convergent. If
the sequence is nonincreasing then its limit is the infimum of the sequence, if
the sequence is nondecreasing then its limit is the supremum of the sequence.

This theorem in particular implies that the limit of the sequence

1111111
17273°4’5°6" 7
exists, but it does not yet tell us that this limit is 0.

Theorem 2.29. (The Archimedean Principle in limit form)

Exercise 2.30. Use Definition [2.6) to explain why Theorem in Section is
equivalent to Theorem [2.29]

Proof. By Theorem the limit exists as the largest lower bound of the
sequence % It is also clear that 0 is a lower bound. Could there be a larger
lower bound? If so this would imply that there is a lower bound®|m > 0 for
the sequence, i.e.

l2m>0 for all n € IN and thus ngi:MGIR
n m

for all n € IN. This looks absurd: how could the sequence
1,2,3,4,5,6,7,8,9,...

be bounded?

Actually it cannot, because then the sequence z, = n would have a
supremum S € IR. With this lowest upper bound S at our disposa]@, we
then observe S —% is not an upper bound. This means that there exists n € IN
with n > S—%. Hencﬂthe number n+1 € IN satisfies n+1 > S—l—% > S and

25Here m is a real number.
26To dispose of in fact.
2TWe use that n € N = n+1 € IN.
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disqualifies S as the supremum of the sequence x,, = n, since it is not even
an upper bound. This completes the proof of Theorem [2.29] In particular
we have

1
inf — =0, (2.20)
nelN N

and Theorem [1.5|is also proved. 0

Exercise 2.31. Why does it now also follow that

on — 0
as n — oo? Adapt the argument in the proof of (2.20)) if that adapted proof wasn't
already part of your answer.

It is highly unlikely that you will be impressed by Theorem [2.29|and the result
in Exercise [2.3T], but we had to make sure that what obviously must be true
can indeed be proved within our framework for mathematical analysis. There
are many more such obvious statements.

Example 2.32. The sequence x,, defined by

n—1

T on+1

Tn

1s convergent. You don’t need to be knowledgable in mathematics to guess
its limit: when n 1s large the numerator and denominator contain the same
large term, so the limit is bound to be 1. To prove the obvious let € > 0 be
arbitrary. We need to establish that

n—1
n+1

—1‘<8

for n sufficiently large, i.e. larger than some N which will depenﬂ on €.
Observe that

n—1 1| = -2 B 2
n+1 Cn+1| n+1’
and that
2 2 2—¢
<ge <= n+l>- <= n>--—-1= .
n+1 € € €

28 As before we prefer not to use a subscript on N when & > 0 is not specified.
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Thus the desired inequality is equivalent to

2—c¢
n > :
€
which certainly holds alln € IN if ¢ > 2.
For e < 2 we invoke the Archimedian Principle again. It is slightly more
convenient to use the restated form in Remark|[1.6. This gives the existence
of an N € IN with

2_
N > 5,
g

whencd®| also
2—¢

€
In both cases we have shown that there exists N such that

n > for all n > N.

n—1
n—+1

— 1| <e forall n>N.

This proves the clatm that

n—1
im =1.

Do take note of the careful reasoning with inequalities. More of the same in

Exercise [2.406, O

2.6 Basic theorems about convergent sequences

Proposition 2.33. Assume that

lim z,, = L.

n—oo
If x,, > a for some number a € IR and alln € IN then also L > a. The same
statement holds with > replaced by <.

Exercise 2.34. Prove Proposition [2.33] Hint: assume that L < a and apply
the Definition with € = a — L to derive a contradiction. Can the conclusion of
Proposition [2.33] be strenghtened if ;,, > a for all n?

29Gee the point made by Exercise
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Exercise 2.35. Here's a variant of the subtract, add, then trangle inequality trick
that we will use for product sequences next. Let a,b,c,d € IR. Prove that

lab — cd| < |a — c| |b] + || |b — d|.

Theorem 2.36. If x, and y, are convergent sequences, with limits  and 7,
then so are the sequences T, + Yn, Tn — Yn and T,Y,, with limits T+ 1y, T — 7,
and Ty respectively.

Proof of the sum statement. The limit of the sequence x, + y, should
be Z 4 ¥, so we have to show that the distance between z,, + 1y, and * + ¥ is
small for n large. We will try to estimate this distance in such a way that the
distances |z, — z| and |y, — y| come into play. There is no general approach
here, you have to figure out how to do it. If we use the triangle inequality
with an intermediate step we obtain

(0 +yn) = (Z+9)] = (20 =) + (o —§)| < |20 — Z[+ |y — 7] (221)
N / \ s N e’ N——

-

d(zn+Yn,T+7) reshuffled d(zn,T) d(yn,y)

The equality in (2.21) is a reshuffle trick. It uses the algebraic properties of
addition and subtraction in IR.

With (2.21]) we are in position to start up the proof with a default sen-
tence.

Let € > 0 be arbitrary.
Since x,, — T we have
ElNg;G]anzNz : |.I’n — i" <eg,
——
d(zn,T)

in which we use a subscript x on N to indicate that this is the statement for
the sequence x,, to converge to .

We then do copy-paste followed by search x replace by y.

Indeed, since y,, — 4 we have

EINyE]N vnZNy : |yn - g| <ég,

d(yn,7)

in which we use a subscript y on N to indicate that this is the statement for
the sequence vy, to converge to ¥.
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Next we set N = max(N,, N,) to let the e-engine run.

Our initial estimate (2.21)) and the two e-statements establish that

Vasn @ [(@n +yn) — (z+y)| <e+e=2e (2.22)

d(zn‘f‘yn,f"ﬁ'j)

Now we are not completely happy with 2¢. Looking back at the proof of
2.12)) we conclude that we must invoke a 2-trick rather than an M-trick, see
2.18]). We replace the default choice € > 0 above by

S
s = — 2.23
€ 27 ( )

which is also positive. This then gives two different values N, and N,, say
N, and N, such that
Vs, & |on — 7] <&,

= ——
d(zn,T)
and
vn>1\7u lyn — Y| <&
d(yn, )
With

N = max(N,, N,)
our initial estimate (2.21)) and the two new é-statements establish that

Visw (@0 +yn) — (@ +y)| <é+é=e

N J/
-

d($n+yn15?+g)

Since € > 0 was arbitrary we have verified that
Tp+Yp —>T+Y as n — 0.

O

Remark 2.37. In hindsight we might just as well start with , Jump to
and continue from there to finish the proof. Before we allow ourselves
to think about such proof shortenings we do the proof for the product sequence.
And then we shall reconsider our lack of happiness with , and maybe

forget about and what followed.
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Proof of the product statement. The limit of the sequence z,y, should
be zy, so we have to show that the distance between x,y, and zy is small for
n large. Therefore we estimate this distance first, trying to get the distances
|z, — Z| and |y, — 7| into play. Again there is no general approach. If we use
the subtract, add, then trangle inequality trick from Exercise [2.35| and write

it follows that

Ty — TY| < |20 — T |yl + |2 [y — 7] (2.24)
N———— —— ——
d(Tnyn,T7) d(zn,T) d(yn,7)

Next we do copy-paste of what’s between (2.21)) and (2.22)) but undo paste
before we continue. Uuuuh, maybe not. Here’s a partial paste.

Let € > 0 be arbitrary.

Since x,, — T and y, — y we have

HNG]NV@N : |l’n—1_]| <e and |yn—gj| <eg,
—— ~——
d(xn,T) d(yn,9)
in which N is the maximum of the two subscripted N’s we had from the
definition of x,, — ¥ and the definition of y,, — .
Now we use (2.24). We arrive, for the same N € IN, at
Vnzn ¢ |Tnyn = Y| < |20 = 2] [ynl + 2] [yn — ] - (2.25)
—— ——
<e <e

If we are not happy with the prefactor |z|, we are even more unhappy with
the n-dependence in the postfactor |y, |. Fortunately we have Proposition
at our disposal. Thus there exists M > 0 such that |y,| < M for all n € IN
and it follows from (2.25)) that

Vosn & |Tayn — Ty < (M + |Z])e. (2.26)

Now we are happy again, because with (2.26)) we are at the same point as
in the proof of (2.12) with (2.16)). The M-trick with M replaced by M + |Z|
concludes the proof that z,y, — zy and well deserves a remark next. O

Remark 2.38. A sequence x, converges to T if and only if
>0 Veso INen Vosn 1 |2, — T < Me,
(zn,T)
d(xn,T

so from mow on we will be happily content with < Me in the proofs of Ve<q-
statements ending with < e, or < € for that matter.
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Exercise 2.39. Prove the statement in Remark 2.38] as well as the statement in
Theorem [2.36] for , — yn,.

Theorem does not deal with quotients. Suppose x,, # 0 is a convergent
sequence with limit = # 0. We would like to prove that

1 1
— 3 — as n — oo.
T T
We observe that
|z, —Z| <e <= z,€(T—¢,T+¢) (2.27)

so applied to e = 1 |Z| we have
_ L e _ 1_ e
xn>x—5:§x>0 if >0 and xn<x+6:§x<0 if =<0,

for n € IN with n > N as in (2.8)). In both cases it follows that

1 1 2
|z, | > §]a_t| whence ‘x—n < 5 (2.28)
and therefore also
1 1 |z, — Z| 2 _
— =< — |z, — I
O N o Y i

This basically proves the following theorem{}

Theorem 2.40. Let x,, be a sequence with x,, # 0 for all n. If x,, is conver-
gent with limit © # 0 then the sequence :Ei 1s convergent with limit %

Exercise 2.41. Write out a complete proof of Theorem [2.40]

2.7 Exercises

Exercise 2.42. Let a,b € IR with a < b. Use the Archimedean principle to show
that there exists ¢ € @ with a < ¢ < b. Hint: b —a > 0. This is called the density
of @ in IR.

30You may like to state and prove a theorem which only requires the limit to be nonzero.
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Exercise 2.43. Let a,b € IR with a < b. Show that there exists ¢ € IR with
a < c<bbutc¢ Q. Hint: consider a — V2 and b— /2 and use the result in Exercise
2.42]

Exercise 2.44. Define sequences s,, and .S,, by

i 1 "1
=S ad 5, =5 —.
5 ;k(kﬂ) an ;lﬁ

Use partial fractions to compute a formula for s,, and take the limit n — oo. Then
prove that
lim S,

n—oo
exists. Hint: the conclusion would follow from S,, < s,,, but that's not the case. But
if you look at s,,+1 instead....

Exercise 2.45. Use monotonicity arguments to examine the convergence of the
sequence x,, defined by =, = f(x,_1) if zo = 1 and f is given by

fla)=1—0 fl@)=v2+z, f[f(z)=+V2z

Exercise 2.46. For each of the following sequences decide on convergence and
prove your conclusion directly from Definition [2.6]

1 2 1+n2 1—1 / 1 1+ n?
(_1)71’ +n7 " 7\/ +n7\/n+ , 1+7_1 ) +n
24+n’ n2—-1 n Vn n n

Exercise 2.47. Suppose that the sequence x;, is convergent with limit L. Referring
to the proof of (2.12): give a proof in the same spirit that 2} — L3 if n — oo.

Exercise 2.48. Let k € 1 and x,, be a sequence indexed by
nelN,={nel:n>k}

Give the obvious definition of x,, being convergent.
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Exercise 2.49. Give a definition of z,, — oo which is equivalent to z,, > 0 for

sufficiently large n and 7~ 0asn— oo

Exercise 2.50. Referring to Theorem [2.36} assume that 3 # 0 and prove that
In
Yn

<8I

as n — Q.

Exercise 2.51. Let A and B be nonempty subsets of IR. We say that A < B if
a<bforallae Aandallbe B. Prove that supA < inf B if A < B.

Exercise 2.52. Let A and B be nonempty subsets of IR. What can you say about
the supremum of AU B in terms of sup A and sup B? Prove your statement.

Exercise 2.53. Same question for
A+B={a+b:acAbeB} and A-—B={a—b:a€cAbe B}

about the suprema and infima of A+ B and A — B in terms of sup A4, sup B, inf A

and inf B.

Exercise 2.54. Let I,, = [an,by,] be a sequence of closed intervals in IR with the
property that I,,.1 C I, for all n € IN. Prove that there exists ¢ € IR such that c € I,

for every n € IN.

Exercise 2.55. Suppose that X is a set and that d : X x X — IR satisfies
d(z,y) =d(z,y) < d(z,z)+d(z,y) for all x,y,z € X. Prove that d(x,y) > 0 for all

z,y € X.
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3 Contractions and non-monotone sequences

We now present another approach to conclude that Heron’s sequence has a
limit. In this approach we do not use the monotonicity of the sequence, but
look at the size of the “increments”

fn =Tn — Tp—1-

These increments can be used to reproduce x,, from xy because

—_——

xn—$0:I1—$0+"'+$n—$n_1:Z&g. (31)
& €n k=1

Sn

The special case xg = 1 was dealt with in Chapter 2] In the exposition below
we will take 2o > 0 as a parameter that we can vary|}

The strategy in Section|3.1|below will be to show that all these increments
can not take the sequence x,, very far. To do so we look for estimates that
guarantee that sums of the form

My, = [&] + &2 + 6] + -+ + [l

remain bounded as n — oo, using the geometric series of Section [I.4] that
Zeno never liked. In fact this will force the sequence x,, converge. The issue

of general sums
Sn=2 &
k=1

will be dropped for now, but will come back in Section [3.7] see Theorem [3.37]
3.1 Estimates for the increments

Exercise 3.1. For zyp > 0 let the sequence x,, > 0 be defined by (1.2)) in Exercise
1.2 i.e.

Tn—1 1
2 + Tn—1 ’

Ty —

and let &, = x, — p_1. Show that

1 1
§n+1 = gn (2 - l‘n—wn) s

!By the way, variation of parameters helps in solving equations, see Exercise M
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and that therefore
1 &n1

< < L (3.2)
2= & 2 ‘
for every n € IN. Hint: you need xpx,_1 = %m%_l + 1 for the inequalities.
From Exercise B.2] it follows that
1 1
|Tpi1 — o] = [Enra] < 5 1€n| = §|xn —xpq| forall nelN, (3.3)

i.e. every consecutive increment is at least twice as small as the previous
one. Now the first increment has norm || = |x; — o], which may be large
(depending on (). But every next increment is much smaller becauS(ﬂ

1

1 1 1 1
5 1&o| < 1 &1, &l < <&, &) < 6 &1 = o1 &1,

1
€2] < 5’51’, €3] <

and so on. It follows that

6l < 5o I (3.4)

for all n € IN. Thus the increments get smaller and smaller exponentially
fast.

Exercise 3.2. Let the map?| f be defined by

as in (2.2)). Verify that f has the property that

Vas1 Vo £ 1(2) = S < 5 b — ol (35)

|$n - $nfl|- (36)

and that therefore the sequence x,, defined by z, = f(z,_1) has
1
[Zn+1 — Zn| = [f(zn) = f(Tn-1)] < B

forall n € IN if 2y > 0.

2The inequalities are strict unless the increments are zero.
30r function, we shall prefer to use the word map for functions which are not IR-valued.
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If f satisfies 1) then f is called contractive (with contraction factor %) on
the set
A=[l,o0)={z€R: z>1}.

This a special case of what is called Lipschitz continuity:

Definition 3.3. Let A C IR. A function f : A — IR is called Lipschitz
continuous with Lipschitd] constant L > 0 if for all x,y € A it holds that

|f(z) = f(y)] < Lz —yl. (3.7)

If L <1 and f(A) C A then f is called a contraction with contraction factor
L. If f(A) is not necessarily a subset of A then f is called contractive if
L < 1, and nonexpanding ¢f L = 1.

Exercise 3.4. Show that the map = — |z| is nonexpanding.

Exercise 3.5. Let f : A — IR be contractive. Prove that there can be at most one
solution = € A to the equation x = f(z). Hint: if there were two solutions you can
use (3.7) with L < 1.

Exercise 3.6. This is a warming up exercise for what's to come. Let A be a subset
of IR and suppose that f : A — A is a contraction with contraction factor % Suppose
that the sequence z,,, defined by z,, = f(x,—1) and some given 2y € A, converges to
a limit = in A. Prove that Z is a solution of f(x) = x. Hint:

(@) — 2| < [f(@) = fl@n)| + f(2n) — 2| = [f(Z) = f(2n)| +]2nt1 — 7.

|Z—zn|

IN

1
2
Recall from Exercise [3.5] that there is at most one solution to f(x) = 2. What do you
conclude about sequences starting from other initial values xg in A?

3.2 Properties of Heron’s sequence due to contraction

Look at (3.1)). What can happen to Heron’s sequence x,, after say N steps?
For m > n the difference between z,, and z,, is equal to

xm_xn:xn—l-l_xn_""'—i_xm_xm—l:£n+1+"'+£m-

4We shall prefer another symbol when L < 1.
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Using (3.4)) it follows that

IS 1]
omn + + 2m71'

Now go back to (1.18)) and what we spelled out in Exercises and

with the observation that

1 1
me,Ne]N m>n>N — Z? < oN-1
It follows that .
m— 1 m 1
k=n k=n
<e

in which the e-estimate holds for all m,n with m > n > N, provided N is
as in Exercise We conclude that for all € > 0 there exists N € IN such
thatfl

|ty —zm| <e forall m,n>N,

which brings us to a crucial section next.

3.3 Cauchy sequences, monotone subsequences

We just concluded that the Heron sequence x1, 2o, x3,... has the property
that
\V/€>0 EINe]N vm,nzN : |xn - xm| <eg, (39)
( )
d(xp,Tm

a statement to be pronounced as: for all (real) ¢ > 0 there exists a natural
number N such that for all natural numbers m,n with m > N and n > N
the distance between z,, and x,, is smaller than .

Definition 3.7. A sequence of real numbers x,, indexed by n € IN is called
Cauchy, or a Cauchy sequence, if holds.

We already knew that Heron’s sequence is convergent. Compare Definition
to Definition in Section for convergence of x,,. Unlike Definition
the new definition does not involve any number that candidates for being
the limit of the sequence. Thus it may be verified without knowing the limit.
Can it be used as an alternative definition of convergence?

5Also for m = n.
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Exercise 3.8. Prove that every convergent sequence is a Cauchy sequence. Hint:

[Ty, — 2| < [Ty — Z| +|T — T -
—_—— —\—

d(Tn,Tm) d(zn,T) d(Z,xm)

Theorem 3.9. A sequence is a convergent if and only if it is Cauchy.

Proof of Theorem [3.9] Exercise [3.9 proves that every convergent sequence
is Cauchy, so it remains to prove that every Cauchy sequence is convergent.
We will do this in a number of steps, each of which by itself is not very hard,
although Theorem is rather clever.

Theorem 3.10. Let x,, be a sequence of real numbers indexed by n € IN.
Then there exists a sequence of positive integers ny, indexed by k € IN, with
the property that

ng<ng<ng<<---,

and such that the subsequence x,, , indexed by k, s monotonfﬂ

Exercise 3.11. Prove Theorem [3.10] Hint: call an integer m € IN a topindex of
the sequence x,, if x,, > x, for all n. > m. A sequence may have no topindices at all.
Show that it then has as a nondecreasing subsequence. A sequence may have only a
finite number of topindices. Reduce this to the previous case. It remains to consider
the case that the sequence has an infinite number of topindices. Conclude.

Exercise 3.12. Prove that every Cauchy sequence z,, is bounded, hence so is every
subsequence x,, of z,.

Exercise 3.13. Suppose that z,, is a Cauchy sequence of real numbers which has
a convergent subsequence x,, with limit . Prove that the sequence z, is itself
convergent and that its limit is Z. That is to say

lim z, = lim z,,.
n—00 k—o0

6In particular this statement also holds for every sequence of rational numbers.
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Once you know Theorem you observe that every Cauchy sequence is
bounded by Exercise |3.12] Thus so is the monotone subsequence provided
by Theorem [3.10] which then has a limit in view of Theorem [2.28 By
Exercise this limit turns out to be the limit of the whole sequence as
well. This completes the proof of Theorem [3.9] 0

3.4 The Banach contraction theorem in IR

We have seen that if f is a contraction from a subset A of IR to itself with
contraction factor %, then every sequence defined by x,, = f(x,_1) starting
from any xy € A is convergent.

The reasoning started with estimate and your answer to Exercise
. We concluded that the sequence x,, had the property stated in ,
i.e. that it is a Cauchy sequence.

In Section [3.3| we then established a basic property of the real numbers
with Theorem It stated that every Cauchy sequence is convergent. In
particular the sequence z,, defined by x, = f(x,_1) in Exercise is conver-
gent. Next we formulate a condition on A which implies that its limit is in

A.

Definition 3.14. A subset A of IR is called closed in IR if the convergence
of a sequence x, € A implies that its limit T is in A, i.e.

A>z,—>T as n—>o0 — T€A.

Let us now assumd] that A is closed. Then Z € A if Z is the limit of the
sequence x, in Exercise 3.6, By Exercise [3.6] it is the unique solution of the
equation f(x) = x in A.

This proves a special case of Theorem below, namely for closed sets
A C IR and contractive maps f from A to A with contraction factor % Here’s
the general theorem, which requires a definition first.

Definition 3.15. Let A be a set and f : A — A. Then x € A is called a
fized point of f if v = f(x).

Theorem 3.16. (Banach contraction theorem for closed subsets of IR) Let
A be a closed subset of IR and let f : A — A be a contraction, i.e.

Foe0.1) Vayea s [F(2) = Fy)l < Olx —yl. (3.10)

Then [ has a unique fized point © € A. For every xo € A this T is the limit
of the sequence x,, defined by x, = f(x,_1) for alln € IN.

"Or pray.
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Proof of Theorem (3.16, We first formulate two essential ingredients for
the proof as exercises.

Exercise 3.17. Assume that 6 € (0,1). Prove that §” — 0 as n — oo. This
exercise generalises Exercise [2.31] and also establishes, somewhat overdue perhaps,
(1.12) and (1.13). Hint: the sequence 6" is decreasing?]

Exercise 3.18. Prove for the sequence x,, defined in Theorem that

9N
[ = 2ol OG0+ 40761 < T 16

form >n > N.

These two exercises imply that x,, is a Cauchy sequence. Thus z,, is conver-
gent and the limit z lies in A because A is closed.

We reason as in the hint for Exercise to conclude. The subtract, add,
then triangle inequality trick gives

[f(2) =z < [f(Z) = flea) | +[f(2n) = 2| = [f(Z) = f(2n)]| +]ena—2], (3.11)

<0|T—zn|

in which the estimates depend on n, while what’s being estimated clearly does
not. To deal with the n-dependent final estimate in (3.11]) we let £ > 0 and
apply the definition of x,, — Z, i.e. there is an N € IN such that |z —z,| < ¢
for all n > N. We then conclude from thaﬂ

1f(Z) = 2| <07 — x| + |1 — 2| < (04 1)e

for all n > N.

Since € > 0 was arbitrary we conclude that |f(z) —z| =0, so f(z) ==
is a fixed point of f. This limit Z is in fact the unique solution of z = f(x)
in A, because (3.10)) prevents the existence of two solutions. Indeed, for two
solutions = and y with x # y we would have that

0<|z—yl=I[f(z) = f(y) <Oz —y| < |z -y

because 0 < # < 1, a contradiction. This completes the proof of Theorem
3.16l |

8Incidentally, it is defined by 2o = 1 and z,, = fz,,_; for n € IN.
9Note that with n > N alson + 1 > N.
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Remark 3.19. You should carefully note that
we concluded that f(z,) — f(Z) because z, - (3.12)

and f is contractive. The conclusion in holds for a much larger class
of functions than those satisfying in fact. This will take us to the issue
of continuity, but first we discuss a bit more about sequences and sets.

3.5 Convergent subsequences
We note that Theorems and also immediately imply Theorem |3.20

below, which will be essential for proving essential theoremﬂ about contin-
uoud ] functions later on.

Theorem 3.20. (Bolzano-Weierstrass) Let x,, be a bounded sequence of real
numbers indexed by n € IN. Then x, has a convergent subsequence.

Proof. The standard proof of Theorem [3.20]is different. It is given in Section
In the proof here we simply observe that Theorem [3.10]states that every
bounded sequence has a monotone (and also bounded) subsequence, and that
Theorem [2.28| says this subsequence must be convergent. 0

Definition 3.21. A limit of a convergent subsequence of a sequence is called
a limit point of the original sequence.

Exercise 3.22. Prove that 7 is a limit point of the sequence z,, if and only if
Veso VNeN Tn>nN ¢ |20 — T < e

Not easy, no hint. Test your abilities.

Remark 3.23. Theorem|[3.20 states for bounded sequences x,, of real numbers
that

JzeR Ves0 VNeN Tn>n - |z, — | <e,
a statement that looks deceptively similar to the statement for conver-

gence of a sequence x,,.

Theorem 3.24. A bounded sequence of real numbers is convergent if and
only if it has exactly one limit point.

10T ike having the integral ff f to have a meaning for f : [a,b] — IR continuous.
1We used this term in relation to 1)
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Exercise 3.25. Prove Theorem [3.24] Hint: by Theorem the sequence has a
limit point T; to get one of the two implications in the statement of Theorem
assume the bounded sequence x,, does not converge and reason from ; reapply
Theorem [3:20] to obtain another limit point. For the other implication you are on your
own.

3.6 Closed and open sets

This section is about points and sets in IR. We systematically use (2.9) and
write d(z,y) instead of |x — y| to prepare this section to be carried'? over
td™¥ Chapter [5, We recall that we defined in Definition what a closed
subset of IR is.

Remark 3.26. Informally Definition says that a subset A of IR s closed
if you cannot get out of A by taking limits, which makes “closed” a natural
adjective; “closed” and “bounded” are important adjectives for a set A C IR:
bounded to have convergent subsequences of sequences in A by Theorem[3.20,
closed to have their limits in A.

Definition 3.27. Let A C IR. Then & € IR is called an accumulation point

of A if
Vo0 3wea 1 0 < d(x,€) = |z —&| <. (3.13)

An accumulation point of A need not be in A. The name is explained by the
following theorem.

Theorem 3.28. Let A C IR. Then £ € IR is an accumulation point of A if
and only if there exists a sequence x,, € A with x, # & and x, — £.

Proof. Let £ be an accumulation point of A. We have to prove the existence
of a sequence with the properties stated in Theorem [3.28 We use Definition
. For each n € IN let x,, € A be provided by with § = % To prove
that z, — & let € > 0 be arbitrary. Choos N € IN with % < e. Then

1
d(l‘n,f) < < N <e€

S|

for all n > N, as desired for one of the two implications in the theorem. The
other implication is left as Exercise [3.29 O

120nly Theorem will not generalise to the metric space context in Chapter
BWith IR replaced by X, X and d as in definition
14This uses the Archimedean Principle in the form of Remark again.
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Exercise 3.29. Prove the opposite implication in Theorem [3.28} if such a sequence
exists then its limit £ is an accumulation point

Theorem 3.30. Let A C IR. Then A is closed if and only if A contains all
its accumulation points.

Proof. Suppose ¢ is an accumulation point of A. By Theorem [3.28]it is the
limit of a sequence x,, in A and thereby in A if A is closed. So A contains all
its accumulation points if A is closed.

Conversely, suppose A is not closed. Then there is a sequence z,, in A
which converges to a limit z which is not in A. But then, by Theorem [3.28]
Z must be an accumulation point of A that is not in A. This completes the
proof. O

Definition 3.31. A point x¢ in a subset A of IR is called an interior point
of A if there exists 6 > 0 such that for all x € IR with d(x,zq) < § it holds
that x € A. That is to say"]

Bs(zg) ={z € R: |x —xo| <} = (mg — 0,29+ 0) C A.
——

d(z,z0)
The set of all interior points of A is called the interior of A, notation int(A).

Definition 3.32. A subset O of R is called open if int(O) = O.

Exercise 3.33. Prove that Bs(xo) in Exercise is itself an open subset of IR.
Hint: use the triangle inequality again.

Theorem 3.34. A subset A C IR is closed if and only if its complement
A°={zeR: z & A}

i IR s open.
Exercise 3.35. Prove Theorem [3.34] Hint: in the spirit of the proofs above.

Remark 3.36. It is more common in the literature to first define what open
sets are, and to then call a set closed if its complement is open.

15Tn Chapter [5| the set B,.(z¢) is called an open ball, but it’s not. It’s an open interval.
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3.7 Absolute convergence of series

Theorem 3.37. Let x,, be a sequence of real numbers indexed by n € IN.
Suppose that

Mo = lal = a4 + |l
k=1

defines a bounded sequence M,. Then M, is convergent and the sequence

defined by

n
Sp= mp=m1++,
k=1
15 also convergent. Its limit S satisfies

|S| < M := lim M, =sup M, € R.
n—o0 nelN

Proof. Do the following two exercises. 0

Exercise 3.38. Prove the convergence of both sequences M,, and S,,. Hint:

n

>

k=m+1

n
< Z |zg| = My, — M,, for m,neIN with m <n.
k=m+1

|Sn _Sm’ =

Exercise 3.39. (continued) Show that
n—oo n—oo

S:= lim S, = lim Zxk (3.14)
k=1

satisfies

|S| < M := lim M,, = sup M, € IR.
n—oo neclN

See Exercise for a general statement about absolutely convergent series.

Remark 3.40. Informally we write

9]
D Jan| <00 =
n=1

9]
>
n=1

29

<), (3.15)
n=1



to say that the series
> e
n=1

1s absolutely convergent, by which we merely mean that the monotone se-
quence M, is bounded and thereby convergent. We then write

S ::jii‘”n- (3.16)
n=1

It may of course happen that the sequence M, is not bounded. Then
has no meaning but may still hold for a number S € IR. In that case we
say that the series is convergent with sum S, but not absolutely convergent.

3.8 Unconditional convergence of series

Exercise 3.41. Think about
1 1 1 1

5737175 o

and show that it defines a real number. Hint: look at the partial sums with an even
number of terms and the partial sums with an odd number of terms.

Can we manipulate with such sums like (3.16) as we do with finite sums?
For instance,

To+T1+Ty = To+To+21 = T1+Top+To = T1+To+2Tg = To+2To+T1 = To+T1+2Z

is 6 ways to write the same sum

We would similarly like to have that

S = Zx¢(n) = Zxk (3.17)
k=0 k=0

for every bijection ¢ : INg — INj.
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Proof of (3.17)) if M, is bounded. We wish to conclude for

Sff = qub(”) and Mg) = Z |x¢(n)|,
k=0 k=0
that B B
S¢S and M?— M (3.18)

as n — 0o. Let’s see how this can be done.
What we know is that

1S, < M, |S°|<M, S,—S, M,—M, |S<M.
So for all € > 0 there exists an integer N € IN; such
N
M—e< |ul < M, (3.19)
k=0
for otherwise M is not the lowest upper bound. But then also

M—e<) |ul <M
k=0

for all n > N. This is just the proof that

k=0
redone.
Subtracting the partial sum in (3.19)) from (3.19)) we obtain in particular
that
oo o0
S ful—e<0< D fanl,
k=N-+1 k=N+1
whence

7l < (3.20)

k=N+1

Now what about M,‘f? The bijection ¢ : INg — INj is a permutation of INj.
If we enumenerate

Ngz{k:¢(l) ZGNQ}
via ¢ with [ € INg, then

{0,1,...,N} C {¢(0),0(1),...,0(L)}
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for some L € INy Therefore
M—¢e< My <M <M <M.

if I > L. We also have that

[e.9]

5P —Snl < D Jal <,

k=N+1

because Sld’ — Sy is a finite sum of terms z;, with & > N if m > L. The proof
of(§3.17]) is completed by the following exercise. O

Exercise 3.42. Show that Sﬁ converges to the same sum S € IR if M,, is bounded.

3.9 Extra: another diagonal argument

In this section we give the standard proof of Theorem [3.20 A similar ar-
gument will also be used and explained in the proof of the Arzéla-Ascoli
Theorem.

Another proof of Theorem (Bolzano-Weierstrass). Assume z,, € IR
is a bounded sequence, say z,, € [0,1]. Then at least one of the intervals
[2,2], [%, 2] must contain x,, for infinitely many values of n. Call this interval

2121 1973
1
11:{@ ma + }

27 2

So m; = 0 or m; = 1. Enumerate these n as n;; € IN. The first index 1
indicates that this is the first subsequence we choose.

Apply the same argument again. One of [t +9 ™4 1] and [+
must contain a further subsequence. Call this interval

]

Py

and enumerate this subsequence as ny; € IN. And so on. We obtain further
and further subsequences

my
Ly, €l = [Z ?7

my
ol + ok+1

= [alw bk]7

WE

=1 =1
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and the diagonal subsequence has
Tp,, € Ik = [ak, bk]

for every k. The proof will be completed in the following exercise. O

Exercise 3.43. Finish this proof of Theorem [3.20, Hint: a;, < x,,, < b and the
sequences ag, by, are monotone and have b, — aj = 27F.

3.10 Exercises

Exercise 3.44. Solve the equation 22 4+ x = ¢ using Cardano’s trick = y + z and
an additional equation for y and z which gets rid of the terms y?z and yz2. Compare
what you get to the obvious “solution” ¢ = 2% + x for the parameter q.

Exercise 3.45. Referring to Definition let f: A — IR be Lipschitz continuous
and assume that z,, is a convergent sequence in A. Prove that the sequence f(x,) is
convergent. Then, denoting the limit of z,, by L, assume that y,, is another convergent
sequence in A with the same limit L. Prove that
lim f(z,)= lim f(y,).
n—

n—o0 o0

Exercise 3.46. For each of the functions in Exercise 2.45] find a closed subset
A C IR such that f: A — A is a contraction.

Exercise 3.47. Determine all limit points of the sequences defined by x,, = (—1)",
B = (<1 + &, 2 = (-1 + (<12

Exercise 3.48. Let x,, be an enumeration of @). Prove that every element of IR is
a limit point of this sequence. Hint: use that every € IR appears as the limit of a
sequence in @.
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Exercise 3.49. For a > 0 let the sequence x,, be defined by

1
Tn = 5 <xn1 +

2 > and zp=1.

n—1

Does the sequence convergence? If so prove it and determine (the square of) the limit.

Exercise 3.50. For a > 1 let the sequence x;,, be defined by

1 a
Ty = 3 (xn_l =+ 37%—1) and zxz9=1.

Does the sequence converge? If so prove it and determine (the cube of) the limit.
Exercise 3.51. Same question for 0 < a < 1.

Exercise 3.52. Let f: IR — IR be defined by

f@) = T

Prove that f is Lipschitz continuous with Lipschitz constant L = 1. Hint: use your
fractional abilities to write

f@) = fly) = (z—y) —

and rework the quotient as the difference of two terms, one of which is f(x)f(y). Use
this to first show that |f(x) — f(y)| < |z —y| if x,y > 0 and = # y.

Exercise 3.53. Let f: IR — IR be defined by

f(z)

oz
2422

Prove that f is a contraction. Hint: use your tricks from exercise [3.52]

Exercise 3.54. Let a,b € IR with a < b. Prove that the closed interval [a, b] is a
closed subset of IR.
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Exercise 3.55. Let a,b € IR with a < b. Prove that the open interval (a,b) is an
open subset of IR.

Exercise 3.56. Let a,b € IR with a < b. Prove that the intervals (a,b] and [a,b)
are neither closed nor open in IR.

Exercise 3.57. Let A and B be closed subsets of IR. Prove that AUB and ANB
are closed.

Exercise 3.58. Let I be any index set and let A; C IR be closed for every i € I.
Prove that the intersection

Nictdi ={x € R: z € A; forall i €I}

is closed.
Exercise 3.59. Formulate and prove similar statements for open subsets.

Exercise 3.60. Let G, be a sequence of closed subsets of IR with the property that
Gp+1 C Gy, for all n € IN. Such sequences are called nested. Is it necessarily true
that there exists ¢ € IR such that ¢ € G, for every n € IN? If not, which additional
assumption is required?

Exercise 3.61. Consider the set C' of numbers

=t
P
n=1

with ¢, € {0,2} for every n € IN, but no further restrictionsF_Gl Prove that C is a
closed uncountable set with empty interior, and that for two such numbers

S

n=1 n=1

= Vpen : th = tn.

gl

3

1Unlike in the context of (1.6), when expansions ending in only zero’s were excluded.
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Hint: construct C' from a sequence of nested closed sets C,, of such numbers with
tn, €{0,1,2}, and t1,...,t, # 1. The representation of numbers in C, is not unique
but in C' it is. The set C is called Cantor’s discontinuum.

Exercise 3.62. (continued) Describe D = {x € [0,1] : = ¢ C} as a countable
disjoint union of open intervals indexed by a binary tree.

Exercise 3.63. Let x,, be a convergent sequence of real numbers indexed by n € IN,
and let

I e
n—nk_ll‘k—nitl Ty ).

Does

lim &,
n—oo

exist? Prove your answer. Can it happen that this limit exists if the sequence z,, is
divergent?

Exercise 3.64. Same question for
n

1
Sy, = ka and the “Cesaro” sums o, = E(Sl + -4+ Sp).
k=1

Exercise 3.65. Consider the series in Exercise [3.41] Its sum is In2. Show that by
carefully choosing the bijection ¢ : IN — IN the sequence Sﬁ can actually be made to
converge to zeroE.

170Or any other number you like.
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4 Normed algebras of continuous functions

This chapter is mainly about the set C([a,b]) of functions f : [a,b] — R
which have the property that f is continuous in every pointﬂ of [a,b]. Here
[a, b] is a given bounded closed interval with a < b. Our tools will be

sequences of real numbers;

the equivalentﬂ definitions of convergent and Cauchy sequences;

the elementary properties of convergent sequences;

the Bolzano-Weierstrass Theorem,;

we also need the suprema and infima of bounded sets of real numbers?}

In fact the existence of convergent subsequences of bounded sequences in IR
will be needed for the proof that is indeed a proper definition of the
“absolute value” of a function f € C([a,?]).

Recall that we use the notation

Tp — T

to say that
Ves0 INeN Vasn ¢ |7, — 7] < e
——
d(zn,T)

Definition 4.1. Let A C IR be nonempty, f: A— IR and £ € A. Then f is
called continuous in & if

f(an) = f(8)

for every sequence x,, in A with the property that
If f is continuous in every & € A then f: A — IR is called continuous.

Remark 4.2. If [ fails to be continuous in &, then it is still possible that
there exists L € IR such that

f(z,) = L

for every sequence x,, in A with x, # £ and x, — £. In that case we say that
the limit

lim f(z)

T—E€
exists and 1s equal to L. This terminology makes sense if and only if € is an
accumulation point of A, and there’s no need to assume that £ € A.

'First mentioned in 1' Definition should not come unexpected.
2In hindsight.

3See Section
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4.1 Extrema and the maximum norm

One of the highlights of analysis is that a real valued continuous function that
is defined on a closed and bounded subset A of IR, has a global maximum
and global minimum on A. Here’s a definition that is needed to formulate
this result more precisely.

Definition 4.3. Let A be a set and let f : A — IR a real valued function. If
T € A has the property that f(x) < f(Z) for every x € A, then M = f(&) is
called a global maximum of f and T is called a maximizer of f. Likewise, if
x € A has the property that f(x) > f(z) for every x € A, then m = f(x) is
called a global minimum of f and z is called ¢ minimizer of f.

The question which functions f : A — IR have global extrema, i.e global
maxima and minima, is a central issue in analysis.

Theorem 4.4. Let A C IR be a nonempty bounded closed subset, and let f :
A — R be continuous (in every point of A). Then f has a global mazimum
and a global minimum on A.

Proof of Theorem With Theorem the hard work has already
been done. Let

Ry = {f(a): v € A)
be the range of f.
Suppose Ry is bounded from above. Theorem says that R; has a

smallest lower bound which we call M. By definition every M — % with
n € IN is not an upper bound then. Therefore there exist x, € A with

M—l<f(xn)§M.
n

It follows that f(x,) — M.

If Ry is not bounded then no n € IN is an upper bound. Then we know
that for every n € IN there exist =, € A with f(z,) > n.

In both cases the sequence z,, is bounded because it is contained in the
bounded set A. So in both cases it has a convergent subsequence x,, because
of Theorem [3.20] The limit Z is in A because A is closed} Since f is contin-
uous in z it follows from Definition |4.1| that f(z,,) — f(Z). Proposition
then says that f(z,,) is a bounded sequence. This excludes the possibility
f(z,) > n for every n € IN.

Thus Ry is bounded. With both limits f(z,) — M and f(z,,) — f(Z)
then established, it follows that M = f(Z). This is because Proposition

*You showed this for A = [a, b] in Exercise [3.54]
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says the limit of the convergent subsequence f(z,,) is unique. But then
M = f(z) is the global maximum of f, and Z is a maximizerf’]
The argument for the global minimum is similar. This completes the

proof of Theorem [4.4] O

Definition 4.5. Let [a,b] C IR be a closed interval. The set of all continuous
functions f : [a,b] — IR is denoted by C([a,b]). Because [a,b] is closed and
bounded we can now define the number

/.. = max [f(z)] € R

a<z<b

for every f € C(la,b]). This number is called the maximum norm of f.

Exercise 4.6. Let f € C([a,b]) and £ > 0. Explain very carefully why
[flax <€ <= Vaeun  |[f(2)] <e.

Hint: explain first that the function |f|, defined by |f|(z) = |f(z)|, is in C([a,b]), and
that

1 e = 1

Theorem 4.7. Let f,g € C([a,b]). Define the functions f + g and fg by

(f +9)(x) = f(z) +g(z) and (fg)(x) = f(x)g(x).
Then f+ g € C([a,b]), fg € C([a,b]), and

|f + gmaw S |f max S |f

Proof of Theorem [4.7] There is not much to prove. Thanks to Theorem
2.15] Theorem and Definition [4.1] the functions f + g and fg are in
C([a, b]).

For example, let £ be any point in [a,b] and z,, a sequence in [a,b] with
z, = & Then f(z,) = f(&) and g(z,) — g(€) by Definition [4.1] because
f and g are continuous in £&. By Theorem [2.36] we therefore have that the
sequence f(xy,)+ g(x,) converges to f(£)+g(§) and the sequence f(z,)g(x,)
to f(£)g(&). This holds for every sequence z,, — & with z,, € [a, b], definition
then says that f+ g and fg are continuous in £&. Moreover, the argument
is valid for every & € [a,b]. Thus f + g, fg € C([a,b]).

'max + g max and |fg

'maz 'max

5Which need not be unique, see Exercise @
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Finally, let z,9, z,w € [a,b] be the maximizers for the continuoud’| func-
tions | f1, |gl, |f + gl, |fg| respectively. Then

[f + 9l = 172+ 9@ < [FE+ 9] < [F @)+ 19@0)] = [f]e + [9ha

and

£l = [F (@) |g(@)] < |F @) g@)] = [f,0x 19,0
This completes the proof. O
4.2 Uniform convergence
Definition 4.8. For f,g € C([a,b]) the number
d(f.9) = |f = 9l,.. = max |f(z) = g(z)], (4.1)

a<x<b

is called the uniform distance between f and g.
A sequence of functions f, in C([a,b]) is called uniformly convergent if
there ezists f € C([a,b]) such that

d(fu, f)=1fa—fl .. —0 as n— oo,

i.e. if
\V/e>0 E]NE]N\V/nZN : d(fmf) = |fn - f

The sequence f, is called a uniform Cauchy sequence if

v<€>0 E|N€]Nvm,n2N : d(fmfm) = ‘fm - fn

<eE&.

maxr

| <e (4.2)

Exercise 4.9. Take a = 0,b = 1, f(z) = 22, g(z) = (1 — x). Compute d(f,g).
Hint: sketch the graphs of y = f(x) and y = g(z) in the zy-plane and explain
what d(f, g) is before you actually compute it. Then draw the graphs of some other
functions f for which d(f, g) has the same value. Wat are the largest and smallest of
such functions?

Exercise 4.10. Show that there are bounded sequences in C([a, b]) which do not
have any uniformly convergent subsequence. Hint: [a,b] = [0,1], fn(z) = z™. Do
two arguments. One by contradiction: which function would the limit have to be?
The other argument by an explicit calculation of |f, — fi| . for which you use your
calculus abilities.

6See the hint in Exercise
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Proposition 4.1. For all f,g,h € C([a,b]) it holds that

d(f, f)=0; (4.3)
d(f,g) =d(g, f) >0 if f#g; (4.4)
d(f,g) < d(f,h)+d(h,g). (4.5)

Exercise 4.11. Prove Proposition 4.1 Explain why is called the triangle
inequality. The property in that d(f,g) = d(g, f) is called the symmetry of f.
The property in that d(f,g) > 0 if f # g is called the positivity of d. Note the
similarity with the distance function on IR.

The following theorem is the counterpart for sequences in C([a, b]) of one of
the two implications in Theorem [3.9] for sequences in IR.

Theorem 4.12. Let f,, be a uniform Cauchy sequence in C(|a,b]). Then f,
is uniformly convergent. Its limit is defined by the (pointwise) limit

f(z) = lim f,(z)

n—o0

for every x € [a,b]. In particular, f € C([a,b]).

Exercise 4.13. Formulate and prove the counterpart for sequences in C([a,b]) of
the other implication in Theorem [3.9]

Proof of Theorem Let f,, be a Cauchy sequence in C([a,b]) and let
e > 0. Then there exists N € IN such that

\fo — [l <& forall m,n>N. (4.6)
—_——
d(fnaf'm)

Note that N depends on € > 0. By Exercise the statement in (4.6) is
equivalent to

vm,nzN v&e[a,b] |fn(£) - fm(g)‘ <g, (47)

with N depending only on €. We say that f, is a uniform Cauchy sequence.
In particular it holds for every & € [a, b] that f,(£) is a Cauchy sequence in
IR and thereby convergent. We denote its limit by f(£).
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Since ¢ € [a,b] was arbitrary this defines a function f : [a,0] — IR.
Moreover, for every fixed £ € [a,b] and every fixed n > N we can take the

limit of the left hand side of (4.7) as m — oco. Exercise then tells us
that

) = JO < € (48)

for all n > N. Recall that N depends on € > 0, but not on &.
Suppose that f € C([a,b]). We can then take the maximum of (4.8)) over
€ € [a,b] and conclude that

d(fo f) = 1o = f

e = ax | f(§) — f(§)] <€

a<{<b

for all n > N, and this would complete the proof. In fact the continuity of
f is consequence of the statement in Theorem below. With a proof of
Theorem the proof of Theorem will thus be complete.

Theorem 4.14. Let f,, be a sequence in C([a,b]), and let f be another func-
tion from [a,b] to IR. If

v5>0 EINE]N vnzN vacE[a,b] : ’fn(x) - f('r)l <eg, (49)
then f is in C([a,b]).

Proof of Theorem [4.14] Let ¢ € [a,b]. To prove that f is continuous in &
let 21, be a sequence converging to £. We need to show that f(z;) — f(§) as
k — oo.

Let € > 0. The splitting

f(@r) = f(&) = ) = fulwr) + fulzr) = ful€) + fu(E) — F(E)

implies that
[f () = FEOI < [ f(2p) = falae)| +[fnlzn) = fulE)] + [fn(§) = F(E)] -
N—————

-~

<e <e

We indicated with underbraces that (4.9 can be applied to two of the terms.
The inequalities hold for all n > N.
In particular it follows with n = N that

| (zx) = FE] < 26 + [fn(ax) = [n(E)] (4.10)

before we let k& — oo. The second term on the right hand side of (4.10]) goes
to 0 as k — 0o. Thus we can combine (4.10) with the continuity of fy in &,
and use that

In(zr) = fa(§)
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as k — oo because xp — £. It follows that there must exist K € IN such that

£ @) = FO) < 2= + |fvla) = fw(©)] < 3

~~
<e

forall k > K.

Remark with M = 3 now tells us that the proof of Theorem [4.14
is complete. Thus the proof of Theorem [4.12] is also complete. We don’t
forget to record the property of sequences formulated by Theorem in a
definition for functions that are not necessarily continuous. OJ

Definition 4.15. A sequence of functions f, : [a,b] — IR is called uniformly
convergent on [a,b] with limit f : [a,b] — IR if holds, or equivalentlif]
if

vs>0 EING]N anN v:Jce[a,b] : ‘fn(x) - f(l’)’ <e.

Theorem says that the limit of a uniformly convergent sequence of func-
tions f,, inherits the continuity properties of f,. This is formulated a bit
sharper in the following exercise.

Exercise 4.16. Let the sequence of functions f, : [a,b] — IR be uniformly conver-
gent on [a, b] with limit f : [a,b] — IR, and let £ € [a,b]. If the functions f,, are all
continuous in &, then so is f. Prove this statement by adapting the proof of Theorem

414

Remark 4.17. Observe that C([a,b]) is a lot like IR as far as multiplication,
addition and norms are concerned. A minor difference is that in general

’fg|max S |f|maz |g|maar,

does not hold with equalz’tgﬂ A major difference is that there is no Theorem
for C([a,b]): bounded sequences do not have to have convergent subse-
quences, as Fxercise showed. Because of the properties in Theorem[{.7]
and Theorem [{.19 we say that C([a,b]) is a completd’| normed algebra. Such
algebras are also called Banach algebras. In particular it is also a complete
normed (vector) space. Such spaces are called Banach spaces. Exercz’se
gives another nice example.

Here we will not bother you with definitions like “an algebra is a set on
which two operations are defined denoted by ...”, and continue with “such

"See Remark
8Whereas |zy[ = |z| |y| for alle z,y € TR.

9The word “complete” will be explained in Definition
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that the following rules hold ...”. But we do distinguish between algebras in
which multiplication is commutative and algebras in which it’s nof}

Remark 4.18. The space C([a,b]) can be used for the construction of so-
lutions of differential equations, via a transformation to so-called integral
equations. Such integral equations will be solved via Theorem [5.7. We note
that C([a, b)) is also a natural function space on which to consider the (linear)
map

f%/abf(x) dz,

once this integral has been properly deﬁneﬂ. It is 1s contained in the Banach
algebra B([a,b]) of all bounded functions, which are normed by

fl.. = sup [f(z)]. (4.11)

a<z<b

The completeness of B([a,b]) follows (much easier) along the lines of the

proof of Theorem[4.13 For f € C([a,b]) the supremum norm in is
just the mazximum norm announced in , see Definition .

4.3 Exercises

Exercise 4.19. Let f : IR — IR be defined by f(x) = 23. Prove directly from
Definition [4.1] that f is continuous.

Exercise 4.20. Prove that in Definition [4.1] it is sufficient to verify the condition for
monotone sequences x,, — &. Hint: assume z, — a but f(x,) /4 f(a) as n — .
Then for some ¢ > 0 no N exists with |f(z,) — f(a)] < & for all n > N. Apply
Theorem to a suitably chosen| subsequence of z,, to derive a contradiction.

Exercise 4.21. Let f : [0,1] — [0, 1] be defined by f(z) = \/z. Prove that f is
continuous. Hint: you may prefer to work with monotone sequences in Definition |4.1

10Gee the footnotes in Section
"' The commonly used space in fact, but we’ll have second thoughts in Section
12G8ee also Exercise
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Exercise 4.22. Let g : IR — IR be a function with |[g(x)| < 1 for all € IR. Define
f:IR— R by f(z) =zg(z). Prove directly from Definition [4.1] that f is continuous
inz=0.

Exercise 4.23. Let g : IR — IR be a function with |g(z)| < 100 + 2% for all
z € IR. Define f: IR — IR by f(z) = zg(z). Prove directly from Definition [4.1] that
f is continuous in x = 0.

Exercise 4.24. Let g : IR — IR be a function with [g(z)| < J; for all 2 € IR with
x # 0. Define f: R — R by f(z) = 23g(z). Prove directly from Definition [4.1] that
f is continuous in x = 0.

Exercise 4.25. Let A be a subset of IR. Use Definition [3.27] to show there are
sequences ., in A with x, # £ and x,, — & if and only if £ is an accumulation point
of A.

Exercise 4.26. Let A be a subset of IR, let f: A — IR and assume that £ € A is
an accumulation point of A. Explain why Remark [4.1] implies that f is continuous in
& if and only if

lim f(x)

r—E€

exists and is equal to f(§).

Exercise 4.27. Let A be a subset of IR, let f : A — IR and assume that £ € A is
not an accumulation point of A. Explain why Definition says that f is continuous

in &.

Exercise 4.28. Let I C IR be an nonempty open interval, let f: I — IR, and £ in
I. Adapt Definition [4.1] to include a proper statement of what it means for

lim f(z) and lin f(z)

individually to exists.
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Exercise 4.29. Let I C IR be an nonempty open interval, and let f : I — IR be
nonincreasing. Prove that

) i=1lim f(z ) i=lim f(z
F(€7) :=1im f(z) and  f(£7) = lim f(z)

exist for every £ in I, and that f(£7) < f(&T).

Exercise 4.30. (continued) Prove that

{€el: f(€7) < f€N)}

is finite or countable. Hint: consider open subintervals (a,b) C I first.

Exercise 4.31. Construct a nondecreasing continuous function f : [0,1] — [0,1]
with f(0) =0, f(1) = 1 which is constant on every open interval in the disjoint union
that describes the set D in Exercise [3.62] Hint: take the values on these intervals to
be fractions with denominators equal to a power of 2.

Exercise 4.32. Construct a nondecreasing function f : IR — IR which is discon-
tinuous in every ¢ € @ but continuous in every £ € @. Hint: for every ¢ € @) let
Hy(xz) =0 for x < g and Hy(x) =1 for > q. Enumerate @) as a sequence ¢, and

consider
=1

2
n
n=1

Use Exercise 2.44]

Exercise 4.33. Let A be a subset of IR. Then A is called (sequentially) compact
if every sequence in A has a convergent subsequence with its limit also in A. Prove
that A is compact if and only if A is both bounded and closed.

Exercise 4.34. Let f: IR — IR be defined by
f@) = (@ +1)2+3)" ((x+5)°+7)°.

Prove that f has a global positive minimum. Hint: don't try to compute the minimizer
but apply Theorem with A = [—R, R]; specify a value of R > 0 for which the
minimum mpg has mp < f(=5) < f(z) for all  with |z| > R.
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Exercise 4.35. Let C be the Cantor set from Exercise and let f: C — IR be
defined by f(x) = z(1 —x). Explain why f has a global maximum on C, then find its
maximizers.

Exercise 4.36. Let f : IR — IR be a function. We say that f vanishes at infinity
if
Ves0Ir>0Vaer : || > R = |[f(2)| <e. (4.12)

Informally we write f(Z+00) = 0. Now let Cy(IR) be the set of all continuous functions
from IR to IR that vanish at infinity. In Cp(IR) we have the obvious definitions of
addition and multiplication. Show that Cy(IR) is a complete normed algebreF_gl with
the (maximum-)norm well-defined by

[ f o = max |f(z)].

zeR

Hint: go through the programme for C([a,b]). The only new thing you have to do is
show that the norm is well-defined.

Exercise 4.37. Let F: IR — IR be defined by

F(x) =

x
(14 2)%’

and define f: IR — IR by f,(x) = F(nx). Show that

f(z) = lim f,(x)

n—oo

exists for every x € IR. Is the convergence uniform on IR? And on [0,00)? And on
[0,1]?

Exercise 4.38. Same question as in Exercise [4.37] but with

||
F = .
(@) =17 7]

13 A bit less like IR since it does not contain a neutral element for multiplication.
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Exercise 4.39. Same question as in Exercise and Exercise but with

X

fulz)=F (—) )

n

Exercise 4.40. Suppose that f, : [0,1] — [0,00) is a sequence of continuous
functions nonincreasing in n with f,(x) — 0 for every x € [0,1] as n — o0, i.e.

;2{\1 fu(z) =0. (4.13)

Prove that

dnax, fu(z) =0

as n — oo. Hint: if not then there exists a sequence x,, € [0, 1] such that f,(x,) # 0.
Let Z be a limit point of this sequence and write

IN(@) = fn(Z) — [n(zn) + N (zn) — fo(Tn) +fo(2n)

use continuity of fy  use fp nonincreasing

to derive a contradiction with (4.13)).

Exercise 4.41. Referring to Remark [4.18) prove that B([a,b]) is a complete metric
space with the metric defined by d(f,g) = [f — 9|
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5 Metric spaces and continuity

Recall that we wrote
d(z,y) = |z —y|
for the distance between two number x and y in IR, and

d(f,g) = max [f(x) — g(v)|

a<z<b

for the (uniform) distance between two functions f and g in C(]a, b]). Hence-
forth we shall call such d, which assigns to every pair of elements of a set
X (here X = R or X = C([a,b])) a number in IR, a metric if it has the

following three properties:

d(z,z) =0 forall ze€ X; (5.1)
d(z,y) =d(y,x) >0 forall z,ye X with z#y; (5.2)
d(z,y) <d(z,z) +d(z,y) forall z,y,z¢€ X. (5.3)

It is time to introduce the abstract notion of a metric spacdl}

Definition 5.1. Let X be a nonempty set. A function
d: X xX—1R

is called a metric if the properties ,, hold. The set X 1is then

called a metric space with metric d. The number d(x,y) is commonly called
the distance from x to y.

In particular X = IR is an example of a metric space, its metric defined
by (2.9). Every nonempty subset A of a metric space X is also a metric
space, with its metric inherited from the metric on X. And in Chapter {4 we
encountered the example C([a,b]) with the uniform distance as metric. In
Linear Algebra you must have seen normed vector spaces.

Exercise 5.2. Think about other examples. Subsets of IR? with the Pythagorean
distanceE]. Point sets with a metric taking only the values 0 and 1. The unit sphere in
IR? with the length of the shortest path connecting two points. Another example of a
metric you have seen is the distance between nodes in a network or in a graph.

'Forgetting about IR and its algebra for now.
llustrate the triangle inequality with a picture of a triangle in this case!

79



Have a look at Exercise to extrapolate some terminology to the general
case. The metric d is called a strictly positive symmetric function, because

axionf (5.2) says that d(z,y) = d(y,x) > 0 for  # y. Axiom (5.3), the

triangle inequality, was already hinted at in Exercise [2.14] in the absence
of triangles. The first axiom (.1)) stands by itself in its assignment that
d(xz,x) =0 for all x € X. Let’s play with the axioms before we go on.

Remark 5.3. The azioms may be replaced by the axioms
dz,y) =0 <= x =y

and
d(z,y) = d(y,z) < d(z,z) + d(z,y)

forall x,y,z € X. The nonnegativity follows when combining symmetry and
the triangle inequality. See Exercise|2.55,.

Many of the theorems we proved for IR have counterparts in general metric
spaces X, and also hold for X = C([a,b]) and X = Co(IR) from Exercise [4.36]
for instance. We simply replace absolute values |z — y| by distances d(z,y)
in the definitions, theorems and proofs. The Banach Contraction Theorem
is a nice example. The formulation and proof of Theorem lead to the
statement and proof of essentially the same theorem, for which we only have
to adapt two basic definitions.

Definition 5.4. A sequence x, in a metric space X is a Cauchy sequence if
Veso INeN Vs ¢ d(@n, Tm) < €,

and convergent if
Fiex Veso INen Vasn © d(z,,7) < €.

The metric space X is called complete if every Cauchy sequence in X is
convergenﬂ If such a complete metric space X happened to be a normed
(vector) space and d(z,y) = |v — y| then X is called a Banach space. In
particular IR is a Banach spaceﬂ.

Exercise 5.5. Explain again why IR is complete with d(z,y) = |z — y|, and that so
is every closed subset of IR.

3An axiom is a property that we assume.
4With limit # in X, because there’s nothing outside X here.
5The completeness assumption is in fact equivalent to the statement in Theorem [2.5
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Exercise 5.6. Explain why C([a,b]) is complete with the metric defined by

d(fag) = ‘f _g’max'

5.1 The Banach Contraction Theorem

In view of Definition [5.4]it is now copy/paste from Theorem with A and
IR both replaced by X to get the main result of this section.

Theorem 5.7. Let X be a complete metric space and let f : X — X be a
contraction, i.e.

Joc(0.1) Vayex + d(f(2), f(y) < Od(x,y).

Then f has a unique fized point, i.e a solution T € X of f(x) = x. For every
xg € X, this T is the limit of the sequence x,, defined by x, = f(zn_1).

Proof. Could be an exercise now, but let’s do it anyhow. Note that differ-
ences r, — T,, have meaning nor part in the formulation of Theorem SO
the proof of Theorem [3.16| cannot be copy-pasted as it is. Still, the proof
remains largely the same, with small changes making the proof more trans-
parent perhaps. Here we go.

Consider a sequence as defined in the theorem by x,, = f(x,_1) and let
m > n. Before we bring in the arbitrary € > 0 we observe that

d(x1,29) < 0d(zo,11), d(x9,23) < 0d(11,75) < 0*d(20, 21),
d(z3, 24) < 0d(22, x3) < Pd(x0,21),  d(24, T411) < 0*d(20,21),
and so on. Replacing 4 by n in the last inequality we have
d(xp, Tpi1) < 0"d(xg, 21), (5.4)

which holdﬁ for all n € IN. Now assume that z( is not a fixed point of f.
By repeated use of the triangle inequality we then getﬂ form >n >N, N
waiting for € > 0 to show up. Here it is.

5By induction if you insist.
7As in Exercise

d(xna mm) S d(-rn7xn+1) + d(xn+la (Em) S d(xn>xn+1) + -+ d(.%‘m,l,l'm)
o oN

1 9 d(l’o,ﬂ?l) S md(fﬂo,$1)

S (en + -4 Gmfl) d(:l?o,fﬂl) <
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Let € > 0. Choose N so large that

GN
m d(l‘o, 1’1) < E.
This is possible in view of Exercise [3.17. For all m > n > N it then holds
that

d(xp, Ty) < €.

We have thus proved that x,, is a Cauchy sequence because € > 0 was arbi-
trary.

Since X is complete the sequence z,, is Convergeniﬂ Denote its limit by
Z and introduce x,, as before in by means of the triangle inequality.
This yields

d(z, f(7)) < d(T; Tni1) + d(@nga, [(7) = (T, 2011) + d(f (20), [(T))
< d(Z,xp11) +0d(z,,T) < (14 0)e

for all n > N, the N that comes with ¢ in the statement that x,, — Z. As
in the proof of Theorem it follows that d(z, f(z)) = 0 whence & = f(z).
Another solution Z of x = f(z) cannot exist, because we would then have

0 < d(z,7) = d(f(z), () < 0d(z,7) < d(3, ),
a contradiction. This completes a clean proof without algebra. O

Theorem is often applied to subsets of complete metric spaces. This
requires such a subset to be complete by itself. To characterise this property
a version of Definition with IR replaced by X is needed.

Definition 5.8. A subset A of a metric space X 1is called closed X if the
limit T of a convergent sequence x,, is in A whenever all x,, are in A.

This terminology was already best explained in Section [3.6] a section which
can be copy-pasted here with IR replaced by X, with in Remark[3.26} a subset
A of a metric space X is closed if by taking limits of sequences contained
in A you cannot get out of A. The repair for subsets A of X flawing this
property was not yet formulatedﬂ:

Theorem 5.9. Let A be a subset of a complete metric space X, and let /1 be
the set of all limits of all convergent sequenceﬂ Ty, with x, € A. Then A is
the smallest closed subset of X which contains A, and A is called the closure
of A.

80f course the same conclusion trivially holds if x¢ is a fixed point of f.
9Which you should compare to constructions of IR out of the rational numbers.
0Tncluding sequences a, a,a,a, ... with a € A.
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Exercise 5.10. Prove Theorem Hint: first show that A is closed, then show
that there is no closed subset A with A C A C A and A # A.

Theorem 5.11. Let X be a complete metric space and A C X. Then A is
by itself a complete metric space if and only if A is closed.

Exercise 5.12. Prove Theorem [5.11]

5.2 More of the same: continuity in metric spaces

Definition used converging sequences to formulate the concept of conti-
nuity in a given point £ € A C IR for a function f : A — IR. We copy-paste
it with the first and the second IR replaced by X and Y.

Definition 5.13. Let X, Y be a metric spaces, A C X nonempty, f : A =Y
and & € A. Then f is called continuous in & if f(x,) — f(&) for every
sequence x,, i A with x, — & If f is continuous in every & € A then
f+A—Y s called continuous.

Exercise 5.14. Let X,Y, Z be metric spaces, f : X — Y continuous in a € X,
g 'Y — Z continuous in f(a). Prove that g o f is continuous in a. Conclude for
A =1]0,00) C R, f: A— IR continuous, X a metric space, and { € X that
F : X — IR defined by F(z) = f(d(x,&)) is continuous.

Remark 5.15. Let X be a metric space, and let f : X — IR be continuous
in every point of X. The proof of Theorem [4.4 can be copy-pasted with A
replaced by X, provided X has the property that every sequence x, in X has
a limit point, i.e. i)

Hj;E]RVg>0 VNE]N EanN . d(ZEn,f) < E. (55)
Such metric spaces are called (sequentially) compactIT_Q]. This leads to:

Theorem 5.16. Let X be a sequentially compact metric space, i.e. every
sequence in X has a convergent subsequence. If f : X — IR is continuous in

1See the reformulation of the convergent subsequence property in Remark [3.23
12Gee Exercise m
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every point of X then f has a global mazimum and a global minimum. The
real number

— max|f(x)| (5.6)

max xeX

f

is thus well-defined and called the maximum norm of f.

Exercise 5.17. Not done myself yet, but let X be a metric space which contains a
sequence without limit points. Can you construct a continuous function on X which

is unbounded? Hint: use Exercise and the negation of (5.5)) as a starting point
for your imagination.

Remark 5.18. We obtained f(z) = & from d(x,,x) — 0 and the contraction
property of f, which was a special stronger case of Lipschitz continuity, see
Definition[3.5 For maps between metric spaces the definition is given below.

Definition 5.19. Let X and Y be metric spaces with metrics d, for X and
d, forY. A map f: X — Y is called Lipschitz continuous with Lipschitz
constant L > 0 if for all x,y € X it holds that

dy (f(x), f(y)) < Ld,(z,y). (5.7)
Examples{T_gl are Y = X, with
d(f(x), f(y)) < Ld(z,y),

and Y = IR, with
|f(z) = f(y)| < Ld(z,y).

Exercise 5.20. Prove that Lipschitz continuity implies pointwise continuity.

5.3 Outlook: topology
There’s more to be copy-pasted from Section with IR replaced by X.

Definition 5.21. Let X be metric space with metric d. A subset O of X is
called open in X if

Veco im0 1 Br(§) ={r € X : d(z,§) <r} CO.

The set B.(§) is calleﬂ an open ball centered at § with radius r > 0.

13Not to bore you with the example in Definition
4Whatever meaning these words may have.
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Exercise 5.22. Prove that the set B,(£) in Definition is open.

Exercise 5.23. Prove that arbitrary unions of open subsets of a metric space X are
open. Prove that the intersection of two open subsets of X is also open. Prove that
X is open in itself. Prove that the empty subset () of X is open.

Remark 5.24. If we denote the collection of all open subsets of X by T,
then Exercise|5.25 says that

VeT, XeT,

A BeT = ANBEeT,
Vig: AlET - UZ'GIAZ'GT.

A collection T of subsets of a given set X with these properties is called a
topology on X. Thus every metric on X defines a topology on X, consisting
of the open sets as defined in Definition |5.21].

Theorem 5.25. Let X, Y be metric spaces and f : X —Y a map. Then f
s continuous in every point of X if and only if the inverse image

fHO)={ze X f(z) € O}
of O under f is open in X for every set O CY that is open in'Y .

Proof. Assume that f is continuous, i.e.

Ty =& = [flaa) = f(S)

for every € € X and let O C Y be open in Y. To show that f~}(O) is
open take £ € X with f(§) € O. Suppose there is no r > 0 such that
B.(&) € f71(O). Then we can chooseITj a sequence x, in X such that x,, — &
while f(z,) € O. By definition of continuity f(z,) — f(§) € O.

Choose € > 0 such that

B(f(&) ={yeY :d(y, f(§) <t CO

and apply the definition of f(x,) — f(§). Then there exists N € IN such
that f(z,) € B:(f(§)) C O for all n > N, a contradiction. Thus there does

15The reasoning is similar to that in the proof of Theorem
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exist r > 0 such that B,.(¢) C f~1(0O). This holds for every £ € f~1(O). We
have thus proved that f~1(O) is open.

For the opposite implication, assume that f~1(Q) is open in X for every
O open in Y, and let x,, be a convergent sequence with limit £&. We have to
prove that f(x,) — f(§). We follow our nose. Let ¢ > 0 and consider the
open ball B.(f(¢)). By assumption its pre-image f~'(B.(f(£))) is open in
X and contains &. Therefore there exists » > 0, but let’s call it §, such that

Bs(€)) € fH(B(f(€)))-

This is equivalent to
f(Bs(§) € B(f(¢)),
and says that
dy(2,8) <0 = d,(f(x), f(£)) <e. (5.8)

To finish we should not forget the sequence z,, we started with, and its limit
&. Apply the definition of convergence in the form

EINE]anZN : d(ZEn,g) < 0.

Then d, (f(z,), f(§)) < e for all n > N. This shows that f(x,) — f(£) and
completes the proof. O

Remark 5.26. The reformulation of continuity in every point in terms of
open sets given in Theor@m inwolved the first e-0-statement (@ in these
lecture notes. Such statements reappear when we come to integrals next.

5.4 Exercises

Exercise 5.27. Let x,, be a sequence in a metric space X and T € X. Prove that
T, — T if and only if every subsequence of x,, has itself a subsequence that converges
to Z. Hint: reason as in Exercise [4.201

Exercise 5.28. Let X and Y be metric spaces, and f : X — Y. Prove that f is
continuous if and only if f~1(G) = {x € X : f(x) € G} is closed in X for every set
G closed in Y.

Exercise 5.29. Let X = C([0,1]) and let g : IR — IR be continuous. For f € X
define

F(f)=gof, ie. (F(f)(x)=g(f(x)) Vael01].
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Prove that F(f) € X and that F' : X — X is continuous. What do you have to
assume about g to ensure that F' is Lipschitz continuous? Discuss the examples in
which g is defined™| by

Y
1+92

2

gly) =y" and g(y) =

Exercise 5.30. Let X = C([0,1]). Define F : X — IR by F(f) = f(0) + f(1)2.
Prove directly from Definition [4.1] and Definition [4.8] that F' is continuous.

Exercise 5.31. Let X = C([0,1]). Define F: X — X by

(FN@ =1+5f(3)

Prove that F' is a contraction. What is the contraction factor of F? What is the
unique fixed point of F'7

Exercise 5.32. For z = (21,22) € IR? define |z| = max(|z1, [z2]). Prove that
this defines a norm and thereby a metric. Show that the topology defined by this
metric is the same as the topology defined by the Euclidean distance. Hint: roll in
some balls first and draw them in the xz1x9-plane.

Exercise 5.33. (continued) Same question for [z| = [x1|+ |x2].

Exercise 5.34. (continued) The Euclidean distance derives from the norm defined

by |z], = V@9 4+ z3. Hint: prove the triangle inequalit

Exercise 5.35. An alternative way to say that O € IR? is open is to demand that
for every ¢ € O it holds thaf™|

Ee KiNKoNKsCO,

16See Exercise
1"No pictures allowed in the proof.
18The number of halfspaces needed is 3 = 2 + 1, the dimension of IR? plus 1.
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with K7, Ko, K3 open half planes. An open half plane is a set of the form
K:{xEIth a1xr1 + a2 <b}

with a1,a9,b € IR and a1, as not both equal to zero. Prove this statement.

Exercise 5.36. Referring to Exercise [2.55| let X be a set, let d : X x X — R
satisfy
d(y,z) =d(z,y) < d(x,z) +d(z,y) forall z,y,z€ X.

Let f: X — X have the property that
Joco,1) Vayex  d(f(2), f(y)) < 0d(z,y),
and define for o € X the sequence x,, by x, = f(x,_1). Prove that
0 <d(zp,xnt1) < 0"d(xo, 1)
for every n € IN. Then prove that
Ves0 INEN V>N ¢ d(@n, Tm) < &,

which is not the definition of x being a Cauchy sequence: we have not assumed that
d is a metric.

Exercise 5.37. Suppose that the sequence z,, defined in Exercise has the
property that d(x,,z) — 0, for some z € X. Under the same conditions as in

Exercise [5.36| prove that d(z, f(z)) = 0.

Exercise 5.38. Suppose ¥, is another sequence as in Exercise [5.37, defined by
Yn = f(yn—1) as in Exercise for some yy € X, with the property that d(y,,,y) — 0
and d(y,yn) — 0, for some § € X. Prove that d(z,y) = d(y,z) = 0.

Exercise 5.39. Let X be a vector space over IR with a norm, i.e. for every x in X
there is defined a real number |z|, > 0 such that

|x‘x =0 < z=0; |)‘x|x = ’)‘| |$‘X; |x+y|x < |x|x + |y‘x
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for all z,y € X and all A € IR. Suppose that for some sequence x,, in X it holds that
Sn =x1+ -+ + x, is a convergent sequence with limit S € X, and also that

o0
Z |Tn | < 00. (5.9)
n=1

Prove that

e
[ <Dl
n=1

Exercise 5.40. (continued) Prove that X is complete as a metric space with the
norm defined by d(z,y) = |z —y]| if implies that the sequence S,, is convergent.
Also formulate and prove the converse of this stament: if x,, is a sequence in a Banach
space X which satisfies (5.9)), then the sequence S,, is convergent.

Exercise 5.41. Suppose that X is a compact metric space, f, € C(X) forn € N,
f € C(X), and fn(z) — f(x) for every x € X as n — oco. Assume that f,(z) is
a nonincreasing in n for every x € X. Prove that f,, — fin C(X), ie. f, — f
uniformly on X (Dini’s theorem). Hint: Exercise [4.40]

Exercise 5.42. Almost forgot: prove that every compact metric space is complete.

5.5 Compactness with open coverings

Definition 5.43. Let X be a metric space and A C X. A collection
{Ol NS ]},

in which I is an index set and O; is an open subset of X for everyi € I, 1s
called an open covering of A if

AC UieIOi-

Theorem 5.44. Let A C X be sequentially compact, i.e. every sequence x,,
in A has a limit point in A. Then for every open covering {O; : i € I} of A
there exist iy, ...,1, € I such that

ACO;,U---U0O
and {O;,,...,0;,} is callled a finite subcovering.

i'm?
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Proof. We first assume that / = IN and

If the statement were false then for every n € IN there would be a p, € A
with
pn € O1U---UO,. (5.10)

Since A is sequentially compact the sequence p, has a limit point p in A,
and p must be contained in some O,,. But O,, is open so there exists an
open ball B.(p) C O,,. Then it must be that p, € B.(p) for some n > m,
otherwise p is not a limit point. This contradicts because then

B.(p) CO,, CO1U---UQO,.

So for general I we only have to show that there exists a sequence i, such
that
A C UnEIO’in'

We now first assume that A is separable, i.e. that there exists a sequence
pn in A such that every p in A is a limit point of this sequence. We Claimm
that thereby

p € Bi(pa) CO;

for some i € I and some m,n € IN. If so then the pairs (m,n) thus encoun-
tered by varying p € A form a countable set J and

AC U(m,n)EJB% (pn)

For each such (m,n) choose i = iy, € I such that Bi1(p,) C O; as above.
Then "

Um,nE]NOimn
a countable open cover of A.

It now remains to show that A is separable. For subsets of separable
metric spaces X this is always true, but requires an argument we leave for
now. Instead we show that sequentially compact sets are totally bounded,
i.e. for every € > 0 there are finitely many pq,...,p, in A such that

AC Ba(pl) U Ba(p2) U-.-u Ba<pn)'

Clearly this implies that A is separable.

9Prove this claim.
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So suppose A is sequentially compact but not totally bounded. Then
there exists € > 0 for which no pq, ..., p, as above exist. Choose p; € A and
inductively for n =1,2,... a point p,.1 € A with

Pry1 & Be(p1) U Be(p2) U+~ U B.(py)-

Then d(p;,pj) > € for all i # j, so the sequence p,, can not have a convergent
subsequence. This completes the proof. O

Theorem 5.45. Let A C X have the property that every open covering of A
has a finite subcovering. Then A is sequentially compact.

Proof. Let a, be a sequence in A and suppose it has no convergent sub-
sequence. Then for every p € A there must be and ¢, > 0 and N, € IN
such that a, & B, (p) for all n > N,,. Clearly {B. (p) : p € A} is an open
covering of A, so there exists pi,pa,...,pm in A such that

AC B, (p1) U B, (p2)U---U B., (Pm)-

Thus A contains at most finitely elements of the sequence a,, so at least
on element a,, of the sequence occurs infinitely many times in the sequence,
say for n = ny, with ny < ny < ---. This makes a,, a trivially convergent
subsequence, a contradiction that completes the proof. O
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The story so far:

"In the beginning the Universe was created. This has made a lot of people
very angry and been widely regarded as a bad move. Many races believe
that it was created by some sort of God, though the Jatravartid people of
Viltvodle VI believe that the entire Universe was in fact sneezed out of the
nose of a being called the Great Green Arkleseizure. The Jatravartids, who
live in perpetual fear of the time they call The Coming of The Great White
Handkerchief, are small blue creatures with more than fifty arms each, who
are therefore unique in being the only race in history to have invented the
aerosol deodorant before the wheel. However, the Great Green Arkleseizure
Theory is not widely accepted outside Viltvodle VI and so, the Universe being
the puzzling place it is, other explanations are constantly being sought.”
(Douglas Adams)

Part 1 was about what we learned from YBC7289 and Archimedes: every-
thing about limits and limit points of sequences, the Banach Contraction
Theorem (BCT), C([a,b]) as a complete metric space in which BCT thereby
holds, its metric defined by d(f,g) = |f — g/, the maximum norm well-
defined for every f € C([a,b]) by

[f e = max [f(2)],

a<z<b

and showing off with the statement that C([a, b]) is in fact a Banach algebra.
We continue with Part 2, revisit Archimedes and the pyramids, to first study
integrals of functions f : [a,b] — IR, ignoring functions in C([a, b]) while we
can.
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6 Integration of monotone functions

Let us slow down the pace. This chapter is meant to be largely independent
of what we’ve dond'] since Archimedes and the pyramids in Sections and
Let a,b € IR and let f : [a,b] — IR be a nice function, nice in a meaning
to be made precise later. Consider the sets

Ay ={(z,y) eR*: 0 <y < f(z), a <x < b}
and
A_={(z,y) €eR*: f(z) <y <0,a<x<b}.

If both these sets have a well-defined finite area, denoted by |A,| and |A_|,
then based on what you have seen in highschool you would expect that the
integral of f from a to b is given by

b
[tz =14, - |l

Exercise 6.1. Sketch the graph of the function f : [0,1] — IR defined by

fl) = (1 - )z - 3)

and indicate the two sets A_ and A,.

Here we will not bother to define the area of general subsets of the plane, but
we opt for a definition of the integral only. The definition should not make

you uncomfortable in relation to what your intuition says that the area of
the sets A, and A_ should be.

6.1 Integrals of monomials

Have a look at (1.5)) in Section and the work you did in Exercise [1.17]
You probably convinced yourself that

! 1
Jp::/xpdx:—
0 p+1

for every p > 2. But it is also instructive to look at the easy cases p = 0 and
p = 1 first. Starting point for the definition of the integral is the consensus
that the area of the open square

S={(z,y)) ceR*: 0<r<1,0<y<1}

Thttps:/ /www.youtube.com/watch?v=2vcvh2K9wlk
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is equal to 1, and that

1 1
/ :cod:c:/ ldx = |S| =1.
0 0

So for p = 0 all is clearf}

Next we consider p = 1. Let the function f be defined by f(x) = x.
Again we have A_ = (), but now the set A, is an open triangle. The interior
of S\A, is also an open triangle, twinned to A, by reflection in the line
y = x. We therefore conclude that the area of A, must be equal to half of

the area of S, i.e.
! S|
/xdm:|A+|:%:§
0

must be the outcome for any reasonable definition of the integral.
But for p = 2,3,4,... there is no such symmetry argument. Thus the
example

f(z) =2

requires a new approach. We will first look for a sensible meaning of

1
ng/ 22 dx
0

that coincides with what we believe is the area of
Ay ={(z,y) €eIR*: 0<y<a2® <1}

The idea now is to evaluate y = 2% at values of x given by

01 2
0:_7_a_a"'7ﬁ:17
nnmn n

These particular z-values give you points (z,y) in the unit square S.

Exercise 6.2. Choose n = 10. Look at the set Ay in S bounded by y =0, x = 1
and y = 2. Make a sketch in which S is large (so that there’s not much outside of
S) to convince yourself that the area |As| of Aj is less than the upper sum

1(1 4 9 16 25 36 49 61 Sl 100
10 \100 100 100 100 100 100 100 100 100 100/’

but more than the lower sum

1(0 1 4 9 16 2 36 49 61 8l
10 \ 100 100 100 100 100 100 100 = 100 100 100/

2Don’t bother about 0° in 2 = 0 yet but note that we also agree that |S| = 1.
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Hint: look at the cartoon preceding this chapter. Every nonzero term in the two sums
is the area of a rectangle with width % in your sketch.

If this worked out, you will also convince yourself that
1 &
[As] < — >k (6.1)
k=1

for every natural number n. Now recalf| from (C,) in Section that
& n® n? n
=4 —+=
Z 3 - 2 * 6’
k=1
and enjoy the cubic version

https://twitter.com/i/status/1116738152935374853

from another perspective if you like. Together with (6.1]) the sum of the first
n squares formula implies that

1 1 1 2
A <— BP=h — 4 — < = — 6.2
|42 Z ot S35 (6:2)

Likewise you will conclude that

1 1 1 1

1 1 1 1
A - Y = - — — _— > = — —. 6.3
| As| n3 Zk + 6n2 n 3 2n+ 6n2 3 2n (6:3)

Thus the area |Ay| should satisfy

1 1 1 2
- — — A — 4+ — f 11 IN. 6.4
3 2n<|2|<3+3n orall ne (6.4)

This squeezes the area in, and allows for no other conclusion thanﬁ

the very same number that we found for the volume of the pyramid in Section
1.2

3Proved (C,) with the domino principle, click on the link for n = 3.
4Note the same reasoning applies to As.
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Exercise 6.3. In Exercise of Chapter [1] we established that]

n—1 p+1 n

Z_:kp<;b+1 <z_:kp

for all p,n € IN. Convince yourself that for all p € IN it must therefore hold that

1
Ayl = ——.
’ p‘ P 1

Hint: use lower and upper sums.

Remark 6.4. For p =1 an approach with lower and upper sums may look a
bit silly. But it does reproduce the right number for the area of the triangle
A1, Our new calculation for Jo = |As| is identical to the calculation of the
volume of the pyramid in Section [1.9

6.2 Integrals of monotone functions via finite sums

In the previous section we have hopefully convinced you that a proper defi-
nition of the integral leads to

! 1
Pde = ——. 6.5
/0 P dx . (6.5)
Now let a,b € IR with a < b. A definition of

J:/abf:/abf(x)dx (6.6)

will now be designed for a large class of functions f : [a,b] — IR so as to
describe the area |A| of the set

A={(z,y) eR*: 0<y < f(z),a<x<b} (6.7)

if f has the property that f(z) > 0 for all @ < x < b. For a start we take f
to be nondecreasing and nonnegative, just like in (6.5]).

Definition 6.5. Let a,b € IR with a < b and f : [a,b] — IR. Then f is
called nonnegative if f(z) > 0 for all z € [a,b]; f is called nondecreasing if
the implication

1 <z = f(21) < f(72)

holds for all x1,x5 € [a,b].

SFor reasons of consistency with what is to come we let the first sum start with & = 0.
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Such nonnegative nondecreasing functions can be pretty wild®, but for the
indicated approach with lower and upper sums we will now show that there
are no problems in defining an integral.

Definition 6.6. A partition P of [a,b] is a choice of real numbers xy, ..., xyN
with

Given such a partition P and a nondecreasing nonnegative f : [a,b] — IR we
define the left endpoint sumsﬂ
N
L=
P ——

1 m

f(xr—1)(xr — 1) (6.9)

= f(xo)(z1 —20) + -+ flen_1) (N — 2N_1).
Each nonzero term in is the area of an open rectangldﬂ
('rkflv'rk) X (07 f(xkfl)) = {('Tuy) € IRz 1 0< y < f('rkfl% Tp—1 << xk}

contained in A. This follows because f is nondecreasing, so that z,_; is a
minimizer for f on [xy_1, x|, that is

my = miln f(z) = f(xg—1), where I = [vg_1,xk (6.10)
xEly
for k =1,..., N. These rectangles are mutually disjoint. Therefore the sum

of their areas must be a lower bound for the area of A. We therefore agree
that the left endpoint sum L is a lower Riemann sum for the integral
that we want to define. In other words, the number J satisfies

L<J

if J exists.
In the same fashion the closed rectanglesﬂ

[2h—1, k) X [0, f(z1)] = {(z,y) € R*: 0 <y < f(x1), 2p1 <2 < a3},

with k£ running from 1 to N, cover A completely, because we recognize xj as
maximizer for f on I:

My = max f(z) = f(zx). (6.11)

$Elk
6See Exercises and

"Make a sketch in which you see what these sums are.
8Possibly empty, if x;_1 = 2y or f(xk_1) = 0.
9Possibly reducing to line segments or points with zero area.
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We thus say that the right endpoint sum
N
R=>" f(z)(xp — z1) (6.12)

is an upper Riemann sum for the integral that we want to define. In
particular,
J<R

if J exists. We are ready to give a definition of integrability for nondecreasing
functions.

Definition 6.7. A nondecreasmﬂ function f : [a,b] — IR is called Riemann
integrable if there is a unique number J such that

L<J<R (6.13)

for all possible choices of the partition P. This number J is then called the
integral of f over [a,b] and we write

J:/Wf:/abf:/abf(cc)dx-

In the above notation z is a dummy variable, which may be replaced by any
other symbol']

But now observe that for equidistant partitions, i.e. partitions

b—a
N )

To<x1 < - <zxy WwWith =z, —x8_1 =

the corresponding (left endpoint) lower and (right endpoint) upper sums,
denoted by Ly and Ry, satisfylﬂ

N

0<Ry—Ly=>Y (flzx) = f(zs1))

k=1

b—a_ b—a

= () = (@)

(6.14)

But here N € IN arbitrary! Archimedes thus tells us that there is at most
one number J that can reasonably qualify as the integral. It remains to find
it. Here it is.

10Not necessarily nonnegative.
UPpreferably not 1, 2, a, b, d or f.
12WWe say that this finite sum is telescoping.
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Proposition 6.8. Let f : [a,b] — IR be a nondecreasing function. Then

lim L2n = lim R2n
n—oo n—oo

exvist. If f is integrable then both limits are equal to the integral J = fab f-

Proof. Restricting to N = 2" we obtain equidistant partitions with the
property that

Ly <Ly <Ly<Lg<---<Ryg< Ry < Ry <Ry (6.15)
You will prove this in Exercise below. This by itselfl] implies that

sup Lon < inf Ron,
nelN nelN

but strict inequality is impossible in view of (6.14)). Thus we must have

lim L2n = Sup L2n = inf RQn = lim RQn
n—00 nelN nelN n—00

because of Theorem [2.28] If f is integrable, then J = fabf satisfies

Lon < J < Ron

and is therefore equal to both limits. 0

Exercise 6.9. Prove (6.15). Hint: the equidistant partition with N = 2"*! is a
refinement of the equidistant partition with N = 2.

Exercise 6.10. Verify that for nonincreasing functions the story is exactly the same,
except for reversed roles of the left and right endpoint sums.

6.3 Non-equidistant partitions; common refinements

With Proposition we have in fact established the existence of a unique
number J which candidates for being called the integral of f from a to
b. If turns out to hold for all partitions, then it must be thaﬁ f
is integrable. To show that does indeed hold we need the following

theorem.

13In particular every such lower sum is less than or equal to every such upper sum.
14We did not specify f so we cannot compute J like we did for f(z) = 2P with p € IN.
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Theorem 6.11. Let [ : [a,b] — IR be nondecreasing, let P be a partition
given by
a=z9g<x <<y =D,

and let () be another partition given by
a=y<y1 <---<yy =0
Define the upper suni")|

and the lower sum

S= Z Fwi=) W — yi-1).

Then S < S.
For the proof of Theorem [6.11| we need one more definition.

Definition 6.12. For P and Q) as in Theorem[6.11], the common refinement
a=z <z <---<zg=0b, (6.16)
15 the partition that is obtained by simultaneously putting the numbers
Ty <. <ayy oand Y1 << yy

in increasing order. So K —1 =M —1+ N — 1 and every z; is either an xy,
or a .

Proof of Theorem [6.11] Let

my= min = f(l,-1), ™m;= min f= f(z_1),

[yl 17yl] [Zz 1>Z7,]
]\Zfi—[max]f f(z), Mk:[max]f:f(xk).
Zi—1,%i Tk—1,Tk

Then

K N
Zmz yi—yi1) < Z —2i1) <Y Mi(zi—21) <> My —241)
p— k=1

for the lower sum obtained from ) and the upper sum obtained from P. It
follows for every lower sum S and every upper sum S that § < S. 0J

i

15For future purposes we write S and S for R and L now.
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Theorem 6.13. Let f : [a,b] — IR be nondecreasind™®, Then f is Riemann
integrable. In other words, there is a unique J € IR such that

S<J<S

for every lower Riemann sum S and every upper Riemann sum S. This real
number J is by Definition [6.7 the integral of f from a to b, notation

J:/abf(x)dx.

Proof of Theorem [6.13| Let S and S be lower and upper sums for some
partitions. By Theorem we have that S < S. So every upper sum is an
upper bound for the nonempty set

%:{Zf(xkl)(xk—xkl): a:iUonlSmeN:b}

of all possible lower sums. Let J be the lowest upper bound of § . Then
S < J for every S because J is an upper bound of §, . Since S is also an
upper bound of §, it must then be that J < S because J is the lowest upper
bound of §, . Thus § < J < S for all S, S. No other number J can have
this property in view of and Archimedes’ principle. 0

Exercise 6.14. Explain once more how Theorem [1.5] is used in the conclusion of
the proof of Theorem [6.13]

Remark 6.15. For monotone functions the integral is the unique number
squeezed in between all lower and all upper sums. In other words, monotone
functions are integrable. This fundamental result is a straightforward conse-
quence of Archimedes’ Theorem and Theorem [6.11]. It could have been
stated and proved in Section[1.3

Exercise 6.16. Let f and g be nondecreasing functions defined on [a,b]. Then also
f + g is nondecreasing and therefore the functions f, g, f 4+ g are integrable according
to Theorem [6.13] Prove that

/ab(f+g)=/abf+/:g-

16The statement for nondecreasing functions is similar.
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6.4 A limit theorem

What about integrals of sequences of monotone functions f,,? The following
theorem says that

b

b
i [ fula)do= [ f@)de it flz) = lim o)

n—oo a
exists for every z € [a, b].

Theorem 6.17. Let f, : [a,b] — IR be a sequence of nondecreasing functions
indezed by n € IN. Suppose that

f(z) = lim f,(x)

n—o0

exists for every x € |a,b]. Then the function f thus defined is nondecreasing
and the integrals

J, = /ab fo(z) dx

define a sequence J, which converges to

J—/:f(x)da;

as n — 00, t.e.
b

im [ fo(z)de = / f(z) dz. (6.17)

n—o0 a

A similar (equivalent) statement holds for sequences of nonincreasing func-
tions fy, : la,b] — IR.

Proof of Theorem [6.17, The monotonicity of

f(I) = lim fn(m)
n—o0

follows from Definition we consider the sequence f,(z2) — fu(z1) > 0
for arbitrary a < 7 < x5 < b and apply Proposition to conclude that
f(x2) = f(z1) = 0.

As many times before, let ¢ > 0. Consider a lower sum L and an upper
sum R for the limit function f, with the partition P as in Definition
chosen such that

R—-L<e.
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This is possible because f is monotone and therefore Theorem [6.13] applies.
Denote the lower and upper sums for f; fn for that same partition by L,, and
R,. Then we have

L, <J, <R, and L<J<R

It also holds that L, — L and R,, — R. This holds because f,(zx) — f(zx)
as n — oo for every k = 0,..., N. In particular it follows that there is an
N € IN such that for all n > N we have

L—e<L,<J,<R,<R-+e.
But we also have that
L—e<L<J<R<R+e=

Thud
|Jp —J| < R— L+ 2¢ < 3.

Since £ > 0 was arbitrary this completes the proof. |
6.5 Scaling and shifting; logarithm and exponential

Exercise 6.18. Let a,b,{, A € R, a < b,\ > 0. Let f : [a,b] — IR be a monotone
function. Show directly from Theorem that

/abf(x)da:— al:jf(a;—ﬁ)dx and /abf(a:)d:c—i/al:\f<i) dx.

Exercise 6.19. For b > 0 and p € IN the area of
{(z,y) e R?*: 0 <y < 2P <P}

equals the quotient of b»*1 and p + 1. In integral notation this means that

Prove this statement from the known statement for b = 1 and relate it to scaling the
units on the axes.

1"With a bit more care we get |.J,, — J| < 2¢ but so what?
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Exercise 6.20. Likewise, for 0 < a < b and p € IN, the area of
{(z,y) eR*: a <2 <b,0<y<aP}

b P b ppt1 P+l
/$pd$:|: } = — .
o p+1], p+1 p+1

Use Theorem [6.13] and whatever it takes to prove this formula.

Definition 6.21. For x > 0 we define Inx, the natural logarithm of x,
somewhat unnaturally, by
1
Inx = / —ds.
1S

Exercise 6.22. Apply Exercise to Definition and rewrite the formula for
Iny as an integral from = to zy if x > 1 and y > 1. Conclude that

Inzy=Inz+Iny.
Then prove this identity for all 2,y € IR™. Hint: show first that

1
Inz+In—=0
T

for all z > 0. Explain the meaning of all these identities in terms of areas.

Exercise 6.23. We define the functions e,, : [0,00) — [1,00) by
en(x) =1 —|—/ en—1 and eg(xr) =1 forevery z>0.
0

Then e,(0) = 1 for every n € IN. Prove that e, (z) is a strictly increasing convergent
sequence for every z > 0 and that

exp(z) := lim ey(z) =1 +/ exp
0

n—o0

for every x > 0. Hint: use Exercise and Exercise[6.16]in every iteration step. You
need to establish that e, (x) is bounded from above for every fixed = > 0 to conclude.

Exercise 6.24. (continued) Also show that

exp(pz) =1+ p /0 exp(us) ds

for every 1 > 0 and every x > 0. Hint: combine Exercise with Exercise [6.18]
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6.6 Exercises

Exercise 6.25. It follows from Definition that In is a strictly increasing function
on IR". Prove and use

| >1+1+1+1+1+1+1+ +1 i1
ey T3 T T T TR n k
—— N —— k=2

> >

[NIES
N|=

to show[™| that Inz — oo as 2 — co. What can you conclude for 2 — 0?

Exercise 6.26. Use the definition of the integral and Definition to show that

L |
ln2:/ dx
0o 1+=x

Exercise 6.27. Let g : [0,1] — IR be defined by

Let
2n

_f oglx) for0<z<1 -
f(x){ 0 for x =1 and - fu(@) = 1+z

Combine Exercise and Theorem with [a, b] = [0, 1] to prove that

B T I

Hint: it follows from Theorem [L.8 that’]

R 2 3 4 5 6 7 T
g(x)—1+x—1—x+x —x +Vx -tz —x +"'—nlggofn($)

Ja(z)

for all z with 0 < x < 1.

18Give a definition first, in the spirit of Exercise m
19Plot some graphs to see what’s going on.
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Exercise 6.28. Let f, : [a,b] — IR be a sequence of functions with f,(z) nonde-

creasing in n and z. Then J, = f; fn is a nondecreasing sequence. Suppose that J,
is bounded. Prove that

f(2) = lim fo(x)

n—oo

exists for every x € [a,b) and is nondecreasing in x, and that

/f—>J:limJn as x —b.
a n—oo

Exercise 6.29. (continued) If J,, is not bounded then a definition as in Exercise
[2.49 applies to J,,. Formulate and prove a statement about

/f for x — oo.

Exercise 6.30. Consider in IR? the points

P1:<\}§,O>, P2:<0,\}§> and Py = (\)),

where A > 0 is chosen such that d(P;, P;) = 1 for all i,5 € {1,2,3} with i # j.
Then Py, Py, P5 are the vertices of an equilateral triangle with all edges of unit length.
Denote its area by V5. Determine its area using the base times height formula with
prefactor % Hint: you have to solve a quadratic equation for A. This gives two values
of A that you can both use to determine the height.

Exercise 6.31. In IR? the points

(o) (o) (o)

are also the vertices of an equilateral triangle with all edges of unit length. Choose
a fourth point with all coordinates positive and identical to one another to construct
a tretrahedron with all edges of unit length. Determine its volume V3 using the base
times height rule with prefactor %

107



Exercise 6.32. Then take the four points

1 1 1 1
7a0a050 ) 0377070 ) 07077a0 d 0703037

in IR* and a fifth point with all coordinates positive and identical to one another to
construct a so-called simplex with all edges of unit length. Determine its 4-dimensional
volume V. What's the prefactor in the base times height rule? And so on. What's
the formula for general n € IN? Hint: Vi =1, express V,, in V,_1. Pay some attention
to the other point you can choose.
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7 Integration of bounded functions?

Let a,b € IR with a < b. We have seen that monotone functions f : [a,b] — R
are integrable. If f is nondecreasing then its rangd]

Ry ={f(z): a < f(x) <b}, (7.1)

is contained in the interval [f(a), f(b)]. A function f is called bounded if its
range Ry is a bounded set. Clearly every nondecreasing function f : [a,b] —
IR has this property. Monotone functions defined on bounded closed intervals
are thus bounded. In this chapter we consider bounded but not necessarily
monotone functions defined on intervals [a,b] and ask the question: can we
still integrate them?

7.1 Bounded integrable functions

Without a monotonicity assumption, the left and right endpoint sums
and are no longer bounds for an integral that we would like to define.
For some partitions we may have R < L, while I < R for other partitions. In
fact the maxima M) and minima m, used in these Riemann sums need not

even exist. Instead we shall use, for £ = 1,..., N, the real numbers m;, My
defined by

my = inf{f(x): x € I}
My, = sup{f(z): = € I}
These numbers exist becauseE] the range of f restricted to I is a bounded
nonempty set contained in R¢. From Theorem 4.4/ we do know for continuous

f i [a,b] = IR that my and M}, are actually minima and maxima, but we will
postpone the study of integrals of continuous functions for now.

Definition 7.1. Let a,b € IR with a < b and let f : [a,b] — R be a
bounded function, i.e. a function with bounded range. The function f is
called integrable if there exists a unique number J € IR such that

in which I, = [zg_1, z]. (7.2)

N N
S= ka(ﬂﬂk —xp1) < J < ZMk(xk —1p1) =S8
k=1 k=1

for all partitions of [a,b], where the numbers my, My are defined as in
. The number J is called the integral of f over |a,b]. We write

J:/abf(a;)d:v.

'We have used this notation before in Section and Theorem |7.5
2See again Section
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The following theorem characterises the bounded integrable functions.

Theorem 7.2. A bounded function f : [a,b] — IR is integrable if and only
if for every e > 0 there exists a partition P with S — S < e. If so then in
particular J = f;f is contained in [S, S], an interval of length less than e.

Proof. We copy the proof of Theorem [6.11] with min replaced by inf and
max replaced by sup. That is we use for the intervals of the partitions
P, @, and their common refinement R. It follows in exactly the same fashion
that

Sp < Sp<Sgp< S

O

Exercise 7.3. Take some to time reflect on this simple and effective “if and only
if’" criterion for the integrability of bounded functions.

Exercise 7.4. Prove that the function f defined by

[ 1 forze@
f(x)_{ 0 forz¢ @

is not integrable on [0, 1].

Exercise shows that not every bounded function f : [a,b] — IR can be
integrated. Too bad. In Chapter |8 we will show that every f € C([a,b])
is integrable, but for now we are happy with the statement in the following
theorem. It has the integrability of Lipschitz continuous functions as an
obvious consequenced’|

Theorem 7.5. Suppose the bounded function f : [a,b] — IR is integrable,
and that F' : Ry — IR is a Lipschitz continuous function defined on the
(bounded) range

Ry ={f(z): a<a<b)

of f. Then the composition F' o f : [a,b] — IR is also bounded and integrable
on [a,b]. In particular every Lipschitz continuous function F : [a,b] — IR is
integrable.

3And also the integrability of F o f with F Lipschitz continuous and f monotone.
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Proof of Theorem [7.5] The function

ffi=Fof

is bounded because F'is Lipschitz continuous and f is bounded. Let M} and
mj, be the suprema and infima of f* on the intervals [ of a partition P, and
let L be the Lipschitz constant of F. It should be clear from{]

|F(y) — F(y)| < Lly—y| forall y,y€ Ry,
that then also the estimate
My — my, < L(My — my) (7.3)

holds. You are asked to prove this claim in Exercise below.
Now let € > 0 and let P be a partition for which

N
0< 5 —§ = Z(Mk — mk)(xk — xk—l) <eg,
k=1

with my, My defined in (7.2)). This P is provided by Theorem because
we assumed that f is integrable on [a,b]. We examine how P performs for
f*. As a consequence of we have for the Riemann sums S$* and S* of
Fo f= f*that

WE

0<85"=5" =) (My—mp)(zk — 1) <
k=1
N
LZ(Mk — mk)(xk — ‘Tk,l) < Le.
k=1

Since € > 0 was arbitrary, Theorem and an L-trick’] complete the proof.
The special case that f(z) = x and the integrability of monotone functions
imply that Lipschitz continuous functions F : [a,b] — IR are integrable. [

Exercise 7.6. Prove ([7.3]). Hint: it suffices to consider the case that N = 1 and
show for
m= inf f(x), m*= inf F(f(z)),

a<z<b a<lz<b
4See [3.7) in Deﬁnition
5See (2.18)).
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M = sup f(z), M*"= sup F(f(z))

a<z<b a<z<b

that
M*—m* < L(M —m).

My original hint was: explain why there are sequences Z,, and z,, such that
F(f(zn)) = M* and  F(f(z,)) = m",
and estimate F'(f(z,)) — F(f(z,,)). But | prefer Harold’s hint: show first that

sup F(f(x)) — inf F(f(x)) = sup (F(f(z)) — F(f()))-

zel zel x,2€l

7.2 Variations and elementary properties

Here we collect some rather trivial properties of the integral without proof.

Exercise 7.7. Let f : [a,b] — IR be bounded and ¢ € (a,b). Prove that f is
integrable over [a, b] if and only if f integrable over both [a, ] and [c, b]. If so, it holds

that \ ) \
/Gf(:c)da::/af(x)dx—f—/cf(m)da:.

Definition 7.8. Let f : [a,b] — IR be bounded and integrable. Therﬁ

/baf(x) dx = —/abf(x) dx.

Exercise 7.9. Prove for all a,b,c € IR that

/abf(x)dx:/acf(x)d$+/cbf(x)dx

if all integrals exist"]

5Consistent with the possible intuition that dz in fab f(z) dx is negative if a > b.
7 As integrals of bounded functions of course.
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Exercise 7.10. A bounded integrable function f : [a,b] — IR can be modified in a
point xg € [a, b] by introducing the function g : [a, b] — IR defined by g(xg) = ¢y and
g(x) = f(z) for all z € [a,b] with x # xo. Prove that g : [a,b] — IR is integrable and
fab f(z)dz = f;g(a;) dx, no matter what the number ¢y € TR actually is.

Exercise 7.11. Is the function f defined by

1 iflelN
f(x)—{ 0 if not

integrable on [0, 1]?

7.3 Improper integrals
Let I = (a,b) C IR be an open nonempty interval, possibly unbounded, so
—0o<a<b< oo,

and suppose that f : (a,b) — IR is integrable on every closed bounded
interval [o, 8] C (a,b). Then we define the improper integral fab f by

/abf:/abf(x)dx:hm lim/jf(x)dx:hm lim/ff(x)dm

ala BTh BTb ala

if the double limits exist. It’s not hard to show that if one the double limits
exists then so does the other and the limit values coincide. In the case that
(a,b) is a bounded interval and f : (a,b) — IR is bounded the existence of
the improper integral is equivalent to the proper integral of f : [a,b] — IR
with any choice of value for f(a) and f(b), and the values of the integrals
coincide.

7.4 Another limit theorem

We already saw one theorem of the type

b b
if f, — f then / £, — / f, (7.4)

namely Theorem in which all f,, were monotone. Here is another and
perhaps more important such theorem. More important because it can be
interpreted as the continuity statement of the map that sends integrable
functions to real numbers by taking their integrals.
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Theorem 7.12. Let f, : [a,b] — IR be a sequence of bounded integrable
functions indexed by n € IN. Suppose that f, converges uniformly on [a,b] to
some function f : [a,b] — IR. Then f is also (bounded and) integrable, and

b b
/fn(ib’)dl‘—>/ f(x)dz as n— .

Proof of Theorem In view of Exercise it suffices to give the
proof of the statements in the theorem for the special case that [a,b] = [0, 1].
We first apply Definition [4.15| with € = 1 to conclude that the limit function
f is bounded. Next, let ¢ > 0 and take N € IN such that for all n > N and
all z € [0, 1] it holds that

() = f2)] <e. (7.5)

This is possible since f,, is uniformly convergent on [0, 1].
We then apply Theorem [7.2]to obtain a partition P with lower and upper
sums Sy and Sy for fol fn such that

SN_§N<E

Let us examine how P does for the limit function f.

Consider the suprema M ,gN) and infima m,gN) used for fy on the intervals

I, of the partition in the definition of Sy and S ~- Then
m,iN) < fn(z) < M,E,N) for all =z € I.

Combined with this yields

m,gN) —e< f(x) < M,gN) +¢e forall z el
It follows for the suprema M}, and infima m,, of f on [, that

My —my, < (M,EN) +e)— (m;N) —e).
Adding up we then find that
S—QSEN—§N+25<3€.

Since € > 0 was arbitrary Theorem and a 3—tric prove that J = fol f

exists. This is the first statement in the theorem, and in particular

Jels, 9],

8See (2.18).
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an interval of length less than 3e.

Let_us also examine how P does for the functions f,,. For n > N we have
from tha‘tﬂ S, — S| < eand |S, — S| <e. Therefore J, = fab fn has
the property that

S—e<8,<J, <5, <8 +e.

Thus
Jn €S —¢,S +¢], while also J € [S, S].

But then it follows that
|J, —J| <e+S—S<4e foralln>N.

Since € > 0 was arbitrary a 4-tric{"| completes the proof that J, — J as
n — 00, which is the second statement in the theorem. O

7.5 Integrals are continuous linear functionals

The title of this section is explained by the convention of calling maps from
spaces of functions to IR functionald™]

Theorem 7.13. Let
Rl([a,b]) = {f : [a,b] = IR : f is bounded and integrable} (7.6)

be the space of bounded integrable functions on [a,b]. Then RI([a,b]) is a
complete metric space with respect to the metric defined by

d(f,g) = sup |f(z)—g()] (7.7)

a<z<b
for all f,g € Rl([a, b]).

Proof of Theorem [7.13| First we reformulate Exercise [4.41] as a separate
result in Theorem [T.15] below. Recall that in Remark [£.18 we introduced the
metric space

B([a,b]) ={f :[a,b] = IR: Ry is bounded}. (7.8)

of bounded functions on [a,b]. The range Rf of f : [a,b] — IR was already
defined in Section 2.4l

s it clear why?
10Not another footnote.
S0 functionals are functions of functions.
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Definition 7.14. Let B([a,b]) be the space of all bounded functions from
la,b] to IR defined in (7.8) . The metric in B([a,b]) is defined by

d(f,g) = sup |[f(x) — g(z)|

a<z<b

for all f,g € B(la,b]), just a? in (7.7).

Theorem 7.15. The space B([a,b)) is a complete metric spacd™|

Proof of Theorem [7.15] We only have to show that B([a, b]) is completd™]
We note that for ¢ > 0 and™| f, g € B([a, b))

d(f,9) <& < Vaepy :|f(x) —g(@)| <e (7.9)

holds by the definition of supremum. Note that it does not matter whether
we write < € or < ¢ in e-statements for convergence.
Now let f,, be a Cauchy sequence in B([a,b]). This means that

va>OELV6DIannZATVthﬁ]: |fﬁ(x)'_(ﬁn($)|<:g‘

Just like in the proof of Theorem [4.12] it then follows that
flz) = lim fn(z)
exists for every x € [a, b], and that

vs>OELV€DJvn2A7vaMﬁ]: ]fg(x)-—‘f(x)|§§8.

In other words
Ves03nen Vs - d(fn, ) < e.

This statement implies on the one hand that f € B([a,b]), and on the other
hand that f,, — f in B([a,b]). This completes the proof of Theorem O

We now complete the proof of Theorem . Recall that by convergence
in B([a,b]) is equivalent to uniform convergence. The first part of Theorem
says that the space RI([a,b]) is a closed subseﬂ of the complete metric
space B([a,b]). Theorem then implies that RI([a, b]) is complete and so
then is the proof of Theorem [7.13] O

12Check that this indeed defines a metric.

13A Banach algebra in fact, see Remark [a, b] may be replaced by any set A = ().
M Note that its metric “extends” the metric defined in the smaller metric space RI([a, b]).
15Tn fact only f — g € B([a,b]) is needed to define d(f, g).

16See Definition
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Theorem 7.16. The map or functional ¢ : Rl([a,b]) — IR defined by

o(f) = / f, (7.10)

18 continuous.

Proof of Theorem [7.16] By the definition of continuity""] this is now just
a reformulation of the second part of Theorem [7.12] |

We finish with a theorem that says that the integral is in fact a linear Lip-
schitz continuous functional. The exercises below the theorem ask you to
supply the proofs of the separate statements in the theorem.

Theorem 7.17. If f,g € Rl([a,b]) and X\ € IR then also f + g € Rl([a, b))
and Af € Rl([a,b]). Moreover,

/ab(f(f) +9(x)) dv = /abf(x) dx + /abg(x) da:

/ab)\f(x)dx - )\/abf(x)d:c.

In other words, Rl([a,b]) is a vector space, and the map ¢ defined by
is linear. Moreover, the function |f| defined by |f|(x) = |f(x)| is also in

Ri([a, b]), and . )
/ f(x)da| < / 1 (2)] da. (7.11)

Thus the functional defined by in Theorem [7.1( satisfies

[o(f) = o(f)| = (b—a)d(f,g)
for all f,g € Rl([a,b]) and is thereby Lipschitz continuous.

Remark 7.18. Summing up, the space Rl([a,b]) is a complete metric vector
spac and the map ¢ : Rl([a,b]) — IR defined by ¢(f) = fab f is linear and
Lipschitz continuous with Lipschitz constant L = b — a.

Exercise 7.19. Prove the statements about f + g in Theorem [7.17| Hint: take
a partition refininﬂ two partitions chosen for f and g upon applying Theorem
Alternative hint: reason directly from Definition [7.1]

17See Definition [5.13]
18Such spaces are called Banach spaces.

19Gee Theorem and Exercise
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Exercise 7.20. Easy: prove the statements about Af in Theorem [7.17|

Exercise 7.21. Give a proof that f € RI([a,b]) implies |f| € RI([a,b]) and prove
(7.11)) directly from Definition .

Exercise 7.22. Prove the Lipschitz continuitﬂ of ¢. Hint: use (7.11).

7.6 Integral equations

Exercise provided us with a function?] f : [0, 00) — IR satisfying

f(a:):1+/ le—i—/ f(s)ds (7.12)
0 0
for every x > 0. Now let [a, b] be a closed bounded interval with

0 € [a,b],

and consider ([7.12)) as an integral equation for f € RI([a,b]). Thus (7.12)
must hold for all z € [a, b].

Exercise 7.23. An exercise for your calculus course. Assume that f is continuously
differentiable on [a, b] and satisfies (7.12)) for all 2 € [a, b]. Prove that f'(x) = f(z).

The goal of this section is to establish that integral equations such as
have (unique) solutions in Rl([a,b]). In fact we will consider more
general integral equationﬂ. For a given f; € IR and F' : IR — IR consider
the problem of finding a function f : [a,b] — IR such that

flz) = fo+ /0z F(f(s))ds forall z € [a,b]. (7.13)

We will solve this integral equation under the assumption that F': IR — IR
is Lipschitz continuous, with Lipschitz constant L.

207Jge that ,
| / fl<(®-a)lfl. inwhich [f|_= sup |f(2)]

a<z<b

21For good reasons denoted by exp.
2Designed to solve f'(z) = F(f(x)) with “initial” condition f(0) = fo, Remark
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Theorem 7.24. Let fy € IR and let F : IR — IR be Lipschitz continuous
with Lipschitz constant L. Define

Mﬂ@=h+A%U@Msﬁrx€MM (7.14)

and f € Rl([a,b]). Then defines a Lipschitz continuous map
® : Rl([a, b]) = RI([a, ])
with Lipschitz constant less or equal than L(b— a).

Proof. The right hand side of is well-defined for every x € [a, b] and
every f € RI([a,b]) thanks to Theorem [7.5] Every f € RI([a,b]) is mapped
by @ to a function ®(f) : [a,b] = IR defined by (7.14)). How well-behaved is
this function ®(f)? Fora <y <z <b we havd?

éﬁwme

Thus ®(f) is Lipschitz continuous and thereby in RI([a, b]), according to (the
special case in) Theorem [7.5] It follows that @ : RI([a, b]) — RI([a, b]).

Next we consider the difference ®(f1) — ®(f2) for fi, fo € RI([a, b]). This
difference is defined by

< sup |F(f(s))| (z —v).

a<s<b

[@(f) (@) = 2(F) )| =

=|Fof|_, <o

(@(f1) — ®(f2)) (z) = /Ox (F(fi(s)) = F(fa(s))) ds  for € [a,b].

Here the value of ®(f;) — ®(f>) in « is denoted (®(f1) — ®(f2)) (z), with
brackets around ®(f1) —®(f2). We estimate this value next. Taking absolute
values we havd®]

[(@(f1) = @(f2)) ()| =

xT

F(fi(s)) = F(fa(s)) ds

s/ﬁnmm—Fm@nwsfiM®—ﬁ@mS

_L/ |f1(s s)| ds < L sup |fi(s) — fa(s)] ||

a<z b
g

d(flva)

23Recall (4.11]).

?4Using the inequality in (7.11).
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for every = € [a,b]. If we take the supremum over all such x it follows thatf]
d(@(fl), (I)<f2)) < L(b — CL) d(fl, f2> for all fl; f2 € RI([CL, b])
This completes the proof. ]

Theorem 7.25. Let ' : IR — IR be a Lipschitz continuous function with
Lipschitz constant L, let a < 0 < b with a < b and let fy € IR. Assume that
L(b—a) < 1. Then there exists a unique f € RI([a,b]) such that

f@=h+£3w@m5 (7.15)

for all z € [a, b].

Proof. By Theorem the Banach Contraction Theorem applies to the
equation f = ®(f) in RI([a, b]). O

Remark 7.26. It turns out that Theorem [10.10 implies that the unique so-
lution f of the integral equation

f)= o+ [ F(f(s) s
0
is also the unique solution of the differential equation
() = F(f(x)) with initial condition f(0) = fo.

This is important in the theory of differential equations.

7.7 Exercises

Exercise 7.27. Let f : [-1,1] — IR be a bounded integrable function. Assume
that f is odd, i.e. f(z) = —f(—x) for all x € [-1,1]. Prove that fil f=0.

Exercise 7.28. Let f : [-1,1] — IR be a bounded integrable function. Assume
that f is even, i.e. f(z) = f(—xz) for all z € [—1,1]. Prove that f_ll f= 2f01 f

25The smallest possible Lipschitz constant is the maximum of —a and b since a < 0 < b.
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Exercise 7.29. Let p > 1 and ¢ > 1 be as in Exercise [1.24] i.e.

1 1
S+ =1,
P q

and let a > 0 and b > 0 be real numbers. Use the integrals

a b
/ 2P~ tdz and / Yy dy
0 0

and their interpretation as areas to explain why it must be that
a? b
ab < — + — (Young’s ineqality). (7.16)
p q

For amusement: give a direct proof using only algebra.

Exercise 7.30. Let p > 1 and ¢ > 1 be as in Exercise[7.29] and let a1, ...,a, > 0,
bi,...,b, > 0 be real numbers, n € IN. Prove that

n n % n %
Z agb < (Z ai) (Z bZ) (Holder’s inequality).
k=1 k=1 k=1
Hint: show first that it is sufficient to prove the inequality for the case that
n n
IEEDIEY
k=1 k=1

and then use Exercise [7.29]
Exercise 7.31. Exhibit a function f : [a,b] — IR not in RI([a, b]) for which |f] is.

Exercise 7.32. Show that
f,9 € Rl([a,b]) = fg € Ri([a,d]).
Thus RI([a,b]) is also a Banach algebra?®| Hint:

Sup fg—inffg= sup |f(x)g(x) = [(y)9(y)l

z,yel
26See Remark
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for intervals I C [a,b]; use

f@)g(z) — f(W)g(y) = (f(z) — f(y)g(z) + f(y)(9(z) — 9(v)),

estimate in terms of (bounds on) |f| and |g|, sup; f — inf; f, sup; g — inf} g; take a
partition refining two partitions chosen for f and g and conclude.

Exercise 7.33. Use the inequality?®’|
1> aibi| < <Z ’ai|p> (Z ’bi|q) ;
i=1 i=1 i=1

which holds for p, ¢ > 1 with

to show that

| /ab Flato) del < </ab F@F dx) % (/ab lg()|? dx> %

for such p and ¢ and f,g € RlI([a,b]). Hint: use the conclusion of Exercise and
combine the inequality for the sums with the definition of integrability via finite sums.

Exercise 7.34. Recall from (4.11)) that the supremum norm?| in the vector space
B([a, b]) was defined by

[fl.. =sup{|f(z)|: € [a,0]}.

The importance of this concept and linear structures was scaled down in our approach
to metric spaces of functions. But you should prove that for all A € IR and for all
f,g € B([a,b]), with f not equal to the zero element in B([a, b]), the following norm
axiomd? hold:

1fle >0, Ml =N 1f+al. <Ifl + gl (7.17)

The zero element in B([a, b]) is the zero function defined by f(z) = 0 for all x € [a, b]).

27See Exercise and also Section m

Z8The use of the subscript oo is related to the limit of (f: |f|p> 7 as p — oo for nice f.

1

29These axioms may have been mentioned in Linear Algebra, see also Exercise m
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Exercise 7.35. Explain that f € B([a,b]) is not equal to the zero element in
B([a, b)) if and only if
Elace[a,b] : f(.%') # 0.

Exercise 7.36. The norm of the zero element in B([a, b]) is the real number zero.
Prove this from (|7.17]).

Exercise 7.37. Prove that the triangle inequality |f + g|_ < |f|_ + |g|_. holds
for all f,g € B([a,b]).

Exercise 7.38. For f € RI([0, 1]) define the function ®(f) : [0,1] — IR by

B(1)w) = [ 1+ f()ds
for all € [0,1]. Show that this defines a Lipschitz continuous map
o : RI([0, 1]) — RI([0, 1]).

Is ® a contraction?

Exercise 7.39. Same questions as in Exercise for ® defined by

*)@) = [

but restricted to RI,([0,1]) = {f € RI([0,1]) : f(x) > 0 for all = € [0, 1]}.

Exercise 7.40. For > 0 let B,([0,000)) be the space of functions f : [0,00) = IR
for which the norm @)
x
|f|,u = sup

>0 eXP(WU)

exists as a finite number. Show that
du(fi9) = f — glu
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defines a metric d;, on B,([0, 00)). Show that this metric makes B, ([0, 00)) a complete
metric space, and that

RI,([0,00)) = {f € Bu([0,00)) : f is integrable over every [0,77}

is a closed subspace.

Exercise 7.41. Consider the integral equation

fa) = fo+ [ P as=fo+ [ Fos. (7.18)

——
(f)(=)

in which F' : IR — IR is a Lipschitz continuous with Lipschitz constant L > 0 and
fo € IR is given. Use Exercise to show that

* L
2()() ~ 2| <L [ 17(5) (o)l ds = explua) |f g,
0 H S——
dli(fzg)
for all f,g € RI,,(]0,00)) and conclude that for the metric d,, we have
L
i

Then prove that there exists a p > 0 such that (7.18)) has a unique solution in
RI,,([0,00)) for every fy € IR. Hint: use the Banach Contraction Theorem.

du(®(f), (9)) < — du(f, 9)-

Exercise 7.42. Show that the integral equation (7.18) has a unique integrable
solution f: IR — IR, that is, f is integrable over every interval [a,b] C IR, and ([7.18))
holds for all z € IR. Hint: put x = —¢ to handle negative x.

Exercise 7.43. Let F : IR — IR be Lipschitz continuous. In view of Exercise [7.48]
the integral equation ([7.18)), that is

f(@) = fo+ /0 " F(f(s)) ds,

has a unique solution f for every fy € IR, defined for every x € IR. We write f(z; fo)
to indicate the dependence of the solution on fy. We also write

S(z)(fo) = f(z; fo)- (7.19)
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This defines a family of functions S(z) : IR — IR. Prove that
S(z1 4 x2) = S(x2) 0 S(x1) = S(21) 0 S(22)

for every x1,x2 € IR. Hint: write

1 T1+T2
farton) = fot [ PG [ F()ds
0 x

1

rewrite the second integral as an integral from 0 to x5, and recognise an integral
equation for g defined by g(s) = f(s + z1).

Exercise 7.44. Prove that exp(z1 + z2) = exp(z1) exp(z2). Hint: Exercise [7.43|

Exercise 7.45. Consider the integral equation

s = [ [ Fueasa

for z € [0,T], T > 0. Assume that F': IR — IR is Lipschitz continuous with Lipschitz
constant L > 0. Prove that this integral equation has a unique solution in RI([0, )
if LT? < 2. Hint: reason as for ([7.15)).

Exercise 7.46. Let f be the solution in Exercise [7.45] Use your calculus skills to
find the differential equation that is satisfied by the solution f. What can you say
about f(0) and f/(0)? Write the integral equation for solving the differential equation
that you found with initial data f(0) =1 and f/(0) = 2.

Exercise 7.47. Prove that the integral equation in Exercise has a unique
solution in RI([0,T]) for every T' > 0. Hint: reason as in Exercise [7.41]

Exercise 7.48. Prove that the integral equation in Exercise has a unique
solution in RI([—T,T) for every T' > 0.
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Exercise 7.49. Consider the integral equation

r 1
f(z) :/0 Tf(s)ds'

Show that it has solution defined for all nonnegative € IR. Can you find a formula
for f(x)? Examine what goes wrong for z < 0.

Exercise 7.50. Consider the integral equation

f(s)
15 ()2 ds.

Show for every fy € IR that it has solution defined for all = € IR.

f<x>=fo+/0x
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‘What about measure theory in R2?
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8 Epsilons and deltas

In Definition of Chapter [4] we called a function f : A — R, A C IR,
continuous in & € A if

fn) = f(E)

for every sequence x,, in A with z,, — £. Definition in Chapter [5] copied
Definition for A C X, f: A— Y, and X,Y abstract metric spaces.
Theorem below explains the title of this chapter and formulates the other
natural characterisation of continuitﬂ. We only state it for X = A C IR and
Y =1R.

Theorem 8.1. Let A C IR be nonempty, let f : A — IR be a function and
let £ € A. Then f is continuous in & if and only if

Ves03s50Vaea |z =€ <0 = |f(z) — f(§)]| <e. (8.1)
—— ——
d(x,€) d(f(x),f(£))

Proof of Theorem (8.1 To prove (8.1) from the statement in Definition
u we argue by contraposition. Let & € A and suppose that (8.1)) does not
hold. Then

Fes0Vss0Taea |z =€l <0 and [f(x) = f(§)] =& (8.2)

For every n € IN we use (8.2) with 6 = 2. Denote the corresponding z

by x,. This defines a sequence x, with |z, — | < % whence x, — £ as
n — oo. But |f(z,) — f(&)| > € prevents f(z,) — f(§) as n — oco. This is
in contradiction with the continuity statement quoted in the first sentence of
this chapter. We therefore conclude that does indeed follow from the
statement in Definition E.1]

Conversely, assume that holds. We have to show that f(z,) — f(¢)
if x,, is a sequence in A with x,, — £ as n — oo. So let € > 0. Then (8.1)
provides a 6 > 0 such that |f(z,) — f(§)] < € if |z, — &| < . So we apply
the definition of x,, — £ with € replaced by 0. This gives an N such that for
all n > N it holds that |z, — &| < ¢ and thereby |f(z,) — f(£)| < e. This
completes the proof of Theorem O

! Actually the proof of Theorem already contained this statement, namely

v5>O 35>0 : dx (*T7£) <6 = dy(f($>7f<f)) <e.
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Exercise 8.2. Let f: IR —> R, £ € IR, n = f(£). For values e > 0 and § > 0 draw
thelinesx =€6 -0, c=&+0, y=n—¢, y =1+ ¢, and explain geometrically what
the implication in (8.1]) says.

Exercise 8.3. Let £ =2, f(z) =2z +1, f: R — IR. Verify (8.1) by computing

§ > 0 in terms of ¢ > 0. Same question for f(x) = z2.

Exercise 8.4. Let A = [0,1] and f : A — IR be defined by f(z) = x2. Verify
(8.1)) for every £ € A. Is it possible to choose 6 > 0 depending on £ > 0 only? Same
question for A = IR.

Exercise 8.5. Same question for A = (0,1) and f(z) = 1.

In the above exercises we saw that sometimes ¢ depending on € can be chosen
independent of ¢ for all €, and sometimes it cannot. Such independence of ¢
on ¢ is needed to prove a theorem that we have postponed so far, namelyf]
that every continuous function f : [a,b] — IR is integrable, i.e.

C(la, b)) C RI([a, b)). (8.3)

8.1 Uniform continuity and integrability

Theorem 8.6. Let f € C([a,b]). Then f is integrable on [a,b].

To prove this theorem we recall that Theorem [7.2|decides on the integrability
of bounded functions f : [a,b] — IR. Given € > 0 we have to show that

0< S — § = Z(Mk — mk)(:ck — l'kfl) <é€ (84)

k=1

for at least one partition P of [a,b]. If this holds then the function is inte-
grable. If not, then the function f is not integrable. It turns out that the
following definition guarantees this property.

2See Remark Definition and Theorem
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Definition 8.7. Let A C IR and f : A — IR. Then f is called uniformly
continuous on A if

ve>035>0vx,£€A : ‘x_ﬂ <6 = |f(x)_f(f)| <é&.
S—— —
d(z.€) d(f(x),£(8))

You should carefully compare the statement in Definition to the state-
ment in Theorem [8.1] These are two different statements. One looks clearly
stronger than the other but, according to Theorem below, both state-
ments are equivalent iff| A = [a,b].

Remark 8.8. The statement that f is continuous in every & € A rewm'tesﬁ
as the non-uniform statement that

Veso Veea 550 Vaeca - lz ¢l <6 = |f(z) - f(§)| <e,
—_——
pointwise
and differs by one Veca-J5>0 swap from the uniform statement refrased from
Definition [8.7 as
Veso Jo>0Veea Vaen 1z =& <0 = |f(z) — f(§| <e.
—

uniform

Exercise 8.9. Let A=1R and f : IR — IR. For values £ € IR, € > 0 and 6 > 0 the
linesz=¢—0,x=E+6,y=f(&§) —e, y= f(&§) +¢, bound a rectangle centered in
(&, f(&)), which we can now slide along the graph y = f(xz). Explairﬁ geometrically
what the implication in Definition [8.7] says, and compare to Exercise [8.2

Theorem 8.10. Let f € C([a,b]). Then f is uniformly continuous on [a,b].

Proof of Theorem [8.10] As in the proof of Theorem we argue by
contradiction. So suppose that f is not uniformly continuous. Then the
contraposition of the statement in Definition holds, i.e.

Je>0 Vo50 Fugefap ¢ 1T — & <0 and |f(x) — f(§)] > e

Again this provides us with an € > 0 and the possibility to choose § > 0 as
we like. We choose § = %, with n € IN arbitrary, and conclude there exist
sequences T, &, € [a,b] for which it holds that

e =&l < = and [f(w) — f(6)] 2 < (35)

30r any other closed bounded nonempty set in IR.
4No difference between V.~ Veea and Veea Veso!
5This nice explanation of uniform continuity is due to Thomas Rot.
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Both sequences are bounded. As in the proof of Theorem it is
the Bolzano-Weierstrass Theoremﬁ that gives the existence of a convergent
subsequence x,, with limit Z € [a,b]. The continuity of f then yields
f(zn,) — f(Z) as k — oco. But

1
ng

|$nk - fnk’ < <

| =

implies that also &,, — z, so also f(&,,) — f(z) and therefore

This happily contradicts (8.5)) and completes the proof of Theorem m 0
Proof of Theorem [8.6] Assume f € C([a,b]). By Theorem the

function f is uniformly continuous. By now we are done with cosmetics, so
let ¢ > 0 and apply Definition 8.7 Then |f(z) — f(£)] < e if |z — &| < 4,
0 > 0 provided by the definition. Choose an equidistantm partition with

b—a
N
it follows for My and my in (8.4) that My — my < ¢ for all k = 1,... N.

This is because my, and M, as defined in (7.2 are realisedﬁ as values of f in
I, and I has length smaller than 6. But then it follows that

~—

<0,

0<8=8S=> (Mp—mp)(we—zp1) <Y (2 — zp1) = £(b— a).

k=1 <e k=1

Once again Theorem completes a proof because ¢ > 0 was arbitraryf’] O

8.2 Reflection: uniform epsilon statements

Definition [4.15]said that the sequence f,(z) converges to f(z) as n — oo with
a choice of N € IN depending on £ > 0 but independent of x. This is why we
speak of uniform convergence. We copyH the statement for f,, f : A — IR
and take

Ves0 INeN V>N Veea - |fn(33) - f(x)| <é€ (8.6)
~——

uniform

6Theorem

"Or any other partition with 2 — 2,1 <d forallk=1,...,N.
8Theorem provides us with min- and maximizers.

9Should we mention the (b — a)-trick?

10Here A could be any non-empty set!
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as the definition of f,, — f uniformly on A. Uniform convergence is stronger
than pointwise convergence, which only says that

Vecd Ves0INeN V>N - |fu(z) — f(2)] <e, (8.7)

pointwise

and allows N to depend on both € > 0 and x € A. Of course this can only
weaken the statement made in which has N depending on ¢ > 0 only.

Remark 8.11. The uniform convergence statement and the non-uniform
pointwise convergence statement differ by just one V-3 swap if we write
them ad]

v€>0 EINE]N vxeA anN : |fn(x) - f(l')’ <ég, (88)
—_———

uniform

and?]
Ves0 Veed Inen Visn |fn(37) - f(:U)’ <E. (8.9)
——

pointwise

Indeed, ¥ c4 and Inew occur in different order in and .

You should compare Remark to Remark Recalling ([7.9) we
emphasise again that the stronger uniform statement is equivalent to

Veso INen Vosn © d(fn, ) = Slelg |fu(z) = f(2)] < €. (8.10)

(. /

= Vaea: |fn(@)—f(@)| <e

As indicated in (8.10)), this is just with < € replaced by < e. After all,
the metric in B(A) was chosen so as to make convergence of a sequence f,
in B(A) equivalenf™ to uniform convergence on A.

8.3 Uniform convergence and equicontinuity

We recall that we introduced the space C([a,b]) of continuous functions in
Definition 4.5| and subsequently proved in Section that it is a complete
metric space with its metric defined in terms of the maximum norm. In
Remark we compared C([a,b]) to IR, and observed that the Bolzano-
Weierstrass Theorem does not hold in C([0,1]). A nice counter example is
fa(z) = 2™ in Exercise [.10] The sequence f, is bounded in C([0,1]) but
does not have a uniformly convergent subsequence.

" Compare and lb there is no difference between V,,>n Vzea and Voca V> n.
(87 8.9

12Compare (8.7) and (8.9): also no difference between Ve~ Vaea and Vaea Veso-
13Note again that only f,, — f € B(A) is needed to have d(f,, f) well defined.
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We now re-adress this issue and formulate a condition on sequences in
C(Ja,b]) that allows to prove that a bounded sequence satisfying this con-
dition has a uniformly convergent subsequence. So let f,, be a sequence of
functions defined on [a,b] or any other nonempty subset A of IR. Then we
can speak of continuity of f,, which is uniform is &, but alsoE of continuity
which is simultaneously uniform is £ and n. The following definition allows
to formulate a Bolzano-Weierstrass type of statement in C([a, b]).

Definition 8.12. Let f, : A — IR be a sequence of functions. Then f, is
called uniformly equicontinuous on A if

Ves0 3550 Vacca VneN - =l <6 = |fulz) = fu(§)] <e.
—— ~————
d(z,8) d(fn(2),fn(€))

Theorem 8.13. (Arzéla-Ascoli) Let f, : [a,b] — IR be a bounded sequence of
uniformly equicontinuous functions. Then f, has a convergent subsequence

in C([a,b]) with limit f € C([a,b]).

Proof of Theorem [8.13] For (notational) convenience (only) we replace
[a,b] by [0,1]. A natural first step is try to define the limit function f.
The sequence f,(0) is bounded in IR and therefore has a convergent sub-
sequence by the Bolzano-Weierstrass Theorem. Denote the limit by f(0).
Again by Theorem this subsequence of f,, contains a further subse-
quence which converges in x = 1 as well. Denote the limit by f(1). Along
another further subsequence f,(3) converges. The limit defines f(3). Re-
peating the argument we likewise define the values of a desired limit function
Jin 5,4, 5,5 5, 5 and so on.
The indice@8 of all these subsequences are given by

Ny M2 N1z N4 Ni5 Nyg ... for convergence in 0,

N9yl Moy Moz Moy MNgs Nog ... for convergence also in 1,
o1

N3y MN32 N33 N3g4 MN35 N3p c. for convergence also in 5,
.1

Ng1r Mg MNy3z MNgqa  N4g5  Nyg ce for convergence also in Z,
.3

N1 M2 N3z Mg Ny Nie Ce for convergence also in Z’
1

Ngt MNe2 MNg3z MNea Ny Tes . for convergence also in g,

MWe won’t consider pointwise equicontinuity.
15Have a look at the proof of Theorem [1.4
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a process we can continue until every such dyadz’ﬂ number in [0,1] has
occurred. Each of these sequences is a subsequence of the previous sequence,
and has the diagonal subsequence ng; as a further subsequence.

It follows that the sequence F}, defined by Fj, = f,,, is a subsequence of
fn with the property that

Fi(a) = fa(a) = f(a)
for every
aeD={0,1,=,-, -, =, =, =, = ~

with the function f : D — IR defined in the subsequence arguments above.
In particular every Fi(a) is a Cauchy sequence in IR.

In view of the completenesy""| of C([0,1]) it now suffices to show that
the sequence Fj, is a uniform Cauchy sequence. To do so we use that as a
subsequence of f, the sequence Fj is also equicontinuous. So let € > 0 and
apply Definition [8.12] Adapting the notation to the present context it says
that

550 Vaaea Vien @ |z —a| <d = |Fi(z) — Fr(a)| <e.

We now choose | € IN with 2/§ > 1 and estimate the difference of F(x)

and F,,(x) for arbitrary x € [0, 1] by

|Fi () = Fin(2)| < |[F(z) = Fr(a)| +|Fr(a) = Fn(a)| + |Fn(a) = Fn(2)];

J/

-~ -~

<e <e
in which for every z € [0, 1] a number

1 2 3

QEDl:{O,E,E,i,..

1}
with
1
|z —al| < 5 < 0 is chosen to ensure |Fi(z) — Fy(a)| < e.
We then choose N € IN such that |Fi(a) — Fi,(a)| < € for all k,m > N, and

for all @ € D;. This is possible because every Fy(a) is a Cauchy sequence and
D, is a finite set. It follows that

[Fi(2) = Fula)] < 3¢

for all k,m > N. Since N is independent of x and ¢ > 0 was arbitrary, a
usual 3-trick establishes that Fj, has the property stated in the proof of
Theorem {4.12] namely that it is a uniform Cauchy sequence. Theorem [4.12
which stated the completeness of C'([a,b]), then completes the proof. O

16What’s that? Wikipedia!
17See Theorem m
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8.4 Extra: more on continuity and integration

Recall that Theorem was preceded by a “proof” in which we argued by
contradiction to conclude that A = IR would have the property that, given
any € > 0, we can cover A with a countable union of say closed intervals, i.e.

A C UnE]N[am bn]»

Z<b” —a,) < €.

n€N
This conclusion is in fact the very definition of what it means for a subset
A of IR to have zero length, i.e. zero 1-dimensional (Lebesgue) measure.
Without proof we state a fundamental theorem.

Theorem 8.14. Let f : [a,b] — IR be a bounded function. Denote the set of
points in which f is not continuous by A. Then f € Rl([a,b]) if and only if
A is set of measure zero.

such that

For functions f : [a,b] — IR we were able to avoid continuity issues for many
of our integrational purposes by using the ordering of the real numbers. For
X-valued functions continuity is more important.

Theorem 8.15. Let X be a complete metric vector space and f : [a,b] — X
be a continuous function. Denote the norm in X by the usual bars, i.e. |z
is the norm of x € X. Then there exists a unique J € X such that for every
e >0 ad >0 exists such that, for every partition P as in and every
choice of intermediate points & with

a=20<§ <1 <6< <ay=0,
it holds that

S=> fl&) oy —wx)

k=1
satisfies
IS —J|<e
provided
kglaxN(xk — 1) < 0.
We write

- [

b
] < / £ (x)] da.
13

and we have
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Exercise 8.16. Not so easy. Give a proof of Theorem [8.15] for the case that X = IR
which does not rely on lower and upper sums. Hint: try a proof for the statement
with only right endpoint sums for equidistant partitions as in the proof of Theorem
first. If all goes well you find the sameEgI J as well as a proof for f : [a,b] - X
continuous. Then think about such sums for other partitions and other choices of the
points in the intervals of the partition.

8.5 Extra: global monotone inverse function theorem

The material in this section does not fit in with our overall philosophy that
we discuss theory for y = f(x) with z,y € IR that generalises to a context
in which x € X and y € Y. The result to remember from this section is
that a continuous strictly monotone real valued function f defined on some
interval I has a range J = f(I) which is itself an interval, and that there
exists a unique continuous strictly monotone real valued function g defined
on J with range I such that

y=f(x) <= z=g(y) (8.11)

for all x € I and y € J. Thus defines a bijection between [ and
J. Formulated in Theorem for open intervals I and J only, the proof
relies crucially on Theorem [8.18 below, which has the simpld™| but important
statement in Theorem as a special case.

Theorem 8.17. Let a,b € IR with a < b, and let f : [a,b] — IR be continu-
ous. If f(a)f(b) < 0 then f has a zero in (a,b), i.e. there exists xy € (a,b)
such that f(xg) = 0.

Theorem [8.17 can be restated as the intermediate value theorem:

Theorem 8.18. Let I be an open interval in IR and f : I — IR a continuous
function. For a,b € I with a < b let

f(la, b)) ={f(z): a <z < b}
be the image of |a,b] under f. Then
fla) < f(b) = [f(a), f(b)] C f([a,b]),

and

fla) > f(b) = [f(b), f(a)] C f(la,b]).

18 Wlhy?
9By now obvious?
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Proof. To prove this statement assume first that f(a) < ¢ < f(b). Then

¢ =sup{x € [a,b] : f(x) <c}

exists as the supremum of a bounded set which contains a. Can it be that
f(&) < ¢? If so then £ < b because f(b) > c¢. Choose ¢ > 0 with ¢ < ¢ — f(&)
and apply the - statement of continuity in (8.1). Then

f@) = f&) <[f(z) = f(E) <e <c— f(E)

for all z € I with |z —¢| < . But then f(x) < ¢ for all such x, which
contradicts that £ is an upper bound.
Can it be that f(§) > ¢? Choose ¢ > 0 with ¢ < f(§) — ¢ and apply

(8.1). Then f(&) — f(x) < |f(z) — f(§)] <e < f(§) —c for all x € I with
|z — & < 0. But then f(z) > ¢ for all such z. This makes £ — ¢ an upper

bound and contradicts that £ is the lowest upper bound. Thereby the proof
for f(a) < f(b) is complete. For f(a) > f(b) the proof is of course similar.
O

Theorem 8.19. Let I be an open interval in IR and f : I — IR a continuous
function with the property that

Vaper a<b = f(a) < f(b),
i.e. f s strictly increasing on I. Then
J=fU)={f(z): zel}

is also an open interval and the equation f(x) =y defines x as g(y) for every
y € J, with the function g : J — IR continuous, strictly increasing i.e.

Vedes c¢<d = g(c) < g(d),

and
I'=g(J)={9(y): yeJ}.

Proof. By definition f(z) = y has a solution in I for every y € f(I). The
strict monotonicity of f makes that solution unique and thereby settles the
existence of g : J — IR with the same strict monotonicity property. We next
show that J is an open interval.

Let ¢,d € J with ¢ < d. Then ¢ = f(a) and d = f(b) for some a
and b in I, and [c,d] C J by Theorem [8.18] Thus J is an interval. Also,
if yo € J then yo = f(xo), 2o € I and [xg — do, 20 + dg] C I for some
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do > 0. Thus [f(zo — o), f(zo + do)] C J so yo is an interior point because
f(zo —d0) < f(xog) < f(xo+ o). We conclude that J is an open interval.

[t remains to prove the continuity of g, so let yo = f(x¢) and € > 0. It is
no limitation to choose € < dg, dg as just above. Then

(f(wo —¢€), f(wo +¢)) C [f(xo — do), f(mo +0)] C J

and we can choose > 0 such that

f(l'o—éo) < f(ZEQ — 8) < y0—5 < f(QTo) =Y < y0+5 < f(ﬂ?o + 5) < f(l’0+50),
—_— —_— —_—

lg lg 19
TG —¢€ zq :g(yo) Zo +e
whence
9((yo — 6,0 +9)) C (9(v0) — &,9(v0) + ).
This completes the proof. (]

8.6 Exercises

Exercise 8.20. Let f(z) = 2z + 1. Prove directly from the definition that f is
uniformly continuous on IR.

Exercise 8.21. Let f(x) = 2% and A = (0,1). Prove directly from the definition
that f is uniformly continuous on A. Is f uniformly continuous on IR?

Exercise 8.22. Let f(z) = 1 and A4 = (1,00). Prove that f is uniformly continuous
on A. Is f uniformly continuous on (0,1)?

Exercise 8.23. Let f : A — IR be Lipschitz continous. Prove that f is uniformly
continuous.

Exercise 8.24. Let A C IR and let f : A — IR be uniformly continuous. Suppose
that z,, is a Cauchy sequence in A. Prove that f(z,,) is also a Cauchy sequence.
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Exercise 8.25. Let a,b € IR with a < b, and let f : (a,b) — IR be uniformly
continuous. Then there exists a unique f € C([a,b]) such that f(z) = f(zx) for all
x € (a,b). Hint: use Exercise to define f(a) and f(b).

Exercise 8.26. Recall that Theorem says that RI([a, b]) is a complete metric
vector space. Why is C([a, b]) a closed linear subspace of RI([a, b])?

Exercise 8.27. Examine the function f defined by
x

What is the largest open interval I containing 0 to which you can apply Theorem
8.19F Specify J and compute g(y). What is J if I = (0,00)?

Exercise 8.28. Formulate Theorem for strictly decreasing functions.

Exercise 8.29. Let f : [a,b] — IR be a bounded integrable function, assume that
Ry = {f(z) : a < x < b} Cle,d] and let F' : [c,d] — IR be continuous. Prove
that F o f is integrable on [a, b]. Hint="; approximate F' uniformly with a sequence of
Lipschitz continuous functions and then use both Theorem [7.5 and Theorem [7.12]

Exercise 8.30. Let f, : [-1,1] — IR be a bounded sequence of integrable functions,
and let ' : IR — IR be continuous. Suppose that

) = [ " F(fu(s)) ds

holds for all z € [—1,1] and all n € IN. Prove that f,, has a uniformly convergent
subsequence. Hint: Theorem [8:13] NB. The right hand side exists in view of Exercise
0.29

20Harold drew my attention to a different rather clever proof due to Rudin which only
uses Theorem[7:2} For € > 0 choose § > 0 according to the definition of uniform continuity
of F' and then a partition for which the lower and upper sums for f; f with my(xg —xk—1)
and My (x), — x5_1) differ by at most 2. Then distinguish between the bad k for which
M, — my > § and the good k for which M) — my < §. Estimate the sum of x; — zp_1
over the bad k in terms of what you then know. Use the boundedness of f to get a final
estimate for the sum of (M), — my)(zr — x,—1) over all k. Then complete the proof.
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Exercise 8.31. Let F}, : IR — IR be a a sequence of continuous functions which is
bounded in the sense that there exists M > 0 such that |F,(y)| < M for all n € IN
and all y € IR. Suppose that f,, : [-1,1] — IR is a sequence of integrable functions
such that

ful) = /0 " Fu(fuls)) ds

holds for all z € [—1,1] and all n € IN. Prove that f,, has a uniformly convergent
subsequence. Hint: Theorem [8.13]

Exercise 8.32. (continued) Suppose that F,, — F uniformly on [—M, M] and let
f be a limit function of a uniformly convergent subsequence as in Exercise(8.31] Prove
that

holds for all = € [—1,1]. Hint: first show that |f,(x)| < M|z| and then use

[Fn(fu(s)) = F(f(s)] < [Fu(fnls)) = Fu(f ()| + [Fu(f(s)) — F(f(s))]
to apply Theorem [7.12]

Exercise 8.33. (continued) Let F, and F be as in Exercise Assume that every
F, : IR — IR is Lipschitz continuous, without further assumptions on the Lipschitz
constants L,. Prove that the integral equation

fz) = /0 " F(f(s)) ds

has an integrable solution f : [—1,1] — IR. Hint: recall Exercise where you
showed that the integral equation has a unique solution f : IR — IR in the class of
integrable functions if F': IR — IR is Lipschitz continuous, which is not an assumption
on F' here.

Exercise 8.34. (continued) Assume that a bounded sequence of Lipschitz continu-
ous functions F}, : IR — IR has the property that F;, — F uniformly on every bounded
interval. Prove that the integral equation

f(z) = /0 " F(f(s)) ds

has a solution f: IR — IR.
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Exercise 8.35. (continued) Let F' : IR — IR be a bounded continuous function.
Prove that the integral equation

fz) = /0 " F(f(s)) ds

has a solution f : IR — IR. Hint: show that there exists a sequence F}, as in Exercise

B.34
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9 Differential calculus for power series

You will be familiar with the formula

) -t JOT =@ T~ (@)

h—0 h z—a T —a

(9.1)

This is the usual definition of the derivative f’(a) of a real valued function
f of a real variable x in a point = a on the real line. If the limit of the
difference quotient in exists it is called the differential quotient of f in
x = a. Differential quotients are sometimes formally denoted as a fractionﬂ
with denominator df and numerator dz, just like difference quotients are

denoted as
flz+Ax) = f(z) _Af
Az - Ax

with Ax = h # 0. Notations to be handled with care or simply avoided.
For the simplest examples we consider first, monomials such as

fao(x) = 2,

it turns out that the difference quotient is defined for x = a as welP] For
instance, for x # a it holds that

.’13'42 _ a42 " "

_ =7 _I_ PP + a ,
r —a N——
Exercise [LLIO!

but the right hand side is equal to 42a*!' for © = a. Whatever the value of a,
it must thus follow that fss is differentiable in a, with

fiala) = 42a™.

In what follows we will avoid limits of difference quotients and think of
differentiation as a method tcﬂ approzimate a given (nonlinear) function f
by a linear one, i.e. to write

f(z) =~ f(a) + A(x — a) = Az + B.
We want to choose A and B so that

R,(x) = f(z) — Ax — B

IThis also suggests to write df = f'(z)dx.
2Parafrasing: as Jaap Murre stipulated, who would need a limit concept here?
3In some sense best.
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is as small as possible near x = a. We write
f(@) = f(a) + Az — a) + Ra(z)

and aim to identify f’(a) as the unique value of A for which the remainder
term R,(x) has a smallness property that fails for other choices of A. Below
we derive this property by purely algebraic manipulations starting from the
difference quotient

f(z) — f(a)

T—a
in (9.1). Hope you don’t mind this long introduction, which was really writ-

ten for highschool students and their teachers in my booklet with Ronald
Meester.

9.1 Linear approximations of monomials

So consider such a difference quotient for the function f. defined by f. (z) =
27, A little algebraf]in Chapter [1] told you that

7 7
r —a
= 2% + a2’ + a*v* + ®2® + a*2® + a°r + df,

r—a
which you rewrote as’
' =a" + (2% + az’® + a*r* + *2® + a*2? + dPr + ) (v —a)=  (9.2)

a’ +7a° (x —a)+ (2°+ 2ax* + 3a®2” + 4a*2* + 5a'r + 6a°) (v — a)®.

TV TV
Az + B remainder term

The particular choice
A=17da% B=—-6d" (9.3)

followed from putting £ = a in the 7 terms of thdﬂ prefactor in the second
term on the right hand side of . Of course you already “knew” that
fi(x) = T2% so you recognise 7a® as f!(a) computed via (9.1)).

The first two terms can be seen as the best approrimation of the form

Azx + B = 7a%z — 64"

4Long division for instance.
5See Exercise [1.20
6Typographically large....

143



to f,(z) = x” when z is close to a. This is because the above values of A
and B appear as the only choicd’| which makes the resulting remainder ternf)
contain a factor (x — a)?.

Moreover, the prefactor in the remainder term under is easily esti-
mated if we assume that « and a are contained in a fixed interval [—r,r]. For
example, if

|z| <r and |a| <7,

this prefactor is estimated by

7>2<6r5'

(1424+3+4+5+6)r" =

You will not be surprised that (9.2) and its splitting in a linear term and
such a remainder term generalise to general n € IN.

Theorem 9.1. Forn € IN and z,a € IR let R,,(x) be defined by
" =a" +na" ' (z — a) + Ren(2),

and let r > 0. Then

r-dependent constant

forall x,a € [—r,7].

Exercise 9.2. You may guess a nice expression for Ry, () from (9.2). Guess right,
prove what you guessed for all n € IN, and then prove Theorem [9.1]

9.2 Linear approximations of polynomials
Let ag, aq, aa, . .. be a sequence of real coefficients. Then for the polynomials

k
pk(ﬂf) = Zoénxn = g +041x+042372+---—|—aka:

n=0

k

"Of course both A and B depend on a.
8 A polynomial in x with coefficients depending on the choice of a, A, B.

144



of degree k > 2 the story is quite the same as in Section[9.1] Simply multiply
both sides of the equality and inequality in Theorem [9.1] by «,, and take the
sum over n. With some care for n = 0, 1, 2 it follows that

k k
pk:(x) = pk(a) + Z nanan_l (23 - a) + Z Oéchm(l'), (94)
n=1 =2
Vv TV
linear approximation remainder term

in which for all z,a € [—r,r] the remainder term satisfies

|Zan m(2)] < Z an| 2z —a)* (9.5)

J/

Vv Vv
remainder term r-dependent constant

As before

+Znan Yz —a)

%/_/
P, (a)

is the best linear approzimation of py(x) near z = a, in which we recognise
the value of derivative of py in a as the coefficient of (z — a).

9.3 Power series: the fundamental theorem

The step from polynomials to power series like
p(z) =1+ 2w +32° + - - (9.6)

is a small step for the text editor if we use the illuminating dots notation.
Recall from calculus that every power series

= E ™ = ap 4+ T + aox® + - -
n=0

has a critical radius R. For z € IR with |x| < R the power series is absolutely
convergent, for |z| > R the individual terms are an unbounded sequence and
therefore there is no way to give meaning to the sum. The behaviour for
|z| = R may be complicated but is for later worries.

Theorem 9.3. Every power series
o
= E o,z
n=0
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with o, € IR for n € Ny has a radius of convergence R € [0, 00| such that
the series is absolutely convergent for all x € IR with |z| < R. For such x it

holds that

p(z) = Z noy,r" ! = Z(n + Dap 12",
n=1 n=0

in which p' is the derivative of p on {x € IR : |x| < R} in the usual sense of
limits of difference quotients, namely

P(a) = lim p(x) — p(a)

Tr—a Tr — a

for every a with |a| < R. The power series for p'(x) is also absolutely con-
vergent for all x € IR with |x| < R, and the convergence of both series is
uniform on every {x € R : |z| < r} with 0 < r < R. For x € R with
|z| > R the terms in both series for p'(x) and p(x) are unbounded in n and
none of the two series converge.

Proof. We continue from (9.5)). If for some r > 0 it holds that
- nn—1) , ,
C, = | ——=—7""° < o0, 9.7
Sl Mg < o (0.7

we can let & — oo in ((9.4). Indeed, it then follows from Exercises and
3.39 that the sums

o [o¢] o
E apx", E apa”, E naga™
n=0 n=1 n=1

exist for all z,a € [—r,r| because

n(n —1)

1<n<
- 2

for n > 2, and so does the sum
R,(z) = Z R ().
n=2
Thus (9.7) allows to take the limit & — oo in (9.4) and (9.5) to obtainf

p(x) = Z apx" = pla) + Znana"_l (x —a) + Ry(x) (9.8)

—_—
A

9The convergence is in fact uniform on [—r, r], why?
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with
|R,(2)| < Cp(z — a)? (9.9)

for all z,a € [—r,r]. As before we observe that

A= Z na,a™ ! (9.10)
n=1

is the only value of A for which
p(z) = pla) + A(z — a) + Rq(z)

holds in combination with an estimate of the form and a constant which
depends only on r. The difference quotient in (9.1)) with f replaced by p then
evaluates as R

P (@), Rale)

r—a r—a’

and suffices to conclude from that
lim P& =2(@) _ (9.11)

r—a T —a

as given by (9.10]).
To conclude we note that the r-values for which (9.7) holds form an
interval

{r>0: ZnQ\anlr” < o0}
n=1
which contains » = 0. The only possibilities for this interval are
{0}, [0, R), [0, R], [0, 00),

with R > 0 in the second and third case, and R = oo and R = 0 in the
extreme fourth and first case. This completes the proof of Theorem [9.3
except for the statement about |z| > R, which follows from Exercise[9.4 O

Exercise 9.4. Suppose R < 0o and let g € IR with |zg| > R. Assume the terms in
p(xo) form a bounded sequence indexed by n. Derive a contradiction by showing that
both p(z) and p/(x) are then absolutely convergent for every = € IR with |z| < |z|.

Exercise 9.5. Show that R is characterised by saying that a,x" is an unbounded
sequence if |z| > R and a sequence converging to 0 if |z| < R.
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Remark 9.6. The limit statement is equivalent to saying that

lim —Ra (z)

x—a T — Q

— 0. (9.12)

This means that for every € > 0 there exists § > 0 such that

|R.(2)| <elr—a|l if |z—al<d, (9.13)
a statement much weaker than the statement in . It wnll be used in
Chapter[1Q to define differentiability of functions not given by power series.

Exercise 9.7. The intervals

oo
I :={r>0: an|an\r” exists}

n=1

don't change much if we vary k € IN. It is clear that
LDLDI3D -,

but you should prove the existence of R € [0, 00] such that for every k € IN either
I, = [0, R) or I, = [0, R]. Give examples of R=0, R=1 and R = oc.

9.4 Extra: Taylor’s formula for power series

We substitute x = xg + h in
p(z) = Z apx". (9.14)
n=0

Changing the order of summation@ we find

0 00 n .
- 0

> —1...(n—k+1
:Zzan”(” ) k'(” + )ngkhk

10T his section relies on Section [3.8| but we will not expand on this here.
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J/

<) (g <) (2
p(@) = plao+ ) = S L o NP (g (g 1)

In this form the power series is called a Taylor series. Do note the special
case o =0 and h = x,

px) =3 o = 3L O,
n=0 n=0

which is called a Maclaurin series.

Exercise 9.8. Let R be the radius of convergence of the power series P(x). Show
that (9.15]) holds for all 2y and h in IR with |xzo|+|h| < R, as the sum of an absolutely
convergent series. Hint: recall the concept of unconditional convergence, see Section

B.8

Remark 9.9. Fverything we did for the differentiation of power series in

also works for (Laurent series)

L(x): Z anxn:..._F&

n=—oo

a_q 2
2 +7+ao+ax+oz2x +eey

with |x| not too large for the positive exponents and |x| not too small for the
negative exponents. Start with e.g.

1 1 7
ﬁ = E—E(l’—a)‘l‘Ra(JT),

figure out what R,(x) is, and you’re in business.
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9.5 Power series solutions of differential equations

We can solve linear differential equations for power series (9.14]), for instance

P'(x) = p(x), (9.16)
with boundary condition p(0) = 1. Let us try to find a solution of the form

p(ﬁﬁ):Oéo—1-04196—|—042x2+043I3_|_...7

which may make sense for |z| < R, R hopefully positive. Provided |z| < R
it follows from Theorem [9.3] that

P (1) = a1 + 2001 + 3azz? + dagar® + -
and so
P (z) —p(z) = (a1 — ap) + (200 — a1)w + (3as — an)z® + (day — az)a® 4 - -
This can only be zero for all x € IR if
O=a1—ay=2a0— a1 =3a3—as =4ay —az3=---,
and from oy = p(0) = 1 it then follows that

X 1 11 111 1
(8% g (8% = — (8% = — —. _ - — — “ .. an—_-
L L X M B YR n!

Thus we encounter a function we have seen before, namely in Exercise [6.23

Theorem 9.10. Let r > 0. The only possible power series that can satisfy
P (z) = p(x) for all z € IR with |z| < r, and have p(0) = 1, is

S i B xd 28
p<x>:eXp(x)::Zmzl—Fl’—i—?—FE‘Fﬂ‘Fm—f‘ﬁo—i—"'.

n=0

In fact this power series converges for all x € IR, and therefore satisfies
P (z) =p(x) for all z € IR, as well as p(0) = 1.

Exercise 9.11. Prove that exp(xz) has R = oo and you have solved your first
differential equation} Hint: show for N € IN that

X n 2 N

X X X
Zﬁzl+x+?+-~+m+}m(m),

n=0

1No other functions can satisfy f(0) =1 and f/(x) = f(z), why is not clear yet.
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in which
x

N T .’172
RN@%:N1<N+1+(N+iXN+2f+”>

is estimated by

PPN oy B G P O PO G
CONEANAT AN+ N+1 NI N+1-z

if N 41> |-

Definition 9.12. Let a € IR. We say that f(x) — 0 as z — oo for a
function f :[a,00) — IR if

Veso JeerVoer = > & = |f(2)] <e.

Exercise 9.13. Show for every fixed n € IN that

xTL

exp(7)

—0 as x — oo.

This is the standard limit that says that exp(z) beats every power of x as x — oc.

Theorem 9.14. Let r > 0. The only possible power series that can satisfy
P (x)+p(x) =0 for all x € IR with |x| < r, and have p(0) =0 and p’(0) =1,

18

23 x° x’

plo) = siw =2 =5+ 1355 ~ 500

In fact this power series converges for all x € IR, so it satisfies

p'(z)+plx) =0 forall x € IR;
p(0) =0 and p'(0) =1 inz=0.

Exercise 9.15. Write p(x) using the sum notation and prove Theorem Let
cosx = p/(x). What is the derivative of cos?

At this point we don’t know yet that exp(z), sinx, cosx are what they
should be. One way to verify what is and will ever be is to check all the
formulas by brute force calculation. For instance:
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Exercise 9.16. Show for all z € IR that

2

cos? x +sinx =1,

by substituting the power series for cos z and sinz and working out the squares.

Exercise 9.17. In Exercise you may have realised that the square of a power
series is also a power series with the same radius of convergence. Now let

px) =Y apz" and gq(z) =) Bua"
n=0 n=0

be two power series. Theorem gives R for p(z) and S for q(x).

a)

Let a,, and b,, be sequences indexed by n € INg, and

n
Cp = g arbp—_i-
k=0

If
Z lan| < oo and Z |b,| < o0,
n=0 n=0
then -
Z len] < oo,
n=0
and
(Z an> (Z bn> = Z cn = agbo—l-(aobl +a1b0)+(a0b2+a1b1+a2bo)+- SR
n=0 n=0 n=0

a statement we should have proved in Section really. Apply this statement
to show that

s(x) = p(x)q(z) = aoBo + (@180 + aoB1)r + (2fo + a181 + apf2)a® + - -

is also a power series, with radius of convergence at least equal to the minimum
of R and S.

Then multiply by the corresponding expression for g(z) and prove that
s'(a) = p'(a)q(a) + p(a)q'(a)

for every a with |a| < R and |a| < S.
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c) Much easier, show that the same statement holds for the sum ¢(x) = p(z)+q(z)
with ¢'(a) = p'(a) + ¢'(a).

d) Prove the equality in Exercise Hint: you need Theorem and Exercise
to conclude.

Exercise 9.18. Write down the power series solution of the differential equation

(1+ x)fé(x) =afa(z) with fa(0) =1

and show that its radius of convergence is 1, unless @ € INy. Hint: what you get
should be consistent with what you know for o € INg.

Exercise 9.19. Prove that exp(z + a) = exp(x) exp(a) for all z,a € RR.

9.6 Extra: integral calculus for power series

Consider

p(z) = Zanx”. (9.17)

In Exercise [6.20 we saw that

b b 1 1
" bt a™t

"dr = = — 9.18

/a o [ L n+1l n+1 (9.18)

for 0 < a < b. Via Theorem and Definition this restriction on a and
b disappears:

Exercise 9.20. Verify that (9.18]) holds for all n € IN and any a,b € IR.
Theorem then implies for

k
pr(x) = Z " = ap + qx 4+ x® + - - + aga®, (9.19)
n=1
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the partial polynomial sums of (9.17)), that

b
| po)de = Pua(t) - Pus(a) (9.20)
with P, defined by
Piii(x) = gz + %IQ + %x + +k(jf1xk“. (9.21)

You recognise pg(x) as the derivative of Pyi1(x) the way you computed it in
highschool, and Py.;(x) as a primitive function for py(z).
Now assume for some > 0 that

Z |, | < o0. (9.22)
n=1
Then
pr(z) —p@) =1 Y ana"| < Y Jana"| < ) Jag |,
n=k+1 n=k+1 n=k+1

provided [a,b] C [—r,7]. It follows that p, — p in C([a,b]) and thus by
Theorem [L.12] that

/a " () di / () di (9.23)

as k — oo. Combining (9.21]) and (9.23) we arrive at the statements in the
following theorem™| for integration variable x € [a,b] C (—R, R).

Theorem 9.21. If v, is a sequence of real coefficients indexed by n € Ny,
then there exists a mazimal R € [0, 00| such

p(z) = Z " = g + 1 + pr® - (9.24)

n=0
exists for all x € IR with |x| < R. For those values

o0 o0

o) 5 Qg On 1 Ap-1 n
Pla) — - -y 9.25
(x) = o + 5T + 30 + n§:0n+1x 2 " (9.25)

also exists. Moreover

/pWMx:mw—P@

whenever [a,b] C (=R, R).
12This is really Theorem [9.3if you think about it.
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Exercise 9.22. Finish the proof of Theorem[7.12| Hint: consider the set of values
r > 0 for which (9.22) holds. It is either empty, the whole of IR, or an interval of
the form (0, R) or (0, R] with R € IR..
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10 Differentiability via linear approximation

In this chapter we formulate the linearisation approach to differentiation,
first for a real valued function f defined on[] a domain Dy in IR around a
point z in the interior of Dy. Writing

.CE:.T0+h

the considerations below concern h = = — xy sufficiently small. The main
difference with Chapter [J]is that the functions under consideration are not
specified by algebraic formulas. As a consequence there is no reason to have
remainder terms which are quadratic, such as for instance the remainder
term in Theorem [0.1] It’s analysis again in this chapter.

Definition 10.1. Let xy be an interior point of Dy, let f: Dy — IR and let
Ag € IR. Then for some dy > 0 the equality

f(xo +h) = f(xo) + Aoh + Ro(h) (10.1)

defines a remainder term Ry(h) for all h € IR with |h| < do. It may happen
that for every e >0 a 0 > 0 can be chosen such that

IRo(h)] < elh| if 0< |h| <. (10.2)

If so then the function f is called differentiable in xq, and we say that Ry(h)
is “small o of h” for h going to zerd] Notation:

Ro(h) = o(|h|) for h — 0.

Theorem 10.2. Let xg be an interior point of Dy, f : Dy — IR, and suppose
that f is differentiable in xo. Then there is only one Ay € IR for which the
statement in Definition holds, and f'(xy) = Ay is called the derivative

of f in xy.

Proof. Suppose there is another A, that does the job, say By instead of Ay
in (10.1), with remainder term S(h), also satisfying S(h) = o(|h|), just like
R(h). Subtraction then gives

(Ao — Bo)h = S(h) — R(h) = of|h]).

Divide by A and take the limit h — 0 to conclude that Ay = By. O

'For good reasons we kick the habit of writing A for D that started in Definition
2Not to be confused with big O of h.
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Exercise 10.3. Give the e-6 argument that shows Ag — By = 0 in the above proof.

Exercise 10.4. Going back to Definition [10.1} let gy € IR and define the function
g: Dy — IR by
T)—Jx
g(xzo) =go and g(z)= f(x) = f(xo)
X — [L‘O

for all x € Dy, x # xo. Prove that f is differentiable in xq if and only if it is possible
to choose gg such that g is continuous in xg.

10.1 Critical points and the mean value theorem

A critical pointf| of a differentiable function f : O — IR is by definition
a point & € O where f'(§) = 0. This statement makes sense for O C X
open and X any real normed space. The following theorem is formulated for
the case that O = (a,b) C IR = X and f : (a,b) — IR differentiable, but
generalises to f : O — IR.

Theorem 10.5. Let f : (a,b) — IR and assume that & € (a,b) is such that
fz) < f(&) for all z € (a,b). Then f'(§) = 0 provided f is differentiable in
€.

Exercise 10.6. Prove Theorem [10.5| Hint: argue by contradiction.

Theorem 10.7. The mean value theorem: if f € C([a,b]) is differentiable
on (a,b) then for at least one & in (a,b) it holds that

f(b) = f(a)

0~ 1),

Remember this theorem as stating that the difference quotient on the left is
equal to a differential quotient in some point & strictly between a and b.

Proof. In the special case that f(a) = f(b) the point £ appears as maximizer
or minimizer of f on [a,b]. Such a maximizer and minimizer must exist in
la, b] in view of Theorem [4.4]

If that maximizer £ lies in (a,b) then f/(§) = 0 in view of Theorem [10.5]
which is exactly what Theorem asserts in the case that f(a) = f(b).

3Also: a stationary point.
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The same conclusion holds if the minimizer lies in (a,b). One of these two
possibilities must occur because otherwise the minimizer and maximizer can
only be a or b, forcing the globale maximum and global minimum of f to
both be equal to f(a) = f(b), and thereby and f(x) = f(a) = f(b) for all
x € [a,b].

This contradicts the assumption that maximizers and minimizers do not
occur in (a,b) and thus completes the proof in case f(a) = f(b), which is
also called Rolle’s Theoremfl] You will complete the proof of Theorem [10.7]
in Exercise by reduction of the general case to this special case. 0

Exercise 10.8. Reduce the general case in Theorem[10.7]to the special case f(a) =
f(b) and prove Theorem [10.7, Hint: subtract a multiple of = to get equal function
values in x = a and = = b.

10.2 The fundamental theorem of calculus

1
1 = —d
n() /1 S ’

in Exercise [6.21] an integral that makes sense and defines In(z) for every real
x with x > 0. A trickier example you may enjoy to examine is the function
from Exercise .32

Recall the example

Exercise 10.9. Let f be the bounded nondecreasing function in Exercise [4.32 which
is discontinuous in every point of @, and define F': IR — IR by

F($):/Oxf.

In which points is F' differentiable? In which points is I’ continuous?

Theorem 10.10. Let a,b € R with a < b. Define for f € Rl([a,b]) the
function F' € C([a,b]) by

F(zx) = /x f(s)ds (10.3)

Then F is differentiable in every zo € [a,b] where f is continuous, with
derivative F'(zo) = f(xo).

4Read about Rolle in wikipidia.
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Note that xq is also allowed to be one of the boundary points, for which case
the obvious one-sided statementﬂ that F' is differentiable was not given yet.

Proof. Take zy € [a,b] and write

F(w) = F(ao) / F(5)ds = Fao)+ [ Flao)ds+ [ (£5) = flaw) ds.
With h = 2 — x¢ it follows that

F(x) = F(xo) + f(zo)h + Ro(h),
in which

Rofh) = [ ") — flao)) ds.

xo

To conclude that F' is differentiable in zo with F'(x¢) = f(zo) we need
to show that Ry(h) = o(|h|) as h — 0. Since the integral in the right hand
side above is over an interval of length h, continuity of f in z( suffices to
conclude that F' is differentiable in zy. Indeed, from

Ves0 3550 Vsela) © 0 < |s —x| <6 = |f(s) — f(z0)] <,

we have
zo+h
R <1 [ 1)~ flao)lds| <elh] it 0<[Wl <5 (10.0

and x = xo + h € [a,b]. This completes the proof. O

Definition 10.11. If F': [a,b] — IR is differentiable in every x € [a,b] with
F'(z) = f(x), then F is called a primitive functionf] of f.

Theorem [10.10[ thus says that every continuous function f : [a,b] — IR has a
primitive on [a,b]. For this particular primitive we have thaf'

/ (@) dz = F(b) — Fla), (10.5)

because F(a) = 0. If we add a constant to F' the equality in does
not change. But does hold for every primitive of F' of f? To put
it differently, is every primitive of f of the form (10.3), up to an additive
constant? Theorem [10.7] provides the positive answer. It is not possible for a
function to have a zero derivative in every point of an interval without being
constant.

5Formulate this statement for o = a and xo = b.
60r anti-derivative.
"Have a look at Exercise again.
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Theorem 10.12. The fundamental theorem of calculus: for every f € C([a, b))
it holds that

/ f(x) dz = F(b) — F(a),

in which F is any primitive of f. Such a primitive exists in view of .
If G is any other primitive than the primitive defined by , then F' — G
is constant on [a,b].

Proof. Applyf] the Mean Value Theorem to FF —G. 0

Exercise 10.13. Let F' : IR — IR be continuous, let T > 0 and suppose that
f:]0,T] — IR is bounded. Prove that

f(t) = / F(f(s))ds forall te[0,T]
0
if and only if
f(0)=0 and f'(t)=F(f(t)) forall tel0,T].

NB. The first statement requires the assumption that F o f € RI([0, 7], the second
statement requires the assumption that f is differentiable in every ¢ € [0, T].

10.3 A word on notation for later

The formula in Theorem is often written as

/ dF = F(I)|Z with dF = F'(z)dz = f(x)dz, (10.6)
[a,0]

and
F(z)|.=[F(2)], = F(b) — F(a).

This formal notation with the d of F' will be also used in vector calculus with
expressions like dF' = f(z,y)dz + g(x,y)dy and products of terms f(z,y)dx
en g(x,y)dy. The expression f(x)dzx is called a 1-form, F' = F(z) is called
a 0-form, and thus a 1-form can be the d of a O-form. The d of a 1-form in
turn will be a 2-form, and u(z, y)dzdy is an example of a two formﬂ, and so
on.

81 don’t know of a proof without.
9Usually witten as u(z,y)dx A dy.
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The algebra with forms will be defined later to mimic natural operations
in multivariate integral calculus, and will be based on the formal ruleq"|
dxdy + dydx = 0, ddx = 0, and a Leibniz type rule, see Chapter and
further. We already note that in Theorem the expression on the left
can be seen as

b
/ acting on  f(x)dz,
and the expression in the right as
]Z acting on  F(z),

an interaction between “integrals” and differential forms.
10.4 Some strange examples

Exercise 10.14. If g : IR — IR is continuous in z = 0 with ¢g(0) = 0, then
f : TR — IR defined by f(x) = zg(z) is differentiable in z = 0 with f/(0) = 0. Show
this directly from the definition of differentiability.

Remark 10.15. For g in Ezercise you can take a strange function like
for instance g defined by g(x) =0 for x € Q and g(x) = x for x ¢ Q. Then
f IR — IR is discontinuous in every x # 0 while differentiable in x = 0.

Exercise 10.16. Let f: IR — IR be defined by f(0) =0 and

1
— 2
f(x) = 2%sin -
for z # 0. Show that f is differentiable in every x € R but that f/(x) is unbounded
on [0, 1].

Exercise 10.17. Define f: IR — IR by f(0) =0 and

F(a) = exp(——)

for x # 0. Sketch the graph of f. Show that f is differentiable on the whole of IR, and
that f/(0) = 0. Then show that the same is true for f’, namely (f')'(z) = f”(z) exists
for all x € IR and f”(0) = 0. And so on for f”, f"" and all higher order derivatives.

0Recall from Definition 7.8| that we think of do and thus also dy as having a sign.
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11 The rules for differentiation

In this chapter we formulate and prove the rules of differentiation that you
have been using in calculus. In Chapter [14] these differentiation rules trans-
form into the rules for integration, by means of Theorem above, the
fundamental theorem of calculus.

11.1 The sum and product rules

For real valued functions f and ¢ of the same variable x we have the sum and
product rules. We formulate them for real valued functions of a real variable

firstl]

Theorem 11.1. Let zy be an interior point of Dy N Dy, f : Dy — IR and
g : Dy — IR differentiable in xo. Then f 4+ g and fg are also differentiable
m xo with the sum rule

(f +9) (o) = f'(20) + g'(x0)
and the Leibniz product rule
(f9) (wo) = f'(w0)g(x0) + f(20)g (20)-

Proof. Both proofs are straightforward. Writing expansions with x — x
instead of h, and the remainder term as Ry(z), we expand f(x) as

f(x) = f(x0) + Ao(z — z0) + Ro(x). (11.1)
Here
Ag = f/(ilﬁo)
if
Ro(z) = o(|]x — xo]) as z — xo,
le. if
Ves0 3550 Vaep, 0 <|r—20] <6 = |Ro(7)| < elz — x0]. (11.2)

Note that we still write Ry for the remainder term, but now choose to see it
as a function of z. For g this becomes’]

g9(x) = g(xo) + \15”0/(97 — o) + So(),  So(z) = of|x — z0). (11.3)
g’ (o)

! Again the results generalise.
2We use the alphabetic shift convention.
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Adding to gives
(f+9)(@) = f(z) +g(x) =
f(xo) + g(x0) + Ao(x — o) + Bo(z — ) + Ro(z) + So(z) =
(f + g)(zo) + (Ao + By)(x — mg) + Ro(x) + So(x)
S—— ——

(f+9) (z0) remainder term

for all x € Dy N D,. The remainder term clearly has the same properties as
the individual remainder terms Ry(x) and Sy(z), warranting the conclusion
that f + g is differentiable in z( if f and ¢ are, with

(f +9) (x0) = Ao+ By = f'(w0) + ¢'(20). (11.4)

Carefully note that the argument sees no difference between Dy N D, C IR
and Dy N D, C X.
Next consider the product function fg defined by

(f9)(z) = flz)g(z)
for all z € Dy N Dy and multiply (11.1)) and (11.3) to get
(f9)(x) = f(x)g(x) = (f(x0)+Ao(x—x0)+Ro(x))(9(20)+ Bo(x—x0) +S0(2))

= f(z0)g(x0) + Ao(x — w0)g(wo) + f(w0) Bo(z — o) +To(). (11.5)
(f9)! (z0)(z—x0)?

The remainder term Ty(z) consists of the 6 other combinations of the 3

terms in ((11.1)) and (11.3). To conclude that fg is differentiable in xy you
must check that each of these 6 terms is o(|x — xo|) as  — x¢. Once it has

been shown that

To(z) = o|z — xo|) as x — xg (11.6)
we read off from ((11.5)) that

(f9)'(x0) = g(w0) Ao + f(20) Bo = g(xo) f'(w0) + f(0)g' (20)- (11.7)
So do Exercise below to complete the proof. O

Exercise 11.2. Prove that (11.6]) holds. That is, use
Ves0 3550 Vaep, 0 <[z —20| <§ = |Ro()| < elz —

and the same statement for Sy(z) to prove the same statement for each of the above
6 terms in Tp(x) with x restricted to Dy N D,,.
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Remark 11.3. Both arguments see no difference between Dy N Dy C IR and
DynN D, C X. Note that f(zo) € IR and g(x¢) € IR appear as scalars and
are moved to the left in front of the linear map from X to IR in each of the
two terms in . In C’hapter we discuss the general case in which the
other IR is also replaced by Y. But then we must distinguish between the sum
and the product rule.

11.2 The chain rule

We now derive the chain rule, a rule which is in fact easier than , easier
because it only needs linear algebra. So consider ¢g(f(x)), with f defined on
some domain Dy and ¢ defined on some domain D,. To be specific, we start
with

xro €D f

and assume that
Yo = f(mwo) € D,.

Theorem 11.4. Let xq be an interior point of the domain of f, assume f
differentiable in xo, let yo = f(xzo) be an interior point of the domain of g,
and assume that g differentiable in yo. Let

9(f(x) = (g o f)(=)

define the composition go f of g and f. Then xq is in the interior of the
domain of go f and g o f is differentiable in xq with

(g0 f) (20) = g'(y0) f'(z0). (11.8)
Prooiﬁ. We want to linearise g o f around zy. To do so
9(y) = 9(yo) + Bo (v — yo) + So(y),
g’ (yo)
has to be combined with
f(z) = f(xo) + Ao (x —x0) + Ro(x).
f'(wo)

We assume both remainder terms Ry(z) and Sy(y) have the property needed
for differentiability of f in zy and ¢ in yo, namely (12.7) for f,

Vesodsso 0 < |z —20| <0 = [Ro(z)| < elz — x0],

3Simplify! Restrict to xg = 0,39 = f(0) = 0, g(0) = 0 and drop all subscripts.
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and
Ves035500 < |y — ol <0 = [So(y)| < ely — wol (11.9)

for g. In particular these two statements provide us with ¢ > 0 for which
Bg(l‘o) - Df and B(g(yo) - Dg.

Next we verify that the properties of the remainder terms Ry(x) and Sy(y)
carry over to the remainder term 7p(x) in

9(f(x)) = g(y) = g9(yo) + Bo(f () — f(x0)) + So(y) =
—Y0
9(Yo) + BoAo(x — o) + BoLo(x) + So(y) -

v~

To(x)

The first term in Ty(x) exists for all 2 € IR and is estimated via
| BoLo ()] = [Bol | Ro()],

and therefore has the desired property that it is o(|z — x| ) as © — o,
simply because Ry(z) does. For the second term we pick ¢ > 0 and then
know that
[So(y)| <ely —wo| if 0<|y—wol <4,
with 0 > 0 as in . What we want is an estimate in terms of a multiple
of e|x — x| if 0 < |z — x| < & for some other 0 > 0 chosen depending on the
positive € we started with.
If by chance y = yo there’s no work to be done. If not, then we need

0<|y—wol<d
if we want to conclude via (11.9)). We actually have
[y = yol = | f(x) = flzo)| = [Ao(z — z0) + Ro(z)| < |Ao| |z — zo| + [Ro(2)]
<(|A0|+1) |$—ZL‘0| if 0<|ZL‘—[L’0| <(SR,

in which 6z > 0 is provided by ((10.2)) applied with ¢ = 1. So we indeed
conclude via (|11.9) if

0< |z —x <

which then implies that the second term in Ty(z) exists so that x is actually
in the domain of g o f. Moreover the second term is estimated by

1So(y)| < ely —yo| < e(|Ao] +1) |z — 20].
———

13
Leaving further cosmetics to the reader this concludes the proof that also the
second term in Ty(z) is o(|x — o) as * — xp. We have derived and proved
the chain rule. O
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11.3 Extra: differentiability of inverse functions

Consider the functions f and g in Theorem [8.19, We ask about the dif-
ferentiability of g in some yg = f(z¢) with xy € (a,b) and f differentiable
in xg with f'(zg) > 0. The positive answer to this question is that g is
differentiable in yg and that

f'(@0)g (yo) = 1, (11.10)

a statement which is symmetric in f and g.

Proof of (11.10]). To establish the positive answer we first make our lifes
easy by noting that without loss of generality we may assume that 0 = xy =
yo = 0 = f(0), and that f'(xo) = 1. This means that

fx)=x+o0(z) as x—0, (11.11)
le.
Vesodsso 0<|z| <d = |f(x) — 2| < elz|. (11.12)

The inequality for |f(z) — x| means that
l—ez<y<(l4+e)z if 0<x<d and y= f(x), (11.13)

and the other way around for —6 < x < 0. We want to replace this statement
by an equivalent statement which is symmetric in x and y, and thereby also
equivalent to

gly)=y+oly) as y—0. (11.14)

How do we get the equivalent symmetric statement? Clearly the condition
y = f(x) already is symmetric because

y=fz) <= z=yg(),
but the inequalities with x and y are not. Note though that
1

(1—5)x<y<(1+5)x:>(1—£)x<y<1 x

if x> 0and 0 <e < 1. In other words (11.12)) implies that

O<z<d 1
Ve 3 = (l—¢glr<y< ——un, 11.15
€(0,1) 35>0 y = f(z) ( ) Y 1z ( )

and likewisd] for —§ < x < 0.

4With the same ¢ given 0 < € < 1, and with reversed inequalities for 7.
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Next observe that ([11.15)) and its version for x < 0 in turn imply
€

Veeo) 550 0 < |z <0 = [f(x) — 2] < 1 ||, (11.16)

—€
since
L 14 €
1—¢ 1—¢
But (11.16)) and (11.12)) are equivalent, by setting
€
1—¢’
and thus ((11.15]) and its version for x < 0 make up for an equivalent definition
of (11.11)): we have

v66(0,1) EI6>0 : G5 = {(xay> € IR2 1 0< ‘33" < 57 y= f(l’)} C SE: (1117)

£ =

in which

S = {(@y) £(0,0): —— <Y c1-g (11.18)

— £ i

is clearly symmetric in z and y. Now choose 6 > 0 such that, for the same
e € (0,1), it holds that

Fs={(z,y) €IR*: 0 < |y| <4,z =g(y)} C 5.,
How? Draw a picture to see that
0=(1—-¢)
does the job. This completes the proof. O

Exercise 11.5. In view of Section [11.3] and Theorem [8.19] the function In has an
inverse function f : IR — IR*. Show that f(0) = 1 and that f'(y) = f(y) for all
y € IR. Look at Theorem [0.10] and explain why f = exp.

Exercise 11.6. Show again that exp(z + y) = exp(x) exp(y) for all z,y € IR, and
that with e = exp(1) defined by

‘1
lne:/ —dxr =1,
1 X

P
q

it follows that
exp(g) =ed = VeP
q

for all p € Z and all ¢ € IN. By general agreement we define e = exp(x) for all other
z € IR as well.
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Likewise for 2% with x > 0. Via
Q:n — (elnx)n —_ enlnx

for n € IN, but also with n € IN replaced by r = § € @ and finally by general
agreement:
2 =e*™" for >0 and o€IR. (11.19)

Exercise 11.7. Show that

is strictly increasing on (=7, §) and has an inverse function
y — arctany

on IR with derivative

1
1492
Show that
tan L 34 L5
arc =y — = —y? =
y=y 3y 5?/
for |y| < 1.
Exercise 11.8. Show that
r —sinx

is strictly increasing on (—73, 5) and has an inverse function
Yy — arcsiny

on (—1,1) with derivative
1

VI—y?2

Derive a power series expression for arcsiny for |y| < 1.

Exercise 11.9. Consider
T — CcoST

on (0, 7). Show for the inverse that arccosy + arcsin y is constant on (—1,1). Which
constant?
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Exercise 11.10. Show that sin is a periodic function. Its period is by definition
27, Show that —sin(—z) = sinz = sin(r —z) > 0 for 0 < z < 7.

Exercise 11.11. Solve the differential equation in Exercise via
fo(z) a

falz) 14z

and integration from 1 to . Prove that

a afe—=1) 5 ala-1(a=2) 4 .-
(1+2)*=1+az+ 5 <+ 5.9 a:+-~=kz

0

(Z‘) 2F (11.20)

for all z € IR with |z| < 1.

Exercise 11.12. Take o = % and square the series in (11.20)). Prove that

for all z € IR with |z| < 1. To some extent this was perhaps known to the Babylonians.

Exercise 11.13. Write out the first few terms of

\"/1+a::1+§+--- and
n
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12 Extra: differentiation in normed spaces

In fact we may just as well speak about Dy C X, X a normed space, zy in
the interior of Dy, f: Dy — IR,

f(zo+h) = f(zo) + ¢o(h) + Ro(h),

in which ¢y : X — IR is linear and Lipschitzﬂ continuouﬂ. The e-6 statement

(10.2) then becomes
Ves0 3550 Vhex : 0< |h|, <6 = |R(R)| < ¢|hl.

It implies that such ¢y, if it exists, is unique, with ¢o(h) = Aph in the special
case under consideration in Definition [[0.1

If you understand what’s going on you see that everything also works for
maps ¢ from Dg C X to Y, X and Y normed spaces. We shall write

(I)(l‘() + h) = (I)(Io) + th + Ro(h),

in which we write Aph instead of Ag(h) for Ag : X — Y linear and Lipschitzﬁ
continuous. Definition and Theorem [10.2| are just special cases of the
following definition and theorem.

Definition 12.1. Let XY be real normed spaces, Dy C X, ®: Dg — Y, 29
an interior point of Dg and let Ag : X — Y be Lipschitz continuous. Then

defines a remainder term Ry(h) for h € X with |h|, < dy for some &y > 0.
It may happen that for every e >0 a d > 0 can be chosen such that

[Ro(h)|, < elhl, if 0<|hl, <0 (12.2)

If so then the map ® is called differentiable in .

Theorem 12.2. Let XY be real normed spaces, Dy C X, ®: Dy — Y, xg
an interior point of Dg, and suppose that f is differentiable in xq. Then there
is precisely one linear Lipschitz continuous map Ay : X — Y for which the
statement in Definition holds, and ®'(xy) = Ag is called the derivative
of ® in xg.

Tf ¢ : X — IR is linear an continuous in 0 then it is Lipschitz continuous.
2In order to have f differentiable in =y imply that f is continuous in zg, explain!
3Again: if Ag: X — Y is linear an continuous in 0 then it is Lipschitz continuous.
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Remark 12.3. The space of all Lipschitz continuous linear maps A from X
to Y that qualify to be used in Definition is denoted by L(X,Y). We

shall write

|A]
for the best (smallest) Lipschitz constant of such an A.

(12.3)

L(X,Y)

Theorem 12.4. Let z,y € X, X a normed space, O C X open,
[zy={t) =A—-tz+ty;0<t <1} CO,
and f: O — IR differentiable. Then there exists
€ (xy)={(1—-t)x+ty; 0 <t <1}
such that

fly) = f(x) = f(E)y — ).

Exercise 12.5. Give a direct proof that’]

t— f(&(1)) (12.4)

is differentiable on [0,1]. Then use Theorem m to prove Theorem [12.4 Can the
assumption [z,y] C O be weakened?

The argument in Theorem for the sum function immediately generalises
to®: Dy - Y and ¥ : Dy — Y as in Definition and Theorem (12.2
For the general Leibniz rule we suppose ® and ¥ map to a normed algebra
Y and are as in Definition and Theorem If the multiplication is

commutative we have

AO(ZL' — .Z’(]) \I/<,I0) = \I/(Io)Ao($ — l’o) ey
—_— Y

inY inY in L(X,Y)
and remains unaltered. Only the notation changes when we write
(DW) () = W (x0)Ag + P(20) By = V¥ (20) D (x0) + P(x0) V' (2g).  (12.5)
If multiplication in Y is not commutative we have that

((@W)'(20))(h) = (' (0) (h)) W (o) + P (o) (W' (o) (h)) (12.6)

4You really don’t need the general chain rule in Theorem m to do so.
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defines (W)’ (x¢). It is Lipschitz continuous because, using |yz|, < |y|, |z|,

and recalling , we have
[(@W) (o) ()], < (@' (0) (h))¥ (o)l + |D(x0) (W' (x0) ()],

< @ (20)(M)]y 19 (20)y + | (w0)]y [(F'(20)(R))],
<@ (wo)|Lixvy [l 5 W (o)l + [@(20)ly W' (20) Ly 1P
whence

(@) (20)], xyy < 1P (w0)Lixyy [W(@0)ly + [P (w0)ly W' (20)|L(x,v)-

Next we look at the remainder term 7Ty (), which is the sum of
(I)(l’o)SQ(f) + R0<£L')\If($0),

Ao([L‘ — $0)BQ($ — ZL'()),
Ap(x — 20)So(z) + Ro(x) Bo(z — ),

and

Ro(x)S()(JZ)
Exercise 12.6. Prove in the general setting of normed spaces X and Y that ((11.6))
holds. That is, use
v€>0 35>0 v$€X 0< |33 - -750|X <6 = |R0(x)|y < €|l‘ - x0|x (12'7)

and the same statement for Sp(z) to prove the same statement for each of the above
6 terms in Tp(x).

Exercise 12.7. The functions defined by
(z,y) >z +y and (2,y) > zy

are differentiable from IR? to IR. Why?

Remark 12.8. Exercise [12.7 should lead you to reflect on the observation
that the (general) chain rule below does in fact imply the sum and product

rules in Section [11.]]
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We conclude this section with the observation that there is no difference
between the arguments in the proof of Theorem above for

DicIR, f:Dy—1R, D,CIR, g:D,— IR,
and the arguments for
Dy CX, ®:Ds—Y, DgCY, V:D,— Z,
= U(P(x))
in Theorem below. To linearise this map around zy we combine
U(y) = ¥(yo) + Boly — vo) + So(y), Bo=¥'(y0)

with
P(x) = P(xg) + Ao(z — x0) + Ro(z), Ao = P (yo).

We assume both remainder terms Ry(z) and Sp(y) have the property needed
for differentiability of ® in xy and V¥ in yy, namely ((12.7) for ®,

Vesodsso 0 < |z — 20|, <6 = |Ro(2)|, <elx — x|y,
and
Ves0 35200 <[y —woly, <0 = [So(y)l, <ely —woly (12.8)
for U. Again these two statements provide us with 6 > 0 for which
Bs(zo) ={z € X : |x —xo|, <} C Do

and
Bs(yo) ={y €Y : |y —wol, <0} C Dy

hold. Writing

U(P(x)) = ¥(y) = V(yo) + Bo(P(x) — P(x0)) + So(y) =
U (yo) + BoAo(z — o) + Bolo(x) + So(y),

-~

To(x)

in which the second term features the derivative of the composition. We note
that the first term in Ty(z) is now estimated via an inequality

|BOR0(:E)|Z < |B()’L(Y,Z) |R0(x)|y
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The rest of the proof is copy-paste from the proof for X =Y = Z = IR, with
f and g replaced by ® and ¥, and the appropiate subscripts on the norms.
We paste only the inequalities. They read

|50(y)|z < €|y - yO|Y if 0< |y - y0|Y < 5,

[y — ol = [®(x) — (z0)|, = [Ao(z — o) + Ro(z)|,
< |A0|L(x,y) |$ - x0|X + |R0(x)|y

< (‘AO‘L(X,Y) + 1) ‘:U - -770‘)( if 0< |3j - 'TO‘X < 6R’

)

=4

0< - <
|'T x0|X +1

| Ao|

L(X,Y)

1So(¥)l, <ely —yoly <e(lAol,xy, +1) [2— 20l

—~
€

The general chain rule is now given by the following theorem.

Theorem 12.9. Let zy be an interior point of the domain of ®, assume o
differentiable in xq, let yo = ®(xg) be an interior point of the domain of ¥,
and assume that U differentiable in yy. Then xq is in the interior of the
domain of ¥ o ® and Vo ® is differentiable in xy with

(W0 @) (x9) = W' (yo) P’ (). (12.9)

Exercise 12.10. Derive and prove the differentiation rules for fg and % if fand g
are real valued functions from Exercise and Theorem . Hint: use also y — %
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13 Extra: Newton’s method revisited

For the analysis of Newton’s method we need the mean value theorem in
integral form.

Exercise 13.1. Theorem [10.12| can be formulated for F' : [a,b] — IR continuously
differentiable, i.e. F': [a,b] — IR is differentiable and x — F’(x) defines a continuous
function on [a, b]. Rewrite

b
F(b) - Fla) = / F'(z) da

via the substitution
r=1—-ta+th=a+t(b—a)

as

1 1
F(b)—F(a):/O F’((l—t)a—i—tb)(b—a)dt:/o F/(1—t)a-+tb) dt (h—a), (13.1)

and prove the result directly from the definitions, without using the rule dz = (b—a)dt.

We note that if © — F'(x) is Lipschitz continuous is on [a,b], the first
integral in ({13.1]) with b = z rewrites as

/O F'(a)(z — a) dt + /O (F/((1 - ta + tz) — F'(a))(z — a) dt,

SO

F(z) = F(a) + F'(a)(z — a) + R(z;a) (13.2)
withll]

1
R(x;a) = Ry(x) = / (F'((1 —t)a+tz) — F'(a))(z — a) dt.
0
If the Lipschitz constant of x — F'(z) is L then
1
L
R(z:a)| g/ Ltfe —af? dt = 2}z — af?. (13.3)
0

In ((13.2) we have a linear approximation with a remainder term estimated
in (13.3) by a constant times |x — al?. We say that

R(z;a) = O(jz — a*)

is big O of | — a| squared as x — a. This is just like what we had for power
series with (9.9). Note that O(|z — a|?) implies o(|x — a|) but in general it is
not true that o(|x — al) implies O(|z — al?).

'From here on we change form subscript a on R(x) to R(z;a).
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13.1 The generalised mean value formula

Theorem 13.2. Let X be complete metric vector space. For f : [a,b] = X
continuous let the function F : [a,b] — X be deﬁneaﬂ by

Flz) = /:f<s) ds.

Then F is differentiable in every xq € [a,b] with F'(xo) = f(x).

As before Theorem says that F'is a primitive of f, and that for this
primitive

b
/ f(s)ds = F(b) — F(a), (13.4)
because F(a) = 0. If I is another primitive of f then
G=F—F:[a,b] > X

is differentiable with G'(x) = 0 for all x € [a, b].

Exercise 13.3. Show that for every linear Lipschitz continuous functions ¢ : X —
IR the real valued function
z % ¢(G(x))

is differentiable on [a,b] with ¢'(x) for every x € [a,b] defined by
h L (@) G (@) = 0

for h € IR. So g(b) = g(a) by Theorem [10.7]

We conclude that (G (b)) — ¥(G(a)) = 0 for every Lipschitz continuous
linear function ¢ : X — IR. For y = G(b) — G(a) it thus holds that ¥ (y) =0
for every linear Lipschitz continuous functions ¢ : X — IR. If this implies
that y = 0 it follows that F(b) — F(a) = F(b) — F(a). This completes the
proof of the following theorem, in which F is called F.

Theorem 13.4. Let X be a complete metric vector space with the propertif|
that ¥(y) = 0 for every Lipschitz continuous linear function ¢ : X — IR

2See Theorem
3Zorn’s Lemma implies that this property holds.
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implies that y = 0. If f : [a,b] — X is continuous and F : [a,b] — X is a
pm'mitivfﬁ of f, then

b 1
/ f(s)ds = F(b) — F(a) = / F'((1 =t)a+tb)dt (b— a).
a 0
Such a primitive exists in view of Theorem[13.9

Summing up, the mean value integral formula also holds for X-
valued functions and integrals. Only for IR-valued functions the integral can
be seen as lying between the minimum and the maximum of the integrand,
and is therefore equal to some value F’(£) with £ € [a,b], a slightly weaker
statement than in Theorem under a much stronger assumption than
Theorem [10.7] exclusively for IR-valued functions.

For continuously differentiable F' : O — Y, Y a complete metric vector
space, O, x,y as in Theorem [12.4] we apply Theorem [13.4] with ¢ = 0 and
b =1 to the function defined by , and conclude that

Fly) - F(z) /0 FI((1 = ) + ty)(y — o) dt, (13.5)

as a Y-valued integral, which we can write as

Fly) - Fz) = /O FI((1= ) + ty) dily — @), (13.6)

an operator-valued integral acting on y —x € X. This version of the mean
value theorem will be used in the proof of Theorem [I5.4]

13.2 Convergence of Newton’s method

For r > 0 let f: IR — IR be differentiable on the open bal]ﬂ
B, ={zeR: |z| <r}.

If + — f'(z) is Lipschitz continuous on B,, and x,, is a sequence in B, ((13.2)
rewrites as

fan) = flan1) + (@) (@n — 2p1) +R(T0; T0o1), (13.7)

Vv
linear approximation

4F(x) = f(z) for all x € [a, b].
SGeneralises to f : X — X, X a complete metric vector space (Theorem ).

177



in which

L
‘R(ajna $n71)| S §|xn - xn71’27

with L the Lipschitz constant of f’ on B,. Assume for all z € B, that

(f'(@) ' < C,
form some positive constant C' > 0.
Let
Pn = |xn - xn—1| and n = |f(xn>|7 (138)
and assume that z,, is defined by
Ty = Ty = (f'(@01)) 7 f(@am1) (0 € N), (13.9)

with o = 0. Then z,, € B, as long as

p1+p2+...—’—pn<r7 (13.10)
in which case it follows that
1
o <Cquy and ¢, < QLpi, (13.11)

because ((13.9) puts the linear approximation in ((13.7)) equal to zero.
The inequalities in (|13.11]) can now be used beginning with

g = [f(0)] and p, < Cqo = C|f(0)]. (13.12)
Combining ((13.11]) and (13.12)) it follows that
1
pn < pp, with p=gLC and py < CIf(0)]. (13.13)

The question then is for which P we can conclude that the implication

p<CIf0) <P = ) pu<r (13.14)

n=1

holds. If so then z,, € B, for all n € IN, z,, converges to a limit £ which is
also in B,, and f(x,) — 0.

The larger P, the stronger the statement in the sense that larger values
of |f(0)| are allowed if we try to find a solution x € B, of f(z) = 0 by means

(13.9) starting from xq = 0. If we take equalities in ([13.13)) and ((13.14]) then
po=ppsy for nelN; pi=P; > p,=r. (13.15)
n=1
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Putting &, = pp, so that &, = £2_,, this is equivalent to

n—1»
G(uP) = pr with G(&) =6+ + M+ S+ ... (13.16)

This defines P as a function of u and 7.

Exercise 13.5. Use ¢
G(¢) < 1T-¢

to show that
2r

guarantees x,, - T € B, with f(z) = 0.

Back to Heron’s method. We we can scale the whole Heron procedure
and put = = yv/2, and likewise for Z, z,,, ,_1, to obtain

),

Yn = 9 Yn—1

Yn—1

which has y, — 1 as n — oo if we start from gy > 0 with gy # 1.

Exercise 13.6. Put y = 1 + z and see what you get for the sequence z, to
understand why the convergence is so fast.

Exercise 13.7. Put e = 22 — 2, rewrite (2.2) in terms of ¢ and ¢, examine the
sequence e,, and compare to Exercise [13.6]
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14 Back to calculus

Most of this chapter should be part of any calculus course.
14.1 More on exp and In

Exercise 14.1. Let I C IR be an open interval, F': I — IR differentiable, F’(x) =
F(z) for all z € I and (a,b) C I a maximal open interval on which F'(z) > 0. Then
(a,b) = I. Prove this via

=1 < In(F(z)) =2+ C < F(x)=¢""".

Exercise 14.2. Same question as in Exercise for F: I — IR satisfying F'(x) =
F(z)g(x) with g : I — IR continuous. Also solve the differential equation. Hint: use
a primitive G of g.

Exercise 14.3. For a € IR the function F, : (—1,00) — IR" defined by F,,(z) =
(14 z)“ solves (1 + x)F'(z) = aF(x), a differential equation like in Exercise
Determine a power series solution of the form

14+ a1z +agz® +asa® + -+ - .

Write (the coefficients in) the solution in a form which for « = n € IN reduces to
Newton's binomium.The radius of convergence (for & ¢ INg) is R = 1. Why? How
does it follow that for |z| < 1 the power seried!] just computed is equal to F,(z)?

14.2 Integrals with parameters

The results in this section will be needed later. They may be postponed, but
at the risk of never being done at all. Let’s consider

i) = / fa. 1) da

INB Take note of a = —1, but also of o = :I:%.
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in which, for each ¢ in a t-interval [0, 1], the function x — f(¢, x) is continuous
on the a-interval [0,1]. Then j(t) is well-defined. What do we need to have
j differentiable? Let’s examine a follow your nose argument for what (the
one-sided) derivative j/(0) should be and see what we need to prove it.

If we use the mean value theorem in the form of Theorem itseleL for
every fixed x € [0, 1] applied to t — f(x,t), it follows that

f(t,:L’) = f(O,w) + ft(Tv ZE) t

with 7 = 7(z) € (0,¢). This requires, for every z, differentiability of f(z,1)
on [0, 1] with respect to ¢, or on a smaller interval that contains ¢ = 0 but
does not depend on z. We can then write

f(t,x) = f(0,2) + f:(0,2)t + fi(7(x),x) — f(0,2). (14.1)

S

R(t,x)

This defines R(t,x). If in (14.1]), with ¢ fixed, everything is continuous in z,
it follows that

jt) = /0 ft,x)de = /0 (f(0,2) 4+ f:(0,2)t + R(t,z)) dx
=7(0) + t/l fi(z,0)dz + /tR(t,x) dx (14.2)

() +t/0 £, 0) d + r(t).

Here

N S
-

<e?

r(t) = /0 R(t,)dz with R(t,z) = (fi(r(z),2) — £(0, 7))L

If we assume that
r— f(t,x)

and
T — ft(0,$) - g(t,l’)

are continuous on [0,1] we don’t have to worry about existence of the in-
tegrals. The integral r(¢) of R(t,x) in is then also continuous. The
second expression with 7(x) € (0,t) above can now be used to establish
r(t) =o(t) ast — 0.

2The integral form would require the use of not yet discussed double integrals.
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Indeed, for the remainder term r(t) we need |r(t)| < et for ¢ sufficiently
small. Thus, if for f,(¢t,z) = g(¢,x) it holds that

lg(t,z) — g(0,2)| < e (14.3)

ift € (0,6) for all x € [0, 1] simultaneously for some ¢ > 0, we will be happily
done.

How can this uniform e-statement fail to be true? Only if for some € > 0
there exists a sequence of points (t,,z,) with 0 < ¢, — 0 for which

lg(tn, ) — g(0,2,)| > €.

But then the sequence z,, has a convergent subsequence x,, with limit z €
[0, 1] and both sequences of points (t,,x,) and of points (0, z,) converge to
(0,Z) preventing (t,x) — g(t, ) from being continuous in every point (0, x)
with = € [0, 1]. We have proved the following theorem.

Theorem 14.4. Not so easy to memorise, let (t,z) — f(t,z) be defined for
all x € [a,b] C R, with a < b, and all t € (to — d,to + 0), with ty € IR and
d > 0. Assume that for fivzed t € (to — d,to + 9) the function x — f(t, ) is
continuous on |a,b] and thus that

b
)= [ fite)ds
exists. If for every fivred x € |a,b] the function t — f(t,z) is differentiable

on (to — 0,tg +9) and (t,x) — fi(t,x) is continuous in every (ty,x) with
x € [a,b], then t — j(t) is differentiable in ty with derivative

b
J(to) = / fulto. z) da.
Theorem 14.5. A weaker statement easier to memorize: if f and f, exist

as continuous functions on I X [a,b], with I some t-interval, then j : I — IR
15 continuously differentiable with derivative

j'(t):/ fi(t,x) dx.

Exercise 14.6. To prove the continuity of the derivative you need to prove: ¢t —
f;g(t, x)dz is continuous on I if (t,2) — g(t,x) is continuous on I X [a,b]. Hint:
use a uniform e-argument.

182



14.3 Partial integration and Taylor polynomials

Theorem 14.7. Let a real valued function f be twice continuously differen-
tiable in a neighbourhood of x = 0, and f(0) =0 and f'(0) = 0. Then

fx) = / (o= 5)f"(s) ds

for x in that neighbourhood.

This theorem follows from what we discuss below and is a special case of
Exercise below. You may consider to go for a direct proof instead, so
that you can skip the rest of this section, which should be part of any calculus
course. Theorem [14.7] is not really essential for the analysis of Newton’s
method in Chapter [I3.2] but it is for the proof of Morse’ Lemma in Chapter
116l

No new analysis is required for what follows. Via Theorem the
Leibniz rule in Theorem has an immediate and important counter part
which we state for continuously differentiable functions

z:|lo,f] >R and y:[a,p] = R
as 5 5
[ sy =y - [ ouma 1

This wntegration by parts formula can and should never be forgotten. If you
tend to forget important formulas do remember that it follows from Theorem
applied to a product of two continuously differentiable functionsﬂ

Here’s a nice application. For given f € C(][0,1]) we ask for a function u
such that

—u"(z) = f(z) forall 0<z<1, and wu(0)=u(l)=0. (14.5)

Taking the primitive on both sides we

in which «/(0) is unknown, and F' a primitive of f with F(0) = 0. Taking
primitives once more we have

u(z) =u'(0)xr — /Ox F(s)ds,

3And in a much more general setting in fact.
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with «/(0) still unknown, @ — ;" F(s) ds the primitive of F' which is 0 in
z =0, and u(1) = 0 not used yet.
Leibniz’ product rule turns F'(s) into

LF(s) = (s —a) F(s) = (s — a) F(s))' — (s — a) F'(s)
——  —— ——

——
G'(s)F(s) G'(s) G(s) G(s)
= (5= @)F(s))' — (s — ) (s),
(G(s)F(s)) G(s)F'(s)

in which 1 = G'(s) with G(s) = s — a and a free to choose.
The primitive of F'(z) then rewrites as

/Of F(s)ds =[(s—a)F(s)]5 —/Om(s—a)f(s) ds = /Oz(x—s)f(s) ds. (14.6)

With a = z it follows that

and r = 1 gives

Therefore . N
u(z) = /0 (1—3s)f(s)dsz — /o (x —s)f(s)ds

—x/:(l—s)f(s)der(l—x)/oxsf(s)ds—/OIA(x,s)f(s)ds.

The expression

Az, ) (I1—2)s for0<s<ux (14.7)
x,8) = )
’ (I1—s)r forx<s<l1

is called the kernel for the solution operator, which gives v in terms of f as
u(x) = /1 Az, s)f(s)ds. (14.8)
0
You may prefer to memorize the integration by parts formula as
/b F(z)G'(x)dx = [F(x)G(z)], — /b F'(2)G(z) du. (14.9)

It’s handy for computing integrals, but also for taking primitives of primi-
tives, as we just saw and see again below.
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Exercise 14.8. For f € C([a,b]) define
Fl(a:):F(a;):/:f(s)ds and FQ(;C)Z/; Fi(s) ds.
Use to show that
Fy(x) = [(x — 5)f(s) ds.

Hint: the integration variabele is s and 1 is the derivative with respect to s of s — x.

Exercise 14.9. In the context of Exercise [14.9 let
Foii(z) —/ F.(s)ds (n=1,2,3...).

Show that

Fula) = o [ e = o (o) ds

(n—1

Hint: for F3 you need two integrations by parts, for Fy three, et cetera.

Exercise 14.10. Modify the scheme in Exercise as
Fo(x) = f(@), Falz) = bn+/ Foi(s)ds (n=1,23..),  (14.10)

and give a similar formula for F,(x) with more terms. By construction F,,(a) = by,
F/(a) = by—1, F//(a) = by—2, ..., and what you see is the Taylor approximation of
order n — 1 for a function whose first n — 1 deravitives in a are given by the b's. Verify
for every n times continuously differentiable function defined on an interval I which
contains 0 that for all € I it holds that

(z —a)

@) = @) + @ = a) + (@) 5 e 00

)n—l

L 3::E—S"_l ) (5) ds
ey RSO

(n—1)!
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The last term is the remainder term. Let M = M,,(z, a) and m = m,(x, a)
be the maximum and minimum of f(™(s) as s varies from s = a to s = x.
Then this term is between
M n m n
H(x—a) en m(m—a) :
It follows that for some s = o between s = a and s = = the remainder terms
is equal to

™) (o
/ n'( )(:v —a)".
So ) |
n—1 (k (n o
flz) = Z / k'(O) (x —a)* + \f n‘( )({E — a)"l (14.11)

-~
ﬁ I (z—s)n=1f(n)(s)ds.

for some o between a and =x.

The result in holds in fact without the assumption that f is con-
tinuous, with o strictly between a and z, as a clever application of Theorem
[10.7 shows. The case n = 1 reduces to Theorem [10.7

14.4 Asymptotic formulas

This is not part of every standard calculus course. The notation

flx) ~g(x) for xz—a (14.12)
means that
M —1 if z—a,
g(x)
in which often a is 0 or co. Similarly the statement
n! ~ (E)" 2tn as n — o0 (14.13)
e

means that the limit of the quotient of the terms on both sides of the twiddle
is 1.

Exercise 14.11. Investigate f : + — 2% with 2 € IR" using (11.19). Determine
g :IRT™ — IR as simple as possible such that

f(@) =1 ~zg(x)
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asx — 0, i.e.
flz)—1
zg(x)
Put f(0) = 1. Is f differentiable from the right in z = 0?

— 1.

Exercise 14.12. Since x7 is strictly increasing in = for x sufficiently large, x — z*
has an inverse function y — f(y) definied for y sufficiently large. Show that f is
defined by xInx = Iny, take Inx to the other side and use the resulting formula in
the right hand side to get a simple g(y) for which

as y — 00.

14.5 Exercises

Exercise 14.13. Discuss the following formulas.

——
dy dx
5 =(8) b
/ F((t)) ' (t) dt = F(2(8)) — F(z(a)) = / () di = / F(x) da,
a S—~— z(a) a S~~~
f(=(t)) f(z)
b B8
/ f(x) dx:/ f(x(t))x’(t) dt. (14.14)

Exercise 14.14. Compute

/ exp(—z) dx, / xexp(—z)dz, / z% exp(—1x) dz, / 23 exp(—1) de,
0 0 0 0

and derive an integral formula for n! These are improper integrals, defined via

S R
= lim .
0 R—o0 0
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Exercise 14.15. Sketch the graph y = 2™e ™ (for n not too large) in the z, y-plane.
Where's the top of the moumtain?

Exercise 14.16. Scale and shift the integral for n! to conclude that

= [ o) da

—n

with .
gula) = (14 2)e~

Sketch the graph defined by y = g, ().

Exercise 14.17. Write

and verify that

Yp(z) =2 —nin(1+ %) = n(% —In(1+ %)) = m/)l(%).

Put x = sy/n to conclude that

nl = (ﬁ)n\/ﬁ/ e ds (14.15)
€ ~Va
and show that - -
/ oY) gs / o3 s (14.16)
,\/ﬁ —00

as n — .
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15 Implicit functions
If a function of two real variables, say
R?={(z,y): .y € R} > R,
satisfies F'(0,0) = 0, then the equation
F(z,y) =0 (15.1)

usually has more solutions near (x,y) = (0,0). How do we find these other
solutions? This chapter formulates an approach which generalises to the
more general setting of F' : X x Y — Z for complete metric vector spaces
X,Y and Z.

A special case is

F(z,y) = g(y) — =, (15.2)

when the question concerns a possible inverse function f of a given function
g, see Section [8.5] Note that for notational convenience we have then inter-
changed the roles of f and g and ask about the solution y of g(y) = z rather
than the solution x of f(z) = y. More important: we now choose for a local
perspective and want to make assumptions that concern values of x and y
close to 0 only. In Section [11.3] where we already had a global inverse, we
also asked about behaviour in a single point.

In this chapter we ask both about the existence of an implicit function f,
as well as its properties, but only near a given point. Thus we want to solve
F(z,y) = 0 for given z close to z = 0, hoping that near y = 0 precisely one
solution y = f(x) can be shown to exist.

Before we formulate a local implicit function theorem we discuss Newton’s
method for solving equationsﬂ We assume that for fixed x near x = 0 the
function

y— F(z,y)

is differentiable near y = 0. The derivative is denoted by F(x,y). The
special case F(z,y) = ¢g(y) — = with partial derivative F(x,y) = ¢'(y) is not
really different, and will lead to a local inverse function theorem.

For fixed = we take yy = 0 as starting value for Newton’s method. Thus
we put the linear expansion of F(x,y) around y = 0 equal to 0, solve for
y = y1, and use the linear the linear expansion of F'(z,y) around y = y; to
find y,, and so on. In every step we need F,(z,y,—1) to be invertibleﬂ. The

'Fast convergence of this method will be shown in Section m
2Think of F,(z,yn—1) as the map h — Fy(z,y,_1)h .
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next y, is uniquely defined by
F(2,yn-1) + Fy (T, Yn-1) (Y — Yn—1) = 0.
For n =1,2,... we have
Yn = Yn1 — Fy(@,yn_1) " F(z,yn_1), starting from yo = 0. (15.3)

If this process, which is called Newton’s method, defines a convergent se-
quence y,, the z-dependent limit y defines a so-called implicit function

r—y= f(zx). (15.4)
We then expect/hope that
F(z, f(z)) =0, (15.5)

and that y = f(x) is the only solution of (15.1]) near y = 0. If so we also ask
which conditions will make f continuous and differentiable in z = 0.

15.1 A simpler version of Newton’s method

A direct proof of (fast) convergence of the sequence vy, defined by ([15.3]) was
given in Chapter [13.2] via an estimate of the form

’yn-&-l - yn| S C’yn - yn—1|2 (156)

and required a condition on the second derivativd’| of y — F(z,y). Here
we avoid second derivatives of y — F(z,y) by simplifying the scheme: the
derivative Fy(z,y,—1) that has to be inverted in every step of Newton’s
scheme is replaced by F,(0,0). The modified scheme reads

Yn = Yn—1 — Fy(oa 0)71F($; yn—1>7 (15'7)

and we look for an estimate which is very much like the estimate (3.6 for
Heron’s sequence: we lose the square in ((15.6) but have to make sure that
C < 1. To this end

a sufficienctly small bound on |F(z, 0|,
the invertibility of F,(0,0),
and the continuity of (z,y) = F,(z,y)

will suffice.

3In fact Lipschitz continuity of y — F,(z,y) will suffice, see Section m

190



Theorem 15.1. Let 6 > 0, € > 0,
B={reR: |z|<d}, C={yeR: |yl <&},

and suppose that F : B x C' — IR has the properties that
F(0,0) =0;
x — F(x,0) is continuous in x = 0;
(x,y) = F,(x,y) is continuous in (0,0);
F,(0,0) is invertible;
y — F,(z,y) is continuous on C for every x € B.

Then there exists 69 > 0 and €9 > 0 for which the statement

Y(z,y) € By, X Bey 1 F(x,y) =0 <= y= f(x)

holds, in which

Bsy={reX:|z| <}, By ={yeY: |y <eo},

and f : Bs, — B., is constructed via (m starting from yo = 0. In partic-

ular f(0) =0 and f is continuous in 0.

In the proof we avoid a direct application of Theorem [3.16] which requires
a map from a suitable closed and bounded set containing y = 0 to itself. In-
stead we focus on the single z-dependent sequence defined by (15.7)) starting

from yo = 0 only. Note that the unlikely event that y;, = yo =
when y = yo = 0 and then automatically yo = y1 = yo =
F(z,y)=0.

15.2 Estimating the steps: convergence
How large can y; be if F(x,y0) = F(z,0) # 07 If we set
My = |F,(0,0)7] > 0.

thend
11| = |F,(0,0)" F(x,0)| < My |F(x,0)].

If F(z,y1) is defined we can estimate the next step by

|92 = y1] = 1F,(0,0) " Fa,y1)| < Mo |[F(, 1))

4For future purposes we only use |F,(0,0)~ k| < My |k|.
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using (15.7) with n = 2. The trick however is to use (15.7)) with both n =1

and n = 2 via
Yo — Y1 =1 — Fy(()’ O)AF(CU, yl) — Yo + Fy(07 O)AF(% 3/0)

= Fy(()’ 0)71 (F(.T, yO) - F<x7y1) + Fy(()? O)yl - Fy(07 0)310) ’

in which we “factored” out F,(0,0)".
The first two terms in the remaining large factor are

F(z,y0) — Fz,y1) = /0 Fy(z,tyo + (1 = t)y1) dt (yo — y1),

an integral we get by applying (13.1)), the mean value theorem in integral
fornf| to y — F(z,y) with a = y; and b = yo, z fixed. Combined with the
third and fourth term the whole large factor equald|

/0 (Fy (o, tyo + (1 — D)) — F,(0,0)) dt (4o — 1),

in which we brought the other two terms inside the integral. We conclude
that

2 =t = Fy (0, 0)_1/0 (Fy (2, tyo + (1 = t)yr) — £,(0,0)) dt (yo — 1)

if y = F,(z,y) is continuous on|Z|

o, ya] ={tyo+ (1 —t)y1 : 0 <t <1} (15.10)

for fixed z. Therefore
1
ly2 — | < Mo/ |(Fy(z, tyo + (1 — )y1) — F,(0,0)| dt [yo — ya|.  (15.11)
0

We now ask that (z,y) — F,(z,y) is continuousin (0,0). In particular
this continuity requires the existence of F,(x,y) for (x,y) close to (0,0). To
be precise we assume that for every n > 0 an € > 0 can be found such that
for all x and y the implication

7] <eenlyl <e = [Fy(z,y) = F,(0,0)] <7 (15.12)

SWhich will also do for F: X xY = Y.

6Look at , this argument is not restricted to F : R*> — IR!
"This notation for [yo, y1] does not require yo < y;.

8For F(z,y) = g(y) — x this means ¢’ continuous in 0.
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holds. Note that instead of an e-d-statement we used an 7, e-statement of
continuity, with nonstrict inequalities on the left hand side of the implication
arrow. In the end we want to have that y = f(x), the limit of the z-dependent
sequence ¥, satisfies |y| < e for all x with |z| < §, for some § > 0 depending
on £ > 0 via the continuity of z — f(x,0), and € > 0 in turn depending on
some 71 > 0 to be chosen to make what follows work

From ((15.11)) and (15.12)) we have that |x|, |yol, |y1]| < e implies
ly2 — y1] < Mon |y1 — yo| in which M, = |F,(0,0)~!| > 0.

The inequality is strict unless yo = y;, which is why we assumed yy # ;.
Thus the second step has

lye — 11| < Olyr —yo| = 0 |ys| with 6 = Myn.
By the same reasoning we have

lys — ya| < 0lya — y1l,

provided |ys| < €, and so on.
Any 6 < 1 is now fine for our purposesﬂ: as long as |y,| < € it holds thaﬂ

Ynt1] = [Yn+1 — Yol < [Ynt1 — Ynl+- -+ [y — | +Hwn| <
—_—— ———
<Olyn—yn_1| <6l |

My F(x,0

1—-6 — 1—60 7
* Mo|F(z,0)|  MyE Mo
0 x, o€ o€
(Y] < —— =6 1 My (15.13)

if || < 4. Here & > 0 is still to be chosen and § > 0 corresponds to £ via the
definition["] of continuity of z — F(z,0) in z = 0.
Now choose

1
< — 15.14
Mo MO ) ( )
and then, given the corresponding ¢y as in ([15.12)), a positive &, such that
Moyéq ) . 1
— < .€. < (=— — .
1_ MOUO €0, 1.6 €0 (MO ’170)80

n 1) we chose 0 = % for the sake of simplicity only.
OTn viewof 1 + 0+ 6%+ ... = ﬁ, see Section
HWith < § instead of < 4.
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Then let &y > 0 correspond to & > 0 via the deﬁnitio of continuity of
r— F(x,0) inz=0.
Thus the chain of alternating choices and continuity arguments is

(z,y) = Fy(z,y)

- —1 choose, continuous in (0,0)
Mo = [Fy(0,0)7"] —— mo < o > o
1 z— F(z,0) -
choose ~ continuous in 0 5
€0 < (57 —M)eo "= do
M,

and we finally let
5() = min(50, 80).

Then the z-dependent sequence y, converges to a limit for every z with
|z| < dp, and the z-dependent limit y = f(z) satisfies | f(z)| < 0.
Note that we used the map

y =y — F,(0,0)7 F(x,y), (15.15)
and the estimate
|®(x,y) — P(z,7)| <Oy — 7| (15.16)

with 6 < 1 and strict inequality if y # §. Equation F'(z,y) = 0 is via (15.15)
equivalent to y = ®(z, y) because F,(0,0)~!, being the inverse of F,(0,0), is
invertible. For the limit y = f(z) the continuity{™| of y — ®(x,y) implies
y = lim y,1 = lim ®(x,y,) = ¢(x,y).
n—oo n—oo
Thus
V(z,y) € Bs, X Bey:  F(z,y) =0 <= y = f(x), (15.17)

and Theorem [15.1]is proved.

15.3 Differentiable implicit functions

The implicit function in Theorem satisfies

(15.18)

12With < &y instead of < dg.
13Continuity follows from differentiability.
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in which 7y was chosen at the beginning of Section[15.2} see (15.14]). Estimate
(15.18]) immediately implies the continuity of f in 0 in view of the assump-
tions on x — F'(x,0). What do we need to conclude that f is differentiable
in 07

Use ([13.1]) to write

Fx, f(x)) = F(,0) + F(z, f(x)) = F(z,0)

— F(,0) + / Fy(a, £ (@) f () dt = F(2,0) + F,(0,0)f(x) + R(z),

with R(x):/o( (@, tf(2)) — F,(0,0)) f(x) dt. (15.19)

Clearly © — F(x,0) differentiable in x = 0 is the natural additional assump-
tion, because then

F(z, f(x)) = F(0,0)z + r(x) + F,(0,0) f(z) + R(z), (15.20)
with r(x) = o(|z|) as x — 0.

Theorem 15.2. Let f be as in Theorem|15.1. If x — F(x,0) is differentiable
i x =0 then also f s differentiable in x =0 and

£1(0) = —=F,(0,0)7' F,(0,0).
The proof now follows the nose. Isolating f(x) in (15.20)) we have

f(z) = —F,(0,0)"'F,(0,0) x —F,(0,0) 'r(x) — F,(0,0) 'R(x). (15.21)
f’zg)? rem;irnder

Since
|F,(0,0)"'r(2)| < Molr(z)] and  [F,(0,0)7" R(z)| < Mo|R()|

it remains to be proved that R(z) = o(|z|) as # — 0. Given an arbitrary]
e > 0 we need to conclude that

|R(z)| <elx| if O0<|z| <

for some § > 0. Since R(z) is given by (15.19) we use (15.12) again to

conclude that

|R(x)| <7|f(x)] if |z|]<é and |f(z)|<Eé. (15.22)

Y Earlier we only took one fixed ¢ corresponding to one fixed 79 as in (15.14)).
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The latter inequality will hold if |z| < §, 6 corresponding to £ in the estab-
lished statement, via the construction and ([15.18)), that f is continuous in
0.

Restricting also to |z| < &y we have

R@)| < i|f()] < — o

—— 0 F(2,0)],
< i 1@ 0)

while
|F(z,0)] < (|F2(0,0)] + &) 2]

if |z| < d,, where 0, corresponds to some arbitrarily chosen but then fixed
e, > 0 in the definition of r(z) = o(|x]).
For given € > 0 we then choose 1 > 0 such

Mon
——(|F:(0,0)| +¢&,) = ¢,
(17 (0.0)] +2)
take the corresponding € and § as in and below (15.22). With § = min(dy, ., 5)
the implication
0<l|z|<d = |R(z)| <elx|

then holds. Since £ > 0 was arbitrary, this completes the proof that R(x)
and therebye the whole remainder term in (15.21)) is o(|z|) as  — 0. This
then completes the proof of Theorem [15.2]

Exercise 15.3. Actually the continuity of f in = 0 follows directly from ((15.21))

and ([15.19) if we assume that |y| = | f(x)| < eo with gg chosen via ([15.12) for (15.14)).
Use ({15.20)) in the form

1
0= F(z,y) = F(x,0) 4+ F,(0,0)y + /0 (Fy(z,y) — Fy(0,0))ydt , (15.23)

in norm less than noly| if |z|,|y| <eo
and derive that for solutions (x,y) of F'(x,y) = 0 it holds that

_ Mol F(x,0)|

if < d |y| < eg. 15.24
bl < e i el <o and yl <o (15.24)

Thus the existence of a solution of F'(x,y) = 0 with |y| < g¢ for every x with
|z| < o < € implies that y — 0 if F(x,0) — 0. Except for the choice of &
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this statement is independent of the construction of f and the uniqueness of
the solution.

What about the other z-values in the domain Bj, of f? We should have
that f is differentiable in every x with |z| < b for some 0 < dy < &y, and

fl(z) = =F,(z, f(z)) ' Fu(x, f(x)). (15.25)

For every x € Bjs, the validity of relies solely on the invertibility
of F,(x, f(x)). Note that F,(x, f(x)) is continuous in = 0 because F, is
continuous in (0,0) and f is continuous in 0. Since F,(0, f(0)) = F,(0,0) is
invertible it follows that F,(z, f(z)) is invertible for all z with |z < § < d
for some 50.

The continuity of

v = fl(@) = —(Fy(z, f(2))) " Fo(x, f(z))

in z = xy with |z9| < ) requires the continuity of both (z,y) — Fy(x,y)
and (z,y) = F,(x,y) in (z9,v0), and the continuity of A — A~! in every
invertible Ay = F, (0, yo)-

Theorem 15.4. The Implicit Function Theorem. Let X, Y and Z be com-
plete metric vector spaces, 6 >0, & > 0,

B={zeX:|z|<d}, C={yeY: |y <&}

Suppose that F': B x C' — Z is continuously differentiable, and that
F(0,0) =0; F,(0,0) is invertible.

Then there exists 50 > 0 and g9 > 0 for which

V(z,y) € BSO X B, : F(z,y) =0 <= y= f(x)
holds, in which

BSOZ{xEX3 |33’<5~0}> B, ={y €Y : |yl <eo},
and f : BSo — B., 1is differentiable on Bs, with
x = f'(a) = —(Fy(a, f(2)) " Fulw, f(2))

continuous on BSo'

This theorem builds on Theorems and [15.2], which also hold in the
general context of complete metric vector spaces. The proofs can be copy-
pasted replacing absolute values by norms in X, Y, Z and provide us with
and g9. The existence and continuity of f’(z) requires restriction to a possibly
smaller Bgo, as explained above and formulated in the final theorem.
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15.4 Application to integral equations
This concerns smooth dependence of the solution of ([7.15]) on £, and

=5+A3uw»w

as the integral equation corresponding to the differential equation 2’ = f(x)
with initial condition z(0) = £ for X-valued functions ¢ — x(¢). Assume
the existence and uniform continuity of f’. Let z = x(£) be the solution of

. Then
§— x(§)

is continuously differentiable, and z¢ is the solution of the integral equation
corresponding to

y'(t) = f'(=(t)y(t) with y(0)=1.

This is a bit of a project]'’] The first steps are sketched below.
For a,b € IR met 0 € [a,b] and ¢ € IR introduce

r=E&+®(x) with (P(2))(t) = /0 f(z(s)) ds, (15.26)

defining a new ®(x) € C([a,b]) given and (“old”) function = € C([a,b]).
Theorem is applicable if

¢ : C([a,b]) = C([a, b))

is continuously differentientable.
To see why and how, take h € C([a,b]) and write

(@ + ) /J )%—AU@@+M@M%

//f s) 4+ Th(s))h(s) dr ds
_/Ot/olf’(ac(s) drds+// §) 4+ 7h(s)) — F(a(s))h(s) dr ds

= ('(x)h)(t) + R(h; )(t),

15We shall also deal with pararameters in f, e.g. f(z,u,€) or so, see Section m
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in which
b2 o)k with  ((x /f (15.27)

and

REs2)0)] = | | / (F/(@ls) + 7h(s)) = F(a(s))hs) dr ds|
<[ / ) Th(s) ~ (als)h(s) drl ds
<[ / ((als) + 7h() = F(als)h()] dr s

<1 [1f e ) 7H() = o) 1) ] = 5= el

oo

if |h]oo <6, with 6 > 0 corresponding to € > 0 in the definition of uniform
continuity of f’.

15.5 For later: partial differentiability — 7

Exercise contained an example of a differentiable function F' : IR? — IR.
Differentiability of F' in (x¢,yo) via linear expansion rewrites as

F(x,y) = F(xo,y0) + a(x — x0) + b(y — yo) + Ro(x,y),
with
|Ro(z,y)| < e max(|x — zol, |y — vo|) if max(jz — zol, |y — vo|) <9,

0 > 0 depending on €.

Exercise 15.5. Put z = zo + h and y = yo + k. Prove that

F —F
m (fL‘,yO) (m()vy(])_

)

F h F
a= Fy(zo,90) = Illim (zo + yO) (w0,90)

0 T—x0 T — X

F(zo,y0 + k) — F(z0, %)
b=F = li =
v(@o,90) = k0 k Y=o Y — Yo
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These are called the partial derivatives of F'in (zg,y). It is possible for
these derivatives to exist if the function is not differentiable. For instance, if
F :IR? — IR is defined by F(x,y) = 0 if 2y = 0 and F(x,y) = 1 if 2y # 0
then F(0,0) = F,(0,0) = 0, but F is not differentiable in (0,0), why?

What do we need of x — F(z,y) and y — F(z,y) to conclude that

F:RxIR—=1R
is differentiable in (zg,y9)? We answer this question for
F:XxY —=1R,

zo € X,yo € Y, and assume that x — F(z,y) and y — F(z,y) are differen-
tiable, respectivily for fixed y € Bs(yo) and fixed x € Bs(xg) on Bs(zg) and
Bs(1), for some &y > 0.

Using Theorem we have

F(z,y) = F(xo,v0) + F(z,y) — F(20,90) =

F(xo,y0) + F(x,y) — F(xo,y) + F(20,y) — F(z0,y0) =

i

Vv Vo
vary « vary T

F(xo, yo) + F2(€(y), y) (2 — x0) + Fy(20, n)(y — o),
for x € Bs(xo) and y € Bs(yo) with £(y) € (zo,2) and 7 € (yo,y). Therefore

F(z,y) = F(20,y0) + Fu(20, yo)(x — x0) + Fy(z0, y0)(y — yo) + Ry (15.28)

with remainder term

Ro = (Fa(§(y), y) — Eu(20, %)) (x = w0) + (Fy (20, 1) = Fy(20,%0)) (Y = bo)-

If
(z,y) = Fo(z,y) and y — Fy(x0,y)

are continuous in respectively (xg, o) and yo then
| Ro| < [(F2(§(y), y) = Fa(xo, yo)) (x — 20) |+ (Fy (w0, n) = Fy (0, Y0)) (y — o) | <

1F=(§(y), y) = Falxo, yo)| |2 — zo| + | Fy(x0,n) = Fy (o, %0)| |y — 0]

- -

<e <e

< emax(|z — x|, |y — vo|) = € |(x,y) — (0, v0)|

if § > 0 is sufficiently small. Thus F' is differentiable in (zg,y0). A slightly
stronger condition easier to remember is given in the following theorem.
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Theorem 15.6. Let X and Y be normed spaces. If F': X xY — IR has
“partial” functions

r— F(x,y) en y— F(z,y)

defined and differentiable for x € Bs(xg) and y € Bs(yo) with o € X,yo €
Y,d > 0, then continuity of

(z,y) = Fo(z,y) € X* and  (z,y) = Fy(z,y) € Y7
in (xo,yo) implies that F is differentiable in (xo, o), with F'(xq,yo) defined

by
(h> k) M Fx(fcoyyo)h + Fy(fb’()’yo)k-

Exercise 15.7. For X, Y, Z normed spaces and ® : X x Y — Z the method via
the mean value theorem fails. Write

®(z,y) = P(z0,90) + 2(2,y) — P(20,y) + P(20,y) — P(20,0) -

vary x vary x

Assume Z is complete, z — ®(z,yo) is continuously differentiable for x € X with
|x — x| < ;. If for each of these x the partial function y — ®(x,y) is continuously
differentiable in y € Y with |y — yo| < 0y, 02,0y > 0, and if (z,y) = ®,(z,y) is
continuous in (zg,¥0), then @ is differentiable in (zg,%0). Use to prove this
statement.

Exercise 15.8. If X, Y, Z are normed spaces, Z complete, and ® : X x Y — Z

has partial functions with partial derivatives ®, and ®, continuous on an open set O
in X x Y, then ® is differentiable in every point of O and ®' : O — L(X xY,Z) is
continuous and defined in every (zg, o) € O.

15.6 Stationary under a constraint

Suppose ® and F' are functions of x and y differentiable in (x,y) = (0,0),
and f is a function of x differentiable in x = 0, for which it holds that

F,(0,0) + F,(0,0)f(0) = 0. (15.29)

In practice, f is the implicit function in Theorems [15.1] and [15.2 Then
y = f(x) describes the solution set of F(x,y) = 0 near (0,0), and we are
interested in the restriction of ® to the zero set of F'. Clearly

v % o(x) = Dz, f(2))
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is differentiable in x = 0, with

¢'(0) = ®,(0,0) + D, (0,0)f(0). (15.30)

If F,(0,0) is invertible it follows from ([15.29)) and (15.30]) that

#'(0) =0 <= 9,(0,0) = &,(0,0)F,(0,0)"" F,(0,0). (15.31)
Invertibility of F,(0,0) € IR means that F,(0,0) # 0, whence
¢'(0) =0 < ,(0,0)F,(0,0) = ®,(0,0)F,(0,0),
equivalent to the existence of A € IR for which it holds that
®,(0,0)\ \ F.(0,0)
®,(0,0)) "\ F,(0,0))
This is a special case of the statement in Lagrange multiplier theorem which
will be discussed elsewhere, starting from ((15.31)).
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16 Quadratic functions and Morse’ Lemma

This chapter is about a theorem which is not very special in the case of
X = IR, when it says that a C?-function f : IR — IR with f(0) = f’(0) =0
is near x = 0 is just the function
I
o,
2
in disguiseEL provided f”(0) # 0. But such a statement also holds for a
C3-function f: IR — IR with f(0) = f'(0) = f”(0) = 0 and
"
M)
6

5,

provided f”(0) # 0, and so on.

Theorem below does not generalise to any such other case. It can be
formulated and proved exclusively for functions F' : X — IR with F/(0) =0
in IR, F/(0) = 0 in X* = L(X,IR), and F"(0) invertible in a space to be
introduced belowﬂ So let X be a complete metric vector space. It’s dual
space X* is the space of all Lipschitz continuous linear functions from X to
IR. This space is itself a complete metric vector space, if we define the norm
of € X* to be the smallest Lipschitz constant of ¢. It is customaryﬂ to
write

(g, ) = ¢p(x) for ¢p€ X* and xe€ X.
For a function F': X — IR differentiable in x = ¢ € X we thus write
Fz)=F() + (F'(§),x =& + Re(z), Re(z)=o(lxr—¢|) as x—¢&,

and we are interested in a local description of F' near points where this holds
with F(£) = 0. For simplicity we assume that £ = 0 and F'(0) = 0.

The simplest nontrivial examples of such functions are then (purely)
quadratic functions, i.e. functions ) : X — IR of the form

X523 (S2)(x) = (Sz,2) € R (16.1)
in which S is a Lipschitz continuous linear mapﬁ

XaxiS(a:):SxeX*

Yes, we will make this statement explicit.

2We use the notation introduced in Chapter

3Though annoying at first.

4L(X, X*) is the complete metric vector space of all Lipschitz continuous linear maps

x 3 x*.
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from X to X*.

Exercise 16.1. Show that it is no restriction to assume that (Sz,y) = (Sy,x) for
all z,y € X. Hint: assume that Q(z,x) = (Ax,z) with A € L(X, X*) and write
B(z,y) = (Az,z) as in Section [I7.3] Use B(z,y) and B(y, ) to construct such an
S e L(X,X*) with (Az,z) = (Sz, x).

Exercise 16.2. Show that @ is differentiable in 0 and that @'(0) = 0 in X*.

Now let O C X open, 0 € O and F : O — IR differentiable, and assume
F(0)=0in R and F'(0) = 0 in X*. Under which conditions is it true that
a coordinate transformation in X turns F' into a quadratic function () as in
? If so we say that ' and () are conjugate functions.

16.1 Intermezzo: second order partial derivatives

Theorem 16.3. Let g : IR*> — IR have partial derivatives

0 0
(z,y) — a—i = go(z,y) and (z,y) — a—g = gy(@,y)

differentiable in (xq,yo). Then the second order partial derivatives exist in

(z0,%0) and
ddg 0 0g

gyz(-TanO) = %a_y - a_y% = gmy(xmyo)'

For the proof assume that (zg,y9) = (0,0). The assumptions imply the
existence of the first order partial derivatives near (0,0). The differentiability
of g, in (0,0) and Theorem [10.7] applied to

y — g(x,y) —g(0,y)

for z # 0 and y # 0 small imply that for some x-dependent 7 between 0 and
y we have

g(x,y) —9(0,y) — g(x,0) + g(0,0) = (gy(x,n) — g,(0,n))y

= (94(0,0) +gy2(0,0)z + gy (0, 0) + R(, ) — g (0, 0) — gy, (0,0)n — R(0, 1))y
= (gyx(ov O)JZ + R(“”? 77) - R<O’ n))y,
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in which

R(xz,n) =o(y/22+n?) andsoalso R(0,n)=o0(n) as +/z?2+4+n*>—0.

The differentiability of
(@,y) = gy(x,y)

in (0,0) has been used twice, with the same “remainder function” R. Since
In| <y it follows that

g(z,y) — 9(0,y) — g(x,0) + g(0,0) = gy2(0,0)xy + y o(r)

= G,2(0,0)zy + 0(1?) = 4y (0,0)xy + o(r?) (16.2)

for r = /2?2 4+ y?> — 0. The second version under |D follows by inter-
changing the roles of z and y and implies g,,(0,0) = ¢,,(0,0).

16.2 Second derivatives of functions on normed spaces

If we introduce f(t) = F(tx) as a function of ¢ € [0, 1] for given small z € X,
then f is differentiable for t,

f'(t) = F'(tz)(x) = (F'(tz), z), (16.3)

and f(0) =0 = f’(0) in IR. Now assume that also f’ is differentiable with
1" € C([0,1]). Then two integrations by parts show that

Fa) = f0) = [a=nf@a, (16.)

see also Theorem
Exercise 16.4. Give a direct proof of ((16.3)).

The differentiability of ¢ — F'(tz)x = f'(t) will follow from differentia-
bility of
r— F'(z) e X*

in points ¢ near 0, which means that

Fix) = F'(§) + F"(§)(x — &) + R(x;€), (16.5)
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with F”(¢) : X = X* in L(X, X*) and

|R(z; ). = olz = ¢[,)

as [z —§| — 0.
With £ = tpx and z replaced by tz in (16.5) this becomes

F'(tz) = F'(tox) + F"(tox)(tx — tox) + R(tx; tox)
= F'(tox) + (t — to)F" (tox)x + R(tx; tox)
in X*, and (16.3)) then gives
f(t) = (F'(tx),x) = (F'(tox, z) +(t — to)(F" (tox)x), x) + (R(tx; tox), ).
—_——
f'(to)

We conclude that f’ is differentiable in every ¢ € [0,1]) for which F’ is
differentiable in tz, with

() = (F"(tx)z, x). (16.6)

Continuity of F”(z) then implies the continuity of f”. So we assume that
x — F'(x) € L(X, X") is continuous in O.

16.3 The second derivative as symmetric bilinear form

Theorem 16.5. Let x — F'(z) € X* be differentiable in v = £. With
F"(&)h € X* for all h € X* and then (F"(§)h)k € IR for all k € X*, we
have that

(h, k) 5 (F"(©)h)k = (F"(€)h, k) € R (16.7)
1s a bilinear form. This form is symmetric:
(F"(&)h, k) = (F"(&)k,h) for all h ke X*.

Theorem is proved by Exercise [16.6| and Theorem [16.3|

Exercise 16.6. For h and k in X and x — F'(x) differentiable in 2 = 0, the
function
(s,t) L F(sh + tk)

has mixed partial derivatives in (0,0) given by g« (0,0) = F”(0)kh and ¢:5(0,0) =
F"(0)h k. Prove this directly from the definitions.
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For S = F"(§) € L(X, X") it follows that
(Sh, k) = (Sk,h),
which we see as the defining property of
SeSX,X")C L(X,X™). (16.8)
With also F”(tx) € S(X, X*) we have from that

Fa) = /0 (1= O () ) db = /0 (1= O () dt ),
whence 1
Fla) = ( /O (1 — O F"(tz) dt 2, 2) — (Boz, 2), (16.9)
in which
o, = /01(1 —t)F"(tx)dt € S(X, X™). (16.10)

Here we use a subscript to denote the z-dependence of the operator ®, which
acts on X.
It follows that

F(z) = %(F"(O)x,@ + /0 (1 — t)(F"(tz) — F"(0)) dt z, z)

= (Poz, z) + of|z[2), (16.11)

as |z| — 0if F" is continuous in x = 0. The quadratic function defined by

Qolw, ) = (Boz,7) — %(F”(O):c,x} (16.12)

=the obvious candidate for a conjugate to

Fla) = Doz, 2) = /0 (1 = O)(F"(tz)z, o) dt.

Exercise 16.7. Check that ontinuity of £ in 0 means that forevery e >0a d > 0
exists such that

0<la|, <0 = [(F'(z) = F"(0)yly. <elyl,
forall 0 #y e X.
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Exercise 16.8. Show that
Qo(x, ) = Fyy2,(0,0)23 4 2F,, 4, (0,0)2129 + Fpyuy (0,0)23

if X =R? and = = (x1,29) € IR%

Exercise 16.9. Show there exists > 0 such that

F(z) = 5(F"(6())2,2)

for some 0 = 0(x) € [0,1] whenever z € X and |z| < 7.

16.4 An equation for a change of coordinates

We ask if
T — <(I)a?x7 I> en y — <q)0y7 y>

are the same functions, up to a change of coordinates, which we shall take of
the special form
y="T,x

with T, € L(X, X). Again we use a subscript to denote the z-dependence,
this time of T, which acts act on X. Thus, given x — &, € L(X, X*), we
look for © — T, € L(X, X) such that

(Pr, 2) = (Pp1) v = (Poy) y = (Poy, y) (16.13)

for x close to x = 0.
Dropping the x-subscripts we need

(Ox,z) = (PgTx, Tx) = (PgTx)(Tx) = (PoTx) o T)(x) = ((PeTx) o T, x),
which will certainly hold if
Oz = (BT x) 0T

in X* for all x € X, or
Oh = (T h)oT

for all h € X for that matter. Thus ({16.13) holds if the map

h — ®h is equal to the map h — ®ThoT = ko(T,T) h. (16.14)
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This is an L(X, X*)-valued “quadratic” equation for 7' € L(X, X).
Abstractly we may write ((16.14) as

ko(T,T) = @, (16.15)
in which
X x X5 L(X, X%
is the bilinear form defined by

h = 1o(T,U) h = ®ThoU.

Clearly T' = I is a solution of (16.14) when & = ®,. We want a solution
T =T, for ® = &, given by (16.10]) close to ®,. If you like you can skip

Section and jump to ([16.26)), or even Exercise[16.13] Just put 7' = I+ H
in (|16.14)) and see what you can getﬂ

16.5 A solution via the implicit function theorem?

The implicit function theorem is applicable if the derivative of
T — Ko (T, T)

is invertible in 7" = I. The continuity of z — ®, in # = 0 is then the minimal
assumption to obtain a solution T, close to I for small z. Thus F” continuous
in 0 is a necessary condition to get started.

For the derivative with respect to T in [ we write T'= I + H, H small.

Then ([16.15)) rewrites as
DoHh + ®oho H + ®gHho H = (, — Pg)h (16.16)

xo(H)h

for all A € X. The left hand side defines an X*-valued function
H > XO(H )

quadratic in H, with ®4 in the “coefficients” of the two linear terms and one
quadratic term. Writing ((16.16)) as

Xo(H) = ©, — o, (16.17)

the right hand side is in S(X, X*).

5But that’s not how I found equation ((16.27)).
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Look at (16.16)). Clearly the derivative of xo in H = 0 is given by

h 2200 @ Hh -+ ®oh o H,
Since xq(0)H € L(X, X*) is characterised by
(X (0) Hh k) = (@oHh, k) + (@ H K, 1), (16.15)

we have that x((0)H € S(X, X*). Thus the invertibility condition cannot be
that
Viex : xXo(I)H = ®oHh + Pogho H = Ch (16.19)
is solvable for every C' € L(X,X™*), while is underdetermined for
C e S(X,X").
A handyff| extra condition on H is that ®yH € S(X, X*). Then (16.18)
reduces to

(xXo(0)Hh, k) = 2(PoHh, k), (16.20)
and the invertibility condition becomes
200H = C, (16.21)
which is solvable for H as ]
H = 5@510 (16.22)

for every C' € L(X, X*).
Only C' € S(X, X*) can be relevant as we continue: we apply the implicit
function theorem to

{He L(X,X"): ®H € S(X, X"} X% 5(X, X"

around H = 0 and x = 0. With K = ®&yH as new independent variable this
become]

2Kh+ Kho ®;'K) = (&, — ®)h (16.23)
for all A € X, which amounts to the equation
2K+ Ty(K)=C, = ®, — Py (16.24)

for K € S(X, X*), in which the quadratic term is given by
Ty : S(X, X*) = S(X,X*), Ty(K)h=Kho (®,'K) (16.25)

for all h € X, and
Xoz—C, e S(X, XY

is continuous in x = 0 with Cy = 0.

6As it turns out is how Duistermaat and Kolk put it.

"Equation (16.23) follows directly from ((16.16]).
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16.6 Yes, but main result via power series instead

Theorem 16.10. Let X be a complete metric vector space, F' : X — IR twice
continuously differentiable near x = 0. If F'(0) = 0 and F"(0) € L(X, X")
is invertible with inverse in L(X, X*), then there is a transformation of the
form
y=T,x=(I+®,'K,)r,
wn which
1

o = 5 F(0)

and
r— K, € S(X,X")

s continuous with Ko = 0, such that
F(x) = (®¢T,x, T, x),

near r = 0.

Exercise 16.11. Prove Theorem [16.10| by applying the implicit function theorem
to ((16.23)).

Remark 16.12. If F"(0) is positive definite in the sense that for some > 0
it holds that

(F"(0) (), z) > Blaf?
for all x € X, then X is really a Hz’lberﬁ space in disquise because

z =/ (F"(0)(2), )

then defines an equz’valenﬂ norm which comes from the symmetric bounded
coercive bilinear form (x,y) — (F"(0)(x),y). More on such forms in Section

[L7.3

8See Chapter

9Two norms are equivalent if there exists constants M; > 0 and M, > 0 such that

1
M|x|2 <lz|, < Ma|z|, forall .
1
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In fact there’s a direct way to solve in the space
{T € L(X, X™): &T € S(X, X")}. (16.26)
ViaT =1+ H and equation ((16.15)) was equivalent to for
K =®yH € S(X, X™).
We now return to an equation for H. Write as
2Kh+ Kho (H) = (9, — ®9)h
and apply it to k£ € X. Then

2Kh, k) + (Kho (H),k) = (&, — o)h, k)
N————

(Kh,Hk)=(K Hk,h)

for all h,k € X. The first and the third term are symmetric in A and k. It
follows that
2K+ KH = ®, — &,

and applying ®;', the equation to solve for H, still under the assumption
that ®oH € S(X, X"), is

2H+ HH =®,;'® — [ = P, (16.27)

in which P € L(X, X*) also has &P € S(X, X*).

Exercise 16.13. Derive ((16.27)) directly from ((16.15)), the substitution T'= I + H,
and the assumption that ®oH € S(X, X*).

In fact

P=0,'0 =30, (0 — ) = D,' /1(1 —t)(F"(tz) — F"(0)) dt

1 1

= 2F”(O)_1/ (1—t)(F"(tz)—F"(0)) dt = 2/ (1—t)(F"(0) ' F"(tx)—1) dt,
0 0

and the equation for H to solve is

[+2H+H*=1+P in L(X)=L(X, X). (16.28)
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It follows that T' = I + H is the square root of I + P, and we have some
experience on solving that equation if P is not too large, see Exercise [11.12
The same power series trickd] give

1

111 1113
T=I+H=I+-P—-—--- P4 - _pP3______ P*4+... (16.29
* T3 T2 Ta222 n2222° ( )
if |P| < 1, and so y = T,z with
1 1-3 1-3-5
T,=1+E,— —E*+ —"F3— Ely... (16.30)

2007 3 " 4! @

and )
B= [ (=000 F () - D, (16.31)

0

which allows a more general setting'!] In particular the assumption that
F"(0) is invertible may be relaxed. The basic assumption needed is that
|E,| < 3, the norm being the norm in L(X), i.e. the best Lipschitz constant.

Exercise 16.14. See if you can give a direct derivation of ((16.30]) and (16.31)) as
giving the transformation y = T,z that conjugates a real valued function F(z) of
z € IR having F(0) = F’(0) = 0 and F”(0) # 0 with the function g(y) = $F"(0)y>.
What do you need to assume on F7?

0Copy /paste what you know by now for the case that P, H € IR.
UThink of examples in which F”(0) is not invertible in L(X).
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17 A short introduction to real Hilbert spaces

From another set of do it yourself notes in Dutch, translated only. A real
Hilbert space H is a real vector space with an inner product, denoted

(x,y)EHXH%(x,y)H:x-y,

in which Cauchy sequences are convergent. That is, if a sequence z, in H
has
(Xn, — ) - (T — ) = 0

as m,n — 00, then there exists T € H such that
(xp —T) (v, —T) = 0

as n — 0o.
Recall that the norm is given by

2|ty = (2, 2)n =2 -2,

and that the distance between z,, and z,, is

Ay (Tp, Tm) = |Tn — Tp|g = \/(:pn —Tp) - (T — Tpy).

The map dg : H x H — IR* = [0, 00) is the metric on H. Subscripts H will
be dropped, unless they are needed to avoid confusion.

Exercise 17.1. Derive and prove the Cauchy—SchwarzH inequality
|z -yl < Ja[yl,
and use it to prove the triangle inequality
[z +y| < 2] + |yl
Formulate and prove the Pythagoras Theorem and the parallellogram law, i.e.

z+y?+ |z —y[* =2z +2y*

1See also Exercise m
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17.1 Projections on closed convex sets

Exercise 17.2. Let H be a Hilbert space, K C H a non-empty closed convexE]
subset, and a € H. Show there exists a unique p € K that minimizes

lp—a| = inf |z —a| = d(a, K),
zeK

the distance from a to K, and show that (p —a)- (z —p) > 0 for all x € K. Hint: use
the parallellogram law to show that a minimizing sequence is Cauchy. Also show that
Py : H — K defined by Px(a) = p has the property that |Px(a) — Pk (b)| < |a — b
for all a,b € H.

Exercise 17.3. Let H be a Hilbert space, L C H a closed linear subspace. Prove
that Pr, : H — L linear, and that

M=NP,)={zxecH: P(x)=0y=L"={xcH:2-y=0Vy <€ L},

the null space of Pr, is a closed linear subspace with M N L = {0}. Show that
M + L = H and conclude that L @ M = H: every x € H is uniquely written as
r=p+qwithpe Landqge M.

Exercise 17.4. Let H be Hilbert space, K C H a non-empty closed convex subset.
For all b € H the quadratic expression

lz*+b-

has a unique minimizer on K.

We recall that a real valued function f defined on a normed vector space
space X is called Lipschitz continuous if there exists a constant L > 0 such
that

|f(z1) = f(z2)| < L|zy — 24

for all 1 and x5 in X. We shall call such functions Lipschitz functions.

Exercise 17.5. If such an L exists then there exists a smallest such L.

’If a,b € K then [a,b] = {ta+ (1 —t)b: t € [0,1]} C K.
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17.2 Riesz representation of linear Lipschitz functions

Exercise 17.6. Let X be a normed vector space. The space of all Lipschitz (con-
tinuous) functions f : X — IR is denoted by Lip(X). With

(f +9)(x) = f(z) + g(x) and (tf)(x) = 1f(x)

it becomes a vector space. For every f € Lip(X) let L = [f]Lip be the smallest
Lipschitz constant of f. Why is

f — [f]Lip

not a norm on Lip(X)? And why is it a norm on
Lipo(X) = {f € Lip(X) : f(0) =0}7

Show that with this norm every Cauchy sequence f,, € Lipy(X) is convergent. Hint:
first for X = IR, then copy/paste for X = X.

The result in Exercise is only of interest if there are such Lipschitz
Lipschitz continuous functions on X. In case of X = H a Hilbert space every
y € H defines a linear ¢, in Lipy(H) by

¢y(z) =2 -y,
with smallest Lipschitz constant |y|. Thus y — ¢, defines map
O := H — Lipo(H).

and the range of ® is contained in H*, the (normed) space of all Lipschitz
continuous linear functions f : H — IR.

Exercise 17.7. Verify that ® : H — H* satisfies
O(x1 +x2) = P(x1) + P(22) and  P(tx) = tP(x)

forall t € IR and x,z1,22 € H, and that [®(x)]1ip = |z|. Thus @ is linear.

Is ® surjective, i.e. is every f € H* of the form ¢,7 Considerﬂ its null
space
Ny={x e H: f(z) =0}.

3We write Ny instead of N(f), to distinguish between f and Py,.
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Exercise 17.8. Show that Ny C H is a closed linear subspace.

Exercise 17.9. By the projection
PNf H — Nf

is linear. Show that M = N(Py,) = {te: t € R}, in which e € NJ% with |e] = 1.
Then show that f(z) = f(e)e - x.

Exercise 17.10. Explain why Exercise saysthat ® : H — H™ a linear isometry.

The inverse of ® is called the Riesz representation of H*. We denote the
inverse of ® by Ry, and its domain is H* C Lipy(H).

Exercise 17.11. Use to show that there are many nonlinear functions in
Lipo(H).

Exercise 17.12. Show that
oo o

1? = {z = (z1,22,23,...) : T, asequence in IR, in < oo} with zy= anyn
n=1 n=1

is a Hilbert space. We shall here write
[o.¢]
x = anen, er1 =(1,0,0,...), e2=(0,1,0,...),...,
n=1

but we often prefer a notation with column vectors instead.

Every infinite dimensional separabld’] Hilbert space H can be identified

with [®. To see why take a sequence aj,as,as, ... in H such that every
element in H is a limit point of this sequence. Let
1
€1 = —aq
a1

4See Section this means that H contains a sequence a,, as in what follows.
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of a; # 0, otherwise throw a; away and renumber the sequence until you
have a; # 0. Then let

1
Yo = as — (ag,e1)e; and ey = myz
2

if yo # 0, but throw ay away if y, = 0 and renumber until you get ys # 0 and
thereby e;. Then put

1
Ys = a3 — (a3,€2)€2 - (a3,€1)61 and ez = my?n
3

if y3 # 0, but ..., and so on. This produces €1, €5, €3,... with
(e, 6]‘) = 5@']‘»
and

oo oo
H={z= g Tpen :, T, asequence in IR, g 72 < oo}

n=1 n=1

17.3 Bilinear forms and the Lax-Milgram theorem

This section is also from another set of notes. In Section [16.6] we mentioned
that Theorem [16.10] the Morse lemma, is not restricted to the case that X is
a Hilbert space in disguiseﬂ In particular does not require a Hilbert
spaces setting. In this section we do require a Hilbert space setting, for a
generalisation of the Riesz Representation Theorem]

Theorem 17.13. Let H be a Hilbert space and B : H x H — IR be a bounded
coercive bilinear form, meaning that

(a) for every uw € H fized v — B(u,v) is linear;

(b) for every v € H fized u — B(u,v) is linear;

(C) Elaz()vu,véH : |B(U,U)| <a |U| |U‘

(d) EIB>0 quH : B(U,U) Z ﬁ |u|2
Then every linear continuous ¢ : H — IR is represented by a unique v € H
via

¢(v) = (¢, v) = B(u,v)

for allv e H. This defines a continuous linear map

H*aqﬁiueH

5A complete metric vector space which allows an equivalent inner product norm.
6This theorem is still somewhat hidden in Exercise 17.1()l
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with | S| < %, which is the inverse of the continuous linear map

Hauiq&eH*

defined by
(p,v) = (Au,v) = B(u,v) forall veH, (17.32)

which has |A| < a.
For the proof we observe that and assumption (c¢) imply that
|[(Au, v)| = [B(u,v)| < alul |v]
for all w and v in H, and that for u fixed assumption (a) says that
Au: H - TR
is linear. It follows that Au € H* and
|Au| < aul.
Assumption (b) implies that the map
A:H— H"
is linear, and assumption (d) gives
Blul®> < B(u,u) = (Au, u) < [Au| |ul

for all w € H, whence
|Au| > B ul.

We conclude that
H2 R(A) = {Au: ue H}

is a linear bijection, continuous in both directions, because
Blul < |Au] < alu (17.33)

for all w € H. Thus R(A) is complete because H is. In particular R(A) is
closed in H*. It remains to show that R(A) = H*.

Now let @ be as in Riesz Representation Theorem and L = ®~'(R(A) C
H. If L # H then

M={veH:v-w=0forall we L} #{0}.
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Choose v € M with v # 0. Then
(P(w),v) =w-v=0

for all w € R(A) = {Au: u € H}, whence (Av,v) = 0, a contradiction with
assumption (d). Thus L = H, whence R(A) = H*. This completes the proof
of Theorem [[7.13]

If we start from the complete metric vector space perspective we find our-
selves forced into the Hilbert space setting. Let’s see why, while we formulate
a result which is of independent interest.

Definition 17.14. Let X be a normed space. A map (u,v) — B(u,v) from
X x X to IR is called a bounded bilinear form if

(a) for every u € X fized v 2 B(u,v) is linear;

(b) for every v € X fized u AN B(u,v) is linear;
(C) Elaz()vu,veX : ‘B(uav)’ <« |’LL| ‘Ul

If in addition
Jp>0 Vuex : B(u,u) > 8 ‘u|2,

then B s called coercive.

Remark 17.15. A bounded coercive bilinear form on a normed space X
makes that X s an inner product space, with inner product defined by

U= %(B(u,v) + B(v,u)).

The corresponding inner product norm, defined by
uly = v/ Blu, u),
15 equivalent to the norm on X via
Blul* < B(u,u) < alul?.

This makes any attempts to take the Lax-Milgram theorem out of the Hilbert
space context futile. But it’s good to know the statement of Theorem
below.

Theorem 17.16. Every bounded bilinear form on a normed space X is of
the form
(u,v) = B(u,v) = (Au,v) € IR (17.34)
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with A € L(X, X*), and

| B(u,v)|
sup ————
u,veX\{0} |u| |U|

= |A]. (17.35)

If X is complete and B is coercive then X is a Hilbert space in disquise, and
A is a bijectior)] between X and X* with

plul < [Au| < alul

for allu e X, 0< B < a, as in Definition[17.1})

For the proof we use (a) again to define A by Au = ¢, so (17.34)) holds by
definition. In particular Au is a linear functional on X for every u € X. By
(c) we have

|(Au, v)| = |B(u,v)| < alul [v]

for all v € X whence Au € X* with
|Au| < a|ul, (17.36)
and (b) implies that A : X — X*islinear. Thus A € L(X, X*) with |4| < a.

Exercise 17.17. Prove ({17.35)) by showing that
[(Au, v)|

wwex\{o} |ul vl

= |A.

Hint: choose w with |u| = 1 and |Au| close to |A|, and then v with |v| = 1 and
|(Au, v)| close to |Aul.

Finally assume that X is complete and B is coercive. Then
Blul* < B(u,u) = (Au,u) < |(Au,u)| < |Aul,
whence holds and
X4 RA) ={Au: ue X}

is a linear bijection, continuous in both directions. Thus R(A) is a complete
metric vector space because X is. In particular R(A) is closed in X*. Now
write

"R(A) = {v € X : Vyecpa ¢(v) =0} ={v e X : Vyex B(u,v) = 0}.

"The norms have subscripts that we omit in this section.
8Lax-Milgram: Ve x+ Juex Voex @ B(u,v) = ¢(v) = (¢, v), u is unique for ¢.
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If we know that °R(A) # {0} then some 0 # v € X has the property that
(Au,v) =0 forall ue X,

impossible in view of (Av,v) > S|v|?. Tt follows that A is a linear bijection
between X and X* if X has the propertyﬂ that closed subspaces M C X*
with M # X* have °M # {0}. Hilbert spaces (complete inner product spaces)
have this property, and thus so does X. This completes the proof of Theorem
U/ 16l

9This property holds for reflexive spaces.
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18 Analysis unpacked: more variables

In this chapter we are concerned with differential and integral calculus for
functions from X to Y in which X and Y are Euclidean spaces. We begin
with X = Y = IR? with (rectangular) coordinates z,y € IR for X = IR? and
coordinates u,v € IR for Y = IR?. Later we shall perhaps prefer z;,z, € IR
for v = (z1,22) € X =IR? and 1,9, € IR for y = (y1,10) € Y = IR

We frequently use polar coordinates r,# and the transformation

r =rcosb;

y =rsind,

to describe points (z,y) # (0,0) in the plane via their distance r = /2% + 2
to the origin (0,0) and the angle 6 between the halfline

{(t,ty) : ¢t = 0}

and the positive z-axis. Whenever convenient we identify IR* with the set €
of complex numbers
z =T+ 1y,

and call |z| = r the absolute value of z, the distance from z to the origin
z = 0. The angle # = arg z is called the argument of z, uniquely determined
modulo 27 for every z # 0.

Next to complex addition

w+z=(utiv)+(z+iy) =u+x+i(vt+y) = (ut+z,v+y) = (u,v)+ (x,y)
we also have complex mulitplication
wz = (utv)(x+iy) = vr—vy+i(uy+vr) = (ur—vy,uy+ve) = (u,v)(x,y),
based on the rule i = —1, for w = v+ v = (u,v) and z = x + 1y = (v,y) €
IR?> = €. The rules for addition and multiplication in € are the same as the
rules for addition and multiplication in IR. We also have

w4+ z] <|w|+|z| and |wz| = |w||z].

Very important is the rule formulated in this exercise.

Exercise 18.1. The summation rules for cos and sin imply that

2129 = rira(cos(bh + O2) + isin(61 + 62)) for z; =r;(cosb; +isinb;), j = 1,2.

223



This rule is one many reasons to write

cosf +isinf =exp(if) and exp(z) = exp(x)exp(iy)

We note that polar coordinates are not needed to prove that for every
nonzero v the map
z =z (18.1)

is a rotation]l| around 0 followed by a point multiplication with 0 as fixed

point, see (18.8) and Exercise [18.5

18.1 Intermezzo: algebra’s main theorem

The set € is algebraically closed: every polynomial

n—1
P(z) = Zakzk + 2" (18.2)
k=0
with aq,...,a,_1 € Cand n > 2 has a zero z; € C. Long division then gives
that )
P(z) =Y ot +2" = (2 — 2)Q(2),
k=0
in which

n—2
Qz) = Zﬁkzk + 2"
k=0
with By, ..., Bn_2 € C. In n steps it follows that

P(z)=(z—2z1) - (2 —2,) with z,...,2,€ C. (18.3)

www-groups.dcs.st-and.ac.uk/history/HistTopics/Fund_theorem_of_algebra.html

Here’s in modern language how Argand saw this. Consider the real valued
function

(z,y) =x+iy=2— |P(2)| = f(z,y).

If P(z) does not have any zero’s in €, then f must have a global positive
minimum and that’s not possible.

Unless v € R, .
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Let’s first show the latter statement. In terms of P(z) this would mean
that for some zq it holds that |P(z)| > |P(z0)| > 0 for all z € €. Now use
the algebra in € to write

w=z-2z and Qw)= 55;))
Then
Qw) =1+ zn: ' (18.4)
and k:1p
w = 1Q(w) = s

has a globale minimum @(0) = 1. Thus Q(w) cannot have values inside the
unit disk. Now write w = r exp(if) and v, = ¢, exp(i¢y). Via Exercise [18.]]
we have

Qw) =1+ Z crr® exp(i( gy, + k0)), (18.5)

k=1
an expressionﬂ in which the ¢, are parameters and » > 0 can be taken as
small as we want. Exercise below shows that all ¢, are zero, meaning
that Q(w) = 1 for all w € € and hence |P(2)| = |P(z)| for all z € C,

contradicting ([18.2)).

Exercise 18.2. Assume some first ¢; is nonzero. Show that |Q(w)| has values
smaller than 1. Hint: you may draw inspiration from the estimate in ([18.6)) below.

So why would f have a global minimum? Observe that f is continuous,
so it has a minimum m, and a maximum M, on the closed disk

D, ={(z,y) : 2?2+ 2 < 7"2}.

Clearly m, is nonincreasing in 7. We wish to show that for r larger than some
r1 this minimum m, does niet increase anymore, whence we can conclude that
f has a global positive minimum on IR?. This conclusion will follow from an
easy large lower estimate for f on large circles.

Indeed, with z = z + iy and 2% + y? = r? we have for |P(2)| = f(z,v)
that

n—1 n—1 n—1
|P(2)| = |Zozkzk + 2" > 2" — |Zak2k| >t — Z log |7, (18.6)
k=0 k=0 k=0

2Ptolemaeus would have liked this.
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On the circle defined by 2% + y? = r? it then follows that

n—1

flay) == lanl) = M,

k=0

To

a lower bound which is positive for r larger than

n—1
ro = Z vk |-
k=0

For r = rg we have M, = 0 < m,,. Clearly M, increases to oo as r
increases from ry to oo. Thus for some r; > ry we have

Mrl > m’l”o 2 m'f’l?

and then also
fz,y) >m,, forall (x,y)¢&D,,.

It follows that m,., is the global minimum of f on the whole of IR* and the
contradiction arises as explained above. This completes this truly remarkable
proof in which elegant algebra, basically algebraic estimates, and rock solid
analysis combine.

18.2 Complex and multivariate differential calculus

In Section we saw, for every choice of coefficients «,, € IR indexed by
n e NQ, that

o
T = ag+oqx + ar’ + - = § Q"™
n=1

defines a function on
Br={r e R: |z| < R}

for some maximal R € [0, o0], and that differential calculus for this function
is just as differential calculus for polynomials.

The point to make now is that Theorem and its proof carry over
by copy-paste to complex valued power series with complex coefficients and
variables. Also, differentiability via becomes complex differentiability
for functions’]

H:C— C,

3For convenience we assume H is globally defined.
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but now via
w=H(z) = H(20) +v(z — 20) + T(2; 20) (18.7)

= H(z) + H'(20)(z — 20) + o(|z — )

as z — 2.

If we unpack , writing
z=z+1iy, w=u+iv, H(z) = F(z,y) +iG(x,y), u = F(x,y), v = G(z,y),
we can view H, via the identification € = IR?, as a function
H:R? — IR?

with components H; = F and Hy = G. With h =2 — xg en k = y — o the
linear term (|18.7]) unpacks as

v(z — 20) = (a +iB)(h + ik) = ah — Bk +i(Bh + ak).

ah — Pk a —pB\[(h
= 18.8
Grva) =G0 153
in which the matrix describes the map ((18.1)).
The complex expansion ((18.7) rewrites as

This corresponds to

u=F(x,y) = F(xo,y0) + a(x — xo) + by — v0) + R(x,y; %o, Yo);

v=G(z,y) = G(zo,90) + c(x — o) + d(y — yo) + S(x,y; 70, Yo),

with remainder terms R and S defined via T' = R + S, and a special form
of the 2 x 2 matrix A in the linear expansion around (zo, yo), namely

a b 4 a —pf ‘
c d 15} Q
Changing to notation with indices,

) R ) R G i) B

N J/ J/ N J/
N —~ —~

H(z) H(a) H'(a)(z—a)=A(z—a)

o (Rl(x17x2§a1;a2>>’

Rz(l’h Ta;ay, CL2)

we thus have the following theorem.
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Theorem 18.3. Let H : IR* — IR? be differentiable in a = (ay, ay) with H'(a)
giwen by the matriz A. Then Hy +iHy : C— C is complex differentiable in
ay + tag if and only if

A11 = AQQ and A12 = —A21.

Exercise 18.4. Prove Theorem [18.3

Exercise 18.5. Examine ([18.1)) using ([18.8]).

So far for H. Returning to F' : IR* — IR? (possibly complex) differentiable
in a = (ay,as), F'(a) given by the matrix A, we write hy = z1 — a1, hy =
To — ao and

Al — ((Ah)1> _ (Allhl +A12h2) _ <A11 A12> (h1>’ (18.9)
(Ah), Asihy + Agohy Agr Ass ) \ ho
which we think of as F’(a) acting on h.
A more algebraic point of view is to be fine with Ah as a product of A
and h. Compare the notationﬁ to on the one hand the notation with A

acting on h and the norm of Ay in L(X,Y’), and on the other hand with A
algebraically multiplying h. In the latter context we can estimate

(AR = |Avhy + Asshal < /A3, + A3, /2 4 13;

|(Ah)2| = [A1hy + Agaha| < \/A% + A3, \/h% + h3,
to conclude that
((Ah)1)* + ((Ah)2)* < (AT) + Afy + A3y + A%) (A + hy),
meaning for the product of A and h thatﬂ
|AR|, < |A], |R],. (18.10)

In (18.10) the “Euclidean” lengths of h = x — a, Ah and A appearﬂ, in each
case the square root of the sum of the squared entries. You may well prefer
here to forget[] all about the norm of

i An

4We dropped the zero-subcripts.

5This generalises, see .

6 Actually this 2-norm of A is called the Frobenius norm of A.

"If not note that says that this operator norm of A is at most equal to |4, .
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in L(IR?,1IR?): going back to
F(r) = F(a) + A(x —a) + R(v;a) and |R(x;a)|, = o(|z —al,) (18.11)

as |x —al, — 0, except for the subscript 2, the condition for differentiability
is undistinguishable from differentiability of /' : IR — IR and generalises to
F:IR" — IR".

Looking at the “partial” functions

T — Fl(l‘l,l’g), Ty — Fl(l‘l,JTg), T — FQ(ZL‘l,JTg), Ty — FQ(ZBl,QTg)

we find
Ay A Fiar,a2) B (a,
A= (All A12) _ <g§é ((11 Clz) g;z (al a2)) _ F’(&) _ DF(a) (18.12)
21 A2 a—ml(al, as) 6_332(@17 az)

in every point x = (z1,x2) = (a1, as) = a where F' is differentiable.
We often identify the linear mapf| F'(a) = DF(a) with its Jacobi matrix

o OF

aF _ (8%1 89c2)
“\om  om

ax 8:)31 8332

evaluated in x = a, but the existence of this matrix is not sufficient for
differentiability. We examined this issue in Section for F: IR? —» IR and
F:XxY —1R.

Exercise 18.6. State and prove a theorem for F : IR> — IR by specializing Theorem
15.6/to X =Y = 1R and generalise to F': IR™ — IR and F' : R — IR".

18.3 Cauchy-Riemann equations, harmonic functions

Have another look at Theorem and let H be complex differentiabld’] in

Zo = T + 1yo. We use the correspondence
z=x+iy€ C+ (v,y) €R® and w=u+iveE C < (u,v) € IR?

and write
H,(Zo) = o+ Zﬂ

8Both notations are widely used.
9We now prefer a notation with (z,y) and (zo,yo)-
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Exercise 18.7. Show that o and 3 are then given by

ou ou
o= e and (= —8—y, (18.13)

evaluated in (z,y) = (x0,y0)-

Thus Theorem says that u and v, as functions of x and y, must satisfy
the so-called Cauchy-Riemann equations

ou Ov ov ou
gu_ov oq v _ou 18.14
Jor Oy W B dy ( )
n (%y) = (manO)'
If these partial derivatives exist and are by themselves differentiable, say
for all (x,y) € IR? in an open ball containing (z¢, ), then we would have

w0 Ov 0 Ov 0 ou 0%u

ox*  Oxdy oyor  oydy Oy
but only if the order of differentiation does not matter, and likewise for
v(x,y). If so, we conclude that in (xg,yo) it holds that
Pu  0%u v 0%

AU:@—Fa—yQ:O:@'}‘a—yzz

A, (18.15)

in which the differential operator A, the Laplacian, occurs. This A is a
feast to study, but not now. Here we want to be sure under what conditions
(18.15) makes sense. We copy Theorem from Section [16.1]

Theorem 18.8. Let v : IR> — IR have the property that

ov ov
(z,y) — e ve(r,y) and (z,y) — oy vy(z,9)

are differentiable in (xg,y0). Then the second order partial derivatives in
(w0, y0) exist, and
ny(Q:Oa yO) - U:):y(x(]a yO)

Twice differentiable functions u(z,y) and v(x,y) that satisfy (18.15) on an
open set O C IR? are called harmonic. As an example, the functions

(z,y) = Re(z +1iy)" en (x,y) — Im(z+iy)"

are harmonic on the whole of IR?>. These are the so-called homogeneous
harmonic polynomials of degree n € IN.
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Referring to Section [16.3], twice differentiable means that the map

ou Ou
(v,y) — (% 8_y>
is itself differentiable. With the chain rule it follows that
ou Ou ou ou Ou ou
il e d el el
(x,y)%(aw 8y>—>8x an (:v,y)—>(a$ (’3y)_>8y
are differentiable. Thus Au = 0 has a meaning as
0’u  0%u
— 4+ —=0 18.16

without any v interfering'}
There are many non-constant solutions of ([18.16)). Indeed, you should
have noticed

x,y, v2—y?, 2wy, ® —3xy?, 3y — P, vt — 62y +oyt Aoty —4ay®, . (18.17)

above.

Exercise 18.9. Unpack w = exp(z) = exp(z + iy) starting from the power series
for exp(z) and verify that exp(z) = exp(x)exp(iy) with exp(iy) = cosz + isinz.
Explain why this leads to the concept of multivalued™!] functions

w — logw = In |w| 4+ iarg w.

18.4 Monomials and power series again
This should speak for itself. With

y_ lo—ad

r

we have that

m(m — 1)r™

2

2™ =am + mam_l(.ilt — (1) + Ra,m(x)a ‘Rmm(fﬂ)’ < HZ'

1ONot a priori.
1 Which are thereby not functions.
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Likewise for |y|, |b] < s, we have

—1)s™ —b
v = B 0 Ry, (Ren)] < D e e Y

Multiplication then giveﬂ

2™y = a™b" + ma™ ' (z — a) + na™b" ! (y — b) + Ry + Roy + Riz + Raa,

J/

~
linear part Rabm,n(z,y)

in which we identify
Ry = "Ry () + mna™ 10"z — a)(y — b) + a™ Ry (y),
Ry = ma™ '(z — a) Ry (y),
Ryy = nb" "' Rym(z)(y — 1),
Rayp = Ram(7) Ryn(y).

With rough but obvious estimates

1
|Rao| < Zanzrms"Hsz,
1 1
|Roq| < §m2m“ms”H2K < §m2n2rms”H2K,

1
|Rio| < §mn2rms”HK2 < —mP*nirms"HEK?,

1
2
and also, a little less obvious maybe,

1
|Rs| < Z(mQ + n2)rms”(H2 + KZ),
we conclude that

a™y" = a™b" + ma" "z — a) +na™b" " (y = b) + Rapma(r,y), (18.18)
R

in which

IR < % (m*n*HK(HK +2H + 2K) + (m® + n®)(H? + K?)) . (18.19)

The perhaps less obvious estimate for Ry follows via

Ry < [8" Ram ()] + [mnr™ "z — a)(y = b)| + |7 Ry (y)| <

'2This is a bit like (11.5)).
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— 1)rmgn — 1)ymgn
= m(m 5 Jr™s H2+mm‘ms”HK—|——n(n Jr's

Tl ) () ()

and the 2-norm of the matrix in this expression being less than m? + n?.
We now multiply ((18.18) by coefficients a,,,, and the estimates for R 21 1222

K? =

n
R = Rapmn(®,y) = Ra + Ro1 + Ria + Ry

by coefficients |, |, and take the sum over m,n € INy. Clearly a sufficient
condition to conclude that on the rectangle

RTS = {(I7y) € IR2 : ’JI| <, |y| < S}

the power series

is that the series
Z (m? + n?) |ann|r™s™  and Z m*n® | |r™s" (18.20)
m,n€Ng m,n€Ng

converge. We then have
P(z,y) = Py(a,b)(z — a) + Py(a,b)(y — b) + R(z, y; a,b),

with R(z,y;a,b) the sum of four remainder terms, each of which having the
HK part factoring out, and the resulting coefficient bounded by ((18.20)).

Exercise 18.10. Fill in the details of the above proof. Show in addition that the
convergence of

> (m?+n?) amaR™ and > mPn? ag,| R (18.21)

m,n€lNg m,ne€Ng
suffices to have P(x,y) exist as a differentiable function on the disk

{(z,y) € R?: 2® +y* < R}.
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18.5 Application: the Hopf bifurcation

We examine the system of differential equations

dx
a — Mx_y+p2(x7y> +p3<x7y) + = P(I,y),
dy
2 =Tty oy Fa(ry) £ = Q,y),

for real valued function z(t) and y(¢), in which the functions

1

P, Y) = Anox" + @™y + -+ aony”

and
Q’n(x7 y) = bn()xn + bnlxn_ly + bOnyn

have real coefficients for every
ne€Ny={neIN:n>2}

and i € IR is a parameter. We shall call this family of systems the u-systems.
In the special case that all the coefficients are zero the p-systems reduce

to
dx
_— = x_ .
dt % Y;
dy
a =x+ uy.

The reduced p-system has nontrivial periodic solutionﬂ if and only if 4 = 0.
The plane defined by p = 0 and the line defined by x = y = 0 in uxy-space
together form the set of all bounded solution orbits of the reduced p-systems.
We wish show that near x = y = 0 this family of periodic orbits persists as
we add the nonlinear terms. Under the basic assumption that the coefficients
are bounded we will show that there exists a locally defined smooth function
f(z,y) with £,(0,0) = £,(0,0) = 0 such that the graph u = f(z,y) describes
all the periodic solutions of the full system. In particular every level set

L, ={(z,y) € R?, f(z,y) = p}

is a periodic orbit of the full u-system.

13Namely z = e cost,y = esint, in which £ > 0 is not necessarily small.

234



Exercise 18.11. Assume that the coefficients a,,, and b,,, are bounded. Use
Section [I8.4 to conclude that

Pey)= > tma™y" and Qay)= 3 buna™y"

m,n€lNg m,n€Ng

are well-defined and smooth for = and y with |z| < 1 and |y| < 1.

Without loss of generality we now assume that
lamn| <1 and  |bp,| <1 forall m,neIN with m+n>2 (18.22)

and introduce polar coordinates x = r cos ),y = rsin  to transform solutions
of the u-systems to solutions of

% = pr + ap(0)r* + az(0)r® + - ;
db
dt =1+ Bo(0)r + B3(0)r? + - --

Exercise 18.12. Use the chain ruld'and Section to determine the expressions
for avy, and 3, expressed in terms of ¢ = cos 6, s = sinf,p,(c, s), qn(c, s). Show that

lon| <n and  |Bn| <n forall n e Ny,
and denoting the r-dependent part of the right hand side of the #-equation by
—p = Ba(O)r + B3(0)r* + -

that
lp| <2r+3r° + 4% 4. =

ifo<r<2—+2.

Exercise 18.13. Use the chain rule and Section again to show that, for
0<r<2-—+2,

solutions can be seen as functions r = r(#) of #, and that

d
5 =10 = pr 4 Ag(0, j)r? + Aa(8, p)r® + As (0, )t + - (18.23)

4 Figure out how to use only the version with X =Y = Z = IR from Section m
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with Ag, Ay, ... polynomials in cos® en sinf in which also u appears. Hint:

1 o0
—— =14p+p 4+ =D o
1_p n=0

Exercise 18.14. Show directly from the differential equations for r(¢) and 6(¢) that

dr % r 2
== < — _
=15 < g = 2 )

for0<r<%.

Exercise 18.15. Show that

27
As(6, 11)d = 0.
0

Exercise 18.16. Consider the truncated differential equation

rg = pr + Az (0, p)r?

and do the Kepler trick: introduce w = % > 0 as a function of 8. Why can this

equation have no 2m-periodic solutions? Hint: you should get an equation in which
only ‘fl—};’, w and As appear. Integrate from 0 to 27 to derive a contradiction if w(6) is
a (positive) 2m-periodic solution.

Consider (|18.23) with r(0) = € > 0 as initial value. For the original pu-
system this corresponds to the solution with z(0) = ¢,y(0) = 0. Now scale r

by setting r = e R. Then ([18.23)) becomes

dR
—5 = Ro= pRA+cA3(0, ) R* 4+ 2 A4(0, u)R> + 2 A5 (0, p) R* + - - -, (18.24)

and we look for solutions with R(0) = 1. Note that the explicit estimate in
Exercise [18.14] carries over. We have

dR R
So1 < T (l(1 — £*B) + B2 — <R))
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for 0 <eR < 1.
If this initial value problem has a solution R(0; p, ) for small ;1 and small
g, then we set

F(:ua 5) = R(27T7:u7 5) -1

and examine the equation
F(u,e)=0.

Clearly we have F'(0,0) = 0. Can we apply Theorems and [15.2]7 The
answer is yes, via what we already started in Section
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19 Measures of parallelotopes

In this chapter we prove the spectral theorem('| for compact linear symmetric
operators. In fact this theorem is just a minor varation of a theorem for
symmetric matrices S that we need for what follows next, starting from two

2-vectordd ;
a= (al) and b= ( 1)
(05} bQ

spanning a parallelogram in the plane.

If you draw such a parallelogram you can easily deform it into a rectangle,
while keeping its area fixed, and then it’s clear what its area is. Have a look
at

https://en.wikipedia.org/wiki/Parallelogram

to see how, and read to see how this can be turned into algebra.
We observe that there are two ways to put the two 2-vectors a and b into
what we call a matrix. We choose for

ai bl
A=

<a2 bz)’
AT = ("),

<b1 by

Likewise two 3-vectors a and b fit in A7 as
a; a9 as
AT = .
(b1 by b3>
How does such a matrix provide us with the area spanned by a and b? The
answer involves the matrix product

with transpose

S =ATA, (19.1)

a symmetric matrix to which Section applies.

!Essentially Theorem
2We momentarily surrender to the boldface vector notation in physics......
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19.1 Matrix products

In general an m xn real matrix A is a blockﬂ with real entries a;;. The vertical
index ¢ runs from 1 to m, the horizontal index j from 1 to n. Considered
as a mapﬁ A sends an n-vector z € IR"™ with coordinates zy,...,z, to an
m-vector y € IR™ with coordinates

n
Yi = E A3
j=1

We say that
A e L(R", IR™),

the space of linear maps from IR" to IR™, and we write y = Ax.

If B is a real n x p matrix with entries bj, the vertical index j running
from 1 up n, the horizontal index k from 1 up p, then AB is by definition
the m x p matrix with entries

Zaijbjka (192)
j=1

with the corresponding linear map)|
AoB:R B R % R™

If we transpose both blocks A and B by numbering the first index horizon-
tally, and the second index vertically, then we get transposed matrices AT
and BT with entries af; = a;; and bj; = by, and ([19.2) reads as

71
n
£t
E bkjajia
j=1

the entries of BT AT in (AB)T = BT AT,

In the special case that m = n = p it can happen that AB = I,,, the
n X n matrix with all diagonal entries equal to 1, and all off-diagonal entries
equal to 0. This matrix corresponds to the linear map I = I, that sends
every x € IR" to itself . What you really need to know from linear algebrd|
is that the map A o B being the same map as the map I, is equivalent to

3With m and n in IN.

4A linear map in fact.

°So A is preceded by B.

6A proof should be given in one of the first hours of any course in Linear Algebra.
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AB = [ for the corresponding matrices. We say that A and B are each others
inverses, as linear maps because AoB = Bo A = I,,, with AB =1 = BA for
the matrices. And likewise for the transposes. We emphasise that these are
statements about square matrices, and solutions of Ax =y with A a square
matrix.

If a third p x r matrix C' has entries ¢ then (AB)C' is the matrix with

entries . o
Z(Z aijbjk )t = Z Z ijbjCrr, (19.3)

k=1 j=1 k=1 j=1
and these are also the entries of A(BC'): just change the order of the sum-
mations. Thus (AB)C = A(BC) and we write ABC' for the product of A,

B and C. The corresponding linear map is Ao B o C. Transposing we have
(ABC)T = CTBT AT which is what we will use in Section [20.2] for (20.16)).

19.2 Matrix norms

The series
T+ A+A+ A+, (19.4)

with A a square matrixﬂ is important for the implicit function theorem with
F:R"™ — IR™ in Section . You should also compare (19.4) to (16.29)),
and ask the question as to what is required to justify the manipulations that
led to it. Estimates that do so can be best understood starting from a 2 x 2
matrix as in and estimates for A : IR> — IR? of the form .

Indeed you easily checkﬁ that for every n x m matrix and every real n-
vector h it is true that

|AR|, < MIhl,, (19.5)
if M > 0 is defined by

n
2 _ 2
M* = E ;-

1,7=1

If you like this defines a kind of Pythagoras length of A, notation
M =1A[,.
This norm has the property that

A+ B|, <|A,+|B|, and |AB|, <|A] |B],. (19.6)

TA 2 x 2 matrix as in (18.9) for instance.
8Using proof by induction if you like.
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hold<’]

If you like all of the above is just algebra with matrices. Recall though
that the smallest M for which holds is called the operator norm of
A, notation [A[ . It is for this latter definition that we we want see A as a
linear map from IR" to IR". Then the norm of A is the largest possible ratio
between the norm of Ah and the norm of h.

We note that L(IR") = L(IR",IR") is not only a vector space over IR, but
also a normed algebra, because also the product operation

(A,B) — AB
behaves as it should with respect to the norm
A— |A|op,

namely, it holds that
|AB|,, <|4],, |B]

op'

This is in addition to
|A|Op =0 < A=0, |)\A|op = |} \A[OP >0, \A+B|op < \A[OP + |B\op

for all A, B € L(IR") and X € IR.
As a vector space L(IR") is jus ]R"Q, with the standard Pythagoraen
norm["T| defined by

n

|A|§ = Z a’?ja

ij=1
the (Frobenius) norm for which we have both inequalities in ((19.6)). Since

Al < [A], for all A € L(IR") we prefer to use the smaller of the two
norms-

Exercise 19.1. Prove there exists p,, € (0, 1] such that
il AL, < 1A],, < 4],
for all A € L(IR"). Hin{} if not then on

{AcLR"): 4], =1}

9Verify this. How does this generalise to non-square matrices?

0Entries in a block or in a column, what’s the difference really?

Tn the literature it is called the Frobenius norm.

2Which makes for a sharper statement than in Exercise

13Hardy would dislike this proof, as you can do this with an explicit construction of j,.
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the Pythagoras norm |A|, can be arbitrarily large, and therefore also the length of at
least one of the column vectors. This is at odds with 4| = 1.

Exercise 19.2. If A € L(IR") has A < 1 then it holds for the series in (19.4)
that

(IT-—AIT+A+A2+A3+..)=1
Explain why and prove that

T+A) T =T-A+ A - A5 4... =) (-A).
j=0

Remark 19.3. [t should by now be clear that the whole machinery of power
series carries over to Banach algebra’s.

19.3 Quadratic forms and operator norms

In (19.2)) we can put B = A”, the transpose of the matrix A with entries a;;

used in
n

Yi = E iy,

j=1
which defined A € L(IR",IR™). This gived"]

n

S = AAT € L(R™,IR™) with entries s = Zaijakj = Sp,. (19.7)

j=1
Since
|Ax|
|A| = max 2 = max |Az|_,
P 0AeeR" |z[,  el,=1 2
and likewise for |[A”|  we have
T2 T |2 T Sz 2
A" = max |A" z]° = max AA" z-z = max Sz-z = max , (19.8)
op 2], =1 \ 2, 2], =1 2], =1 0#zeR™ 2z - 2

AT 2. AT

and we note that the bilinear mapping

(z,w) = Sz-w

“Don’t let (19.1]) confuse you.
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from IR™ x IR™ to IR then satisfies all the axioms of an inner product, except
that Sz - 2z = 0 does not imply that z = 0.

Exercise 19.4. Rederive the Cauchy-Schwarz inequality for z,w € IR™ by inspec-
tion of the minimum of the nonnegative function

A — |)\w—z\§:()\w—z)-()\w—z),
and show that the same reasoning leads to

|Sz-w| < VSz-zVSw-w.

Note the special case m =n and S = A = I and don't forget to discuss the possibility
that the function you use is not a quadratic but a linear function.

For S = AAT as above we set

M = max Sz - z,
2], =1

whereby we note that S is a symmetric matrix for which Sz -z > 0 holds for
all z € IR™. Just like it is easy to prove from the definition of the 2-norm via

lwl|, = Vw - w

that
|z + w|2 + |z — w|2 =2 |Z|2 + 2 |w|2,
2 2 2 2

you easily verify that
Sz+w) - z4+w)+Sz—w) - (z—w)=252-2+25w-w, (19.9)

an identity to play with, with S = AATas above, but also with S = I the
identity:

Exercise 19.5. The Cauchy-Schwarz inequality and the definition of the operator
norm immediately imply that M < |S| . Write
45z - w=98z+w) (z4+w)—-95>z—-w)- (z—w)

and estimate the right hand side in terms of M to obtain that in particular for all
z,w € R™ with [z, = [w|, = 1 it holds that [Sz - w| < M. Conclude that
|S|0p =M.
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The map
z2—=Q(z) =8z 2

defined by the symmetric matrix S is called a quadratic form. Observe that
in Exercise[19.5the assumption that Sz-z > 0 can be dropped if M is defined
by
M = sup |Sz- z|.
2], =1
You should never forget the remarkable fact that the maxima of z — |Q(2)|
and z — [Sz| on the unit ball coincide.

19.4 Eigenvalues of compact symmetric operators

The above carries over to S : H — H when H is any inner product space
and S : H — H is linear and symmetric with respect to that inner product,
and has the property that Sz -z > 0 for all z € H, except that we no longer
know that the maxima exist. Introducing

S Sz-S
S|, = sup 152] = sup TIOE sup VSz - Sz, (19.10)
P 0#z€H |Z| 0#z€H ZZ z-z=1
and
M = sup Sz -z, (19.11)
z-z=1
it suffices to have that S is bounded on the unit ball in H to have
M = |S|OP < 00. (19.12)

Ignoring the trivial case that M = 0 we now observe that the Cauchy-Schwarz

inequality in Exercise also holds with S replaced by M — S = MI — S,
I being the identity map, and it thus holds that

(M —S)z-w| < /(M —8)z-2+/(M— S)w-w, (19.13)

whence (varying w over the unit ball)

(M= S)z| < /(M= S)z-2,/IM =S|, </ (M=S8)z-2/M+]|S],

Taking a sequence z, € H with |z,| =1 and Sz, -z, — M, it then follows
that the right hand side goes to zero, and thus

Mz, — Sz, — 0.

If the sequence z, can be chosen to have Sz, converging to a limit y € H, it
follows that also Mz, — y and that M = |y| > 0. But then w = {7 is a unit
eigenvector of S with eigenvalue M. We have therefore proved the following

Theorem.
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Theorem 19.6. Let H be an inner product space and S : H — H linear,
symmetric with Sz -z > 0 for all z € H, Sz # 0 for at least one z € H.
If for every bounded sequence z, in H il holds that Sz, has a convergent
subsequence, then

>0

Al — max
0#z€H Zz-Z

exists, and A\ is an eigenvalue of S whose eigenvectors are the mam’mizerﬁ
of the quotient under consideration.

Remark 19.7. In fact we only need one single sequence z, with z, - z, = 1
such that Sz, converges and

Sz-z
Szp -z, = sup
0#z€eH <%

to conclude that A\ exists, and is an eigenvalue of S whose eigenvectors
are the mazximizers. In particular this is the case when the supremum s a
maximum.

Given an eigenvector wy with |w;| = 1 it easily follows that S maps
H ={z€H:z w =0}

to itself. Unless H; i§"| the null space of S it then follows that

Sz-z
Ay =  max
zw1=0#z€H 2z -Z

>0

is also an eigenvalue of S with eigenvector wy with |ws| = 1.
Repeating the argument with

Hy={z€H: z -w =z w,=0}
we obtain a sequence of eigenvalues
Al > A > >0,

which either terminateﬂ, or has the property that A\,, — 0 as n — oo. The
latter statement is a consequence of the convergent subsequences assumption:
the corresponding mutually perpendicular unit eigenvectors

wy, Wy, . ..,

5Typically only multiples of one eigenvector.
16This includes the possibility that H; = {0}.
17Tf the range of H is spanned by v1,...,vy for some N € IN.
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terminating or not, have
S — Sl = A2 4 A2,

which prohibits Cauchy subsequences of Sv, if the sequence A, > 0 does not
terminate and decreases to a positive limit.

If we do not assume that Sz -z > 0 for all z € H then the absolute value
of the first eigenvalue is still obtained as

because, changing from S to —S if necessary, it is no restriction to assume
that

Sz - Sz -
M = sup |ZZ|=SUP ZZ,
0#zeH <X 0#£zeH % %
and reason as above. With the Cauchy-Schwarz inequality in (19.13)) still
holding™| while the version in Exercise fails, the upshot is that we still

obtain eigenvalues with

A1] > | A > -+ >0,

with eigenvectors as before. This is essentially the spectral theorem for com-
pact symmetric linear operators S from an inner product space H to itself.
It does not require any knowledge of the determinants which will become
important next in the finite-dimensional case.

19.5 Singular values and measures of parallelotopes

In the case that H = IR™ the subsequence argument is not needed as the
maximizer w for the maximum in Theorem [19.6] exists in view of the com-
pactness of the unit ball in IR™. Now consider the matrix A defined by

AT:<‘“ 42 a?’) (19.14)

bi by b3
and™
2+CL2+6L2 a1b1+a2b2+a363 a-a a-b
§=ATA= (OTRTE - 19.15
<b1a1+b2a2+bga3 b3 + b2 + b2 b-a b-b ( )

18] first saw this Cauchy-Schwarz trick in the appendix of the PDE book of Craig Evans.
19Compared to (I we switch from A to AT, back to 1’ for what comes next.
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The outer product a x b of these two 3-column vectors a and b with, respec-
tively, entries aq, a9, az and entries by, bo, b, is defined as the 3-vector with
entries

asbs — asbe, azby —aibs, aiby — azby,

and has squared length
|CL X b|2 = (a2b3 - ang)Q + (CL3b1 - a1b3>2 + (albg - a2b1)2 = det(ATA),

as you should verify. That is to say, det(ATA) is the sum of all the squares
of all the 2 x 2-determinants of 2 x 2 submatrices of A. Here we count these
2 x 2 submatrices modulo the column permutations in ((19.14)).

As you may know, the length of the outer product a x b of @ and b equals
the area of the parallellogram spanned by a and b. Thus this area is the
square root of the sum of the squares of the three 2 x 2-determinants in
. It is precisely this statement that generalises to the n-dimensional
measure of a parallelotope spanned by n vectors w1, ..., z, in IRN.

Theorem 19.8. Let 1 < n < N. Consider the parallelotope P spanned by
the vectors 1, ..., xz, in IRN. After putting these vectors in the columns of a
matriz A, the n-dimensional measure M, (x1,...,x,) of P is the square root
of the determinant of AT A, and this determinant in turn is the sum of all
the squares of the determinants of all n X n submatrices, and also equals the
product o - - - 0, of the singular values of A.

Let us sketch a proof of this statement, first for (19.14}), without using the
outer product, using the invariance of the area under shear transformations.
That is to say, the area of the parallelogram spanned by the vectors a and b
is the same as that of the parallelogram spanned by the vectors a + tb and
b with t € IR arbitrary. The same statement holds for the determinant of
S = AT A and the determinant of S; = AT A; where A; is the matrix with
column vectors a + tb and b. Indeed, writing A; = A + tB we have

ATA, = (A+tB)"(A+tB) = ATA+tA"B +tB"A++*B"B

=A"A+tA"B+t(B"A+tB"B) = S,
C D:
The matrix C; is the matrix obtained from S = ATA by adding t times
the second (last) row of S to its first row. Therefore C; and S have the
same determinant. In turn, the matrix S; is obtained from C; by adding
t times the second (last) column of Cy to its first column. Therefore S,
and C} have the same determinant. It follows that S; and S have the same
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determinant. So both the area and the determinant are invariant under this
shear transformation, which allows us to restrict our proof to the case in
which a - b = 0. Then the square of the area is equal to the product of
the squares of the lengths of a and b, which is also the determinant of the
diagonal matrix with entries a - @ and b - b. To prove the general statement
in the theorem we use repeated shear transformations which leave both the
determinant and the measure invariant and reduce the statement to be proved
to the case that z; - z; = 0 if i # j and a corresponding diagonal matrix
S with entries z1 - x1,...,2, - ,. But this should be obvious from any
formal definition of the n-dimensional measure of parallelotopes spanned by
n vectors, a definition we happily leave here to be for what it is.

It remains to show that the determinant of the matrix S defined in ((19.7))
is also equal to the sum of the squares of the determinants of all the maximal
square submatrices of A. These are also invariant under the shear transfor-
mations used above. Rather than using these transformations to reduce the
statement to be proved to the case that the column vectors satisfy z;-x; = 0
for i # j we now use them diagonalise a maximal square part of the matrix A.
Note that if the matrix A has no n x n submatrix with nonzero determinant,
then the sum of the squared n x n determinants is zero, while also it cannot
be the case that the column vectors are independent. Then our reduction
to the case that the column vectors satisfy x; - z; = 0 leads to one of these
vectors being zero making the n-dimensional measure of P, and thereby the
determinant of AT A zero as well.

Thus we may as well assume that the upper n x n part of A has nonzero
determinant. It is a straightforward linear algebra exercise to show that, most
likely after relabeling the first n coordinates, shear transformations bring A

in the form A
A p—
()

where A is an n X n diagonal matrix with nonzero entries Ay, ..., A,. Here we
already assumed that n < N because otherwise there was nothing to prove@
in the first place. It now follows that

ATA=AN*+BT"B=A*+S,

where B is an m X n matrix with entries b;; and S has entries

m
Sij = E birbjk.-
k=1

201f you know your determinants.
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We therefore have, writing B = [By, ..., B,| with By,..., B, the column
vectors of B and using product notation, that

det(ATA) = TAT 4511 I A3 + -+ - + spulljen A7

1. 2.
)\j )\J?‘ )\j )\j“

et (811 812) Hj;él,2>\j2 + ...+ detS =

S12 S22

Hjs,glyz)\jz +-

B,-B; B;-B
Hj)\?—i_(Bl'Bl)Hj;aél)\?‘F"-—{—det( By By 2)

BBy By - B2
in which we wrote the term of degree n and only the first terms of degree
2n — 2 and degree 2n — 4 in Ay,...,\,. It should be obvious what the
remaining terms are.

On the other hand, the sum of the squared determinants of the n x n
submatrices of A is

biy b1o) >
TS+ (B 403y 4+ - -0, )T Ao - -+ (det (b“ b12) + .. ) Tl 1 oA 24 -
12 P22

It remains to show that

By By =b3 + b3 + -+ b

ml>s

which is clearly the case, and then that

B, - By B; - By b1y 1o\ > Bn-1)1 b2
det = det <o+ det
¢ (Bl-BQ BQ-B2) ¢ (b12b22) LRI W SIS S

etcetera. These are the statements we set out to prove for A, before apply-
ing shear transformations, but with shorter columnvectors, namely of length
N — n, respectively for two such vectors, up m such vectors. We can thus
systematically reduce the statement we want to prove to lower dimensions of
the matrix under consideration, until we reach the easy case that m = 1.
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20 Stationary under constraints
This topic was started in Section with the remarkable formula
®, = o, (F,) 'F, (20.16)

in (z,y) = (0,0) as the condition for

z % g(x) = ®(x, f(2))

being stationary in x = 0, using the implicit function

y = f(z)

obtained in Section to describe the solution set of F(x,y) = 0 near

(z,y) = (0,0).
Continuity of the partials

(z,y) = Fe(z,y) and (2,y) — Fy(z,y)

and the invertibility of F, in (0,0) sufficed for

in a neighbourhood of (0, 0),
= (0,0) the level set

a proof that near (x,y)
S={(z,y): F(x,y) = F(0,0)} (20.17)

is described as the graph of an implicitly definined continuously differentiable
function f.
With this f the level set S is locally parameterised by

r = X(2) = (z, f(z)),

which has a 2 x 1 Jacobi matrix %—i(. The parameterisation is locally a

bijection bewteen S and a neighbourhood of x = 0, which is due to the
invertability of the 1 x 1 matrix

A=F, (20.18)
in (0,0). Differentiability of
(z,y) = ®(z,y)

sufficed to have (20.16)) as both necessary and sufficient for ¢'(z) = 0, not only
in x = 0 but as long as F,(z, f(z)) is invertertible on a whole neighbourhood
of z =0 in which f(x) was constructed.
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20.1 The method of Lagrange

This abstract section is part of a story line that started for the simplest con-
crete case in Section and continues in Section 20.2] with the multivariate
version of the Lagrange Multiplier Theorem. In the abstract setting with
reX,yeY, F: X XY =Y and &: X XY — IR consider

x Fy
(z,y) = Fy(z,y) and (z,y) % F,(z,y)

continuous near (z,y) = (0,0) with F}, invertible, and the continuously differ-
entiable implicit function y = f(z) as a local description of the set S defined

by F(x,y) = 0. Now copy/paste (15.31]) and read
¢'(0) =0 < 9,(0,0) = ®,(0,0)F,(0,0)"" F,(0,0)

in the abstract setting. This formula will be unpacked in Section [20.1] for
now we write it as (20.16)), i.e.

d, =, (F,)'F,.
If we can write ®, € Y* as
¢, =AoF,

then
o, = @y(Fy)*lFx =Ao Fy(Fy)*le =AoF,,

and the criterion for stationarity becomes
' = Ao F'. (20.19)

What we need here is that every A :Y — Y and ¢ € Y* define a (unique)
A € Y* with v = A o A. This relates to what we discussed in Section [17.3
More details to follow perhaps.

20.2 The Lagrange multiplier method

With for instance
z € R? y € IR?,

F:R° - 1R &:R° — IR,
f:IR? - 1R?, ¢: R*> > IR,
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the theorems and proofs in Chapter [15] are essentially unchanged, beginning
with (20.16| as the characterisation for

r % ®(z, f(x))

being stationary, see (15.29) in Section [15.6]

Let’s see how all this unpacks to give the method of Lagrange mulitpliers
when we read (20.16f) as a statement for Jacobi matrices and the correspond-
ing linear maps. We write (20.16)) in transposed form as

V.F(V,F)"'Vd, =V, (20.20)

in which
V.F,V,F,V,® V,®
are the transposes of the “partial” Jacobi matrices
OF OF 0P 09
ox’ dy’ Ox’ Oy

corresponding to I, Iy, ®,, ®,.
Unpackingﬂ the notation we have

OF1 OF; OF3

OF, OF, %)
912 Oxo Oz

VoF = (V,Fy Vo Fy Vo Fy) = ( or, oF o
and likewise for V, I, which is a square 3 X 3 matrix, by assumption invertible
in (0,0,0,0,0). Its inverse sends the gradient vectors
V,F1,V Fy, V, Fs

back?| to the columnf| base vectors e, es, e5 in IR®.
Now write V,® € IR? as linear combinatio

V,® = MV, Fi + MV, F + A3V, Fs (20.21)

with A, Ao, A3 € IR. Tt follows that V,F (V,F)~" in the left hand side of
(20.20)) acts on (20.21]) as

-1
qu) M} )\161 + )\262 —+ )\363 E} )\1VIF1 + )\QVIFQ + >\3v:cF3 = vxq)

Tt is really no more than that, check it!

2Since the column vectors of a matrix A are the images under A of the e’s.
3As opposed to the convention in Exercise @
4This is possible in view of the invertibility condition imposed on F, in (0,0,0,0,0).
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by again. With this combines as
V& = \\VF + MVE, + AV E;, (20.22)
simplyﬂ because it holds for V, and V, separately! The stationarity of
o:5—=1R
in (0,0) is thus equivalent with the existence of multiplicators Aj, Ay, A3 € IR

for which (20.22) holds in (0,0, 0,0, 0).

20.3 Application: Holder’s inequality

In (18.10) we had
|Ahl, < [A], [hl,

as a special case of
|AB|2 S |A|2 |B|2'

With A = a a row matrix with entries a; and B = b a column matrix with
entries b;, this is the Cauchy-Schwarz inequality

SITE (Daf) (Dw) |
=1 =1 =1

This inequality is proved in every linear algebra course and then used to
prove the triangle inequality for the Euclidean norm.
We now ask for which values of p > 1 and ¢ > 1 we can also have that

|iaibi| < lal, 0], (20.23)
i=1
if |a| and [b| are defined by
\alz = i la;|P and |b[3 = i |b;]7. (20.24)
i=1 i=1
Note that is the Cauchy-Schwarz inequality of p = ¢ = 2.

Exercise 20.1. Since (20.23) scales with a and b we can restrict the attention to
vectors a and b for which [a| = [b] = 1. Explain!

5No 3 x 3 matrix inverted here.
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Thus we introduce two boundary conditions

yan) = lag[P 4 e P = 1

¢(a1, R
b(b, ...

and max- and minimise

7bn) = ’b1|q++ |bn|q = 17

(al,...,an,bh...,bn) i)alb1+---+anbn.

Exercise 20.2. Explain why the maximum and the minimum of F' under the re-

striction |a| = [b] =1 exist.

Exercise 20.3. Show that the functions ¢ and v are continuously differentiable if
p > 1and ¢ > 1. Hint: if we redefine x — x" to be odd for every > 0 then the

derivative of x — |z|P is x — pzP~L.

With two Lagrange multipliers A en p we arrive at 2n equations

bi=Apal ™' a;=pgh!” (i=1,...,n)

I

to solve, together with

Dol = bl =1.
=1 i=1

Exercise 20.4. Assume that (p — 1)(¢ — 1) # 1. Show that solutions have all |a;]|
equal and all |b;| equal, and therefore

> laibi| = n(
=1

Deduce that (20.23)) holds for p > 1 and ¢ > 1 with % + % =1.

(20.25)

Q=

1,1 _1
)p+q :nl P

S|
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21 Green’s Theorem

We want to integrate continuous functions and partial derivatives of continu-
ously differentiable functions over bounded sufficiently nice domains 2. The
goal is an early version of Green’s Theorem (and thereby the Gauss Diver-
gence Theorem), Theorem in Section R1.3] To this end we need the
integral calculus for continuous functions of two or more variables, beginning
with integrals of u = u(z,y). Integrating partial derivatives we discover the
appropriate notion of boundary integrals.

We first integrate over closed rectangles [a, b] X [c,d], and over sets such
as

{(z,y) € [a,b] x [c,d] : y < f(x)}, in which f & C'([a,b]) (21.1)
and f([a,b]) C (¢,d). The integral calculus over closed blocks
[a,0] = [a1,b1] x -+ X [an, by]

in IRN = IR"*! is then completely similar, as well as integral calculus over
sets described by

any <oy < f(x,. .., o81) < by (21.2)
or

ay < f(JIl,...,IN_l) <xy <bN7 (213)
and similar sets obtained by permutation of the variables.

To also integrate over closures of bounded open sets € in RN = IR"*!
with 09 € O, we understand 99 € C* to mean that M = 9 is the union
of patches

P=MnW=Mn/(a,b),
each of which, after renumbering the variables, comes with a description of
[a,b] N Q as given by (21.2) or (21.3). If so we say that Q is a bounded
C'-smooth domain. We speak of
W = (a,b) = (a1,b1) X -+ X (ay, by)

as a Windovﬂ The boundary 952 is denoted by M because it is a first example
of a manifold, see Chapter [28|

Our characterisation of 9Q € C* implies in fact tha1E| there exist finitely
many such patches P, = M N W, that cover M = 02 completely,

McPU---UP;, (21.4)
but in general €2 is not a subset of W; U --- U W;,. However, there are thenE|

'Thus windows are open.
2This follows from the compactness of M.
3This follows from the compactness of Q.

255



finitely many other windows
Witts oo W, WiCQ (i=k+1,...,m),
that cover the part of €2 not yet covered by Wy, ..., Wy. Thus
QCWU---UW,,. (21.5)
This covering of Q will allow us to integrate continuous functions u : Q — IR

over (2, using what we will call fadmgﬂ functions.

21.1 Integrals over blocks
To integrate continuous functions
w: [a,b] X [c,d] = TR
we use partitions P as in for [a, b], and partitions
c=y<y < <ynw=2>b (21.6)

for [¢,d]. Lower- and undersums, or better, sums of the formﬂ

N M
S = ZZU e m) (T — 1) (Y1 — Yi—1), (21.7)

k=1 l=1

with & € [zx_1,2x]) and n; € [yi—1,yi], then do the job. We skip the details
and formulate the obvious theorem.

Theorem 21.1. Let u : [a,b] X [c,d] — IR be continuous. Then there exists
a unique real number J such that for all € > 0 there exists 6 > 0 such that

for all sums S as in it holds that
1S —J| <e¢,
provided
Tp—Tp1 <6 and y—y_1 <6 forall k=1,...,N, [l=1,...M.

We define the intergal of f over [a,b] X [c,d] by

/ u=.J,
[a,b] X [c,d]

4The less friendly terms is cut-off functions.

5See Theorem
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and we have

b d d b
1= [ [wemay ao= [ [uegds ay

—_— —

continous function of x continous function of y

|J| = ‘ / ul < / lul.
[a,b] x[e,d] [a,b] X [c,d]

The repeated integrals are handled by the integration techniques for con-
tinuous functions on closed bounded intervals, see Theorems and
Theorem generalises to u : [a,b] — X with

with

[a,b] = [a1,b1] X -+ X [an, by],

a bounded closed block in IRY, and X a complete metric vector space.

Exercise 21.2. This is more or less Exercises [8.16] continued. Prove Theorem 21.1]
without using lower- and upper sums for X = IR. Then explain why it is also a proof
for X.

21.2 Integrals over bounded smooth domains

Next we consider windows such as used in (21.4)), for example (21.1)). The
following theorem ties the obvious outcome to the perhaps slightly technical
but not less obvious definition. Here we only need continuity of the function
f that describes the upper boundary.

Theorem 21.3. Let f : [a,b] — (¢, d) be continuous and let

u:A={(z,y):a<zx<bc<y< flx)} - R

// a:ydy dx

continuous functwn of:(;

J:/u.
A

This integral J is uniquely defined as in Theorem with approximating
sums in which we put w(&,m) = 0 whenever n; > f(&)-

be continuous. Then

18 equal to
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Again we leave the proof to the reader, and we note that the obvious gener-
alisations with

I [alabl] XX [GN—l,bN—l] — (aNabN)a

and, if you like, u taking values in a complete metric vector space X hold
true.

Next we consider u : Q — IR with 092 € C*, and windows as in (21.5)).
It is then possible to choosdf| functions ¢; € CL(W), ..., ¢ € CHW,,) with
0<( <1fori=1,...,m,such that

(G+--+Gu=1 on aneighbourhood of €. (21.8)

We use each (; to fade out u towards the boundary of the corresponding
window: each function u; = u has its support strictly within W;, and as
the natural definition of the integral of u; over ) we tak

Q QQWZ

U= Uy A+ Uy,

Since

and integrals are bound to be linear functionals on C'(Q), the obvious defi-
nition of the integral of u over € is

m

/Qu:/gulJr---Jr/Qum:;/mWigu. (21.9)

Exercise 21.4. A bit tedious perhaps: show the outcome in (21.9) does not depend
on the choice of patches and windows. Hint: given also patches M NVy,..., M NV,

in windows V7,...,V; and additional windows Vj 1, ..., V;, with fading functions x;,
7=1,...,7r, write
LD DR TIED 9 IATED 9 PRV ZXJZQ
=1 j=1 i=1 j=1 j=1i=1

and evaluate the individual integrals

/QCz'Xju

in two ways.

6See Chapter [29] we can make sure that ¢; € C2°(W;) in fact.
"In accordance with fa = f[a b = f(a p) We just put  as a subscript on /.
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Remark 21.5. [t is also possible to give such a definition if we only assume
00 € C, meaning that, possiblﬂ after a rotation, every point of the boundary
1s contained in a patch described by the graph of a continuous fuction. The
windows we started with are an example.

21.3 Green’s Theorem

We now integrate partial derivatives to discover a theorem, and in particular
the right hand side in below. It involves the outwards pointing unit
normal vector v on 0f2, as we will see from the local calculations we do in
the separate boundary windows. In particular we discoverﬂ

as the natural generalisation of

ds =+/1+ f'(z)? dx,

which you should recognise from the high school formula

[ VTR @

for the length of the graph of a function f € C'([a,b]).

Theorem 21.6. Let 2 be a bounded open set in IRN = IR™™! with 9Q € C*,
let v : Q — IR be continuously differentiable. Then the integral of every
partial derivative vy, of v evaluates as

/ij :/ vjvdS,. (21.11)
Q o9

The integral on the right hand side will be defined in the proof, as well as v;,
the " component of the outwards pointing unit normal vector v on OS).

We start the proof in the case that N = 2 and n = 1. Consider a piece of
the boundary described by y = f(x), with f € C'([a,b]) and ¢ < f(z) < d
for all z € [a,b], such that

Q=0n(a,b] x [e,d) ={(z,y): a<z<b, flx) <y<d}, (21.12)

8This makes a bit more technical.
9More on this later: Chapter
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and multiply v by a function ¢ € C'(IR*) which is zero outside a subset
[a,b] x [¢,d] of (a,b) x (¢,d). Denoting the resulting product by v = (v we
have from a minor variant of Theorem 21.3] that

/Qﬁy N /ab (/f; Uy(2, y)dy> dz =

(by Theorem
b
- [ ot sta) da

b -1 _ - 5
~—_——— ds=dS

Yy

in which the subscript ® indicates that we use the parameterisation

O(r) = (z, f(x))

for the boundary integral. There are of course many otheﬂ parameterisa-
tions that can be used to compute integrals over (this part of) the boundary.

In the above calculations we recognised the y-component of the (let’s call
it) normal unit vector

()
JITEEN
ds = |®'(x)]* dx = \/1+ f'(x)%dx

evaluated via the parameterisation ®(z) = (z, f(x)).
For the integral of v, we use new coordinates &, n defined by

§=a,n=y— f(z), whence w=¢ y=n—f(€) and dudy=dedy
when transforming an integral over (z,y) € § to an integral over
&n)eD={(r,y—f(z)):a<z<b flz) <y <d}

Indeed, defining ¢(§,n) by

¢(&,n) = 0(z,y) wehave 0a(z,y) = ¢e(&,n) — f(§)Pn(€, )

10With issues for later worries.

and
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via the chain rule, Whencelﬂ

Jo= [@=rop=[ o= [ 1o
= [([ sctemac) an— [ ([ s1@rontcnan) ae

= [@.m = stamyan= [ 7€) [ onten inde
- [ reoends = [ otes@) s ds

L e ;
— [ LY s VTE PP = [ waias,
/a M ds;QSH /@

after inserting /1 + f/(x)? to get ds = dS; and recognising the z-component
of the normal vector v. The subscript ® indicates again that we use the
parameterisation ®(z) = (z, f(x)) for the boundary integral.

In conclusion we have

/T)x:/yx@ds:/ vyds and /ﬁy:/yy@ds:/ vy 0 ds,
Q ® o9 Q ® o9

in which we have taken the integrals with subscript ® as definition of the
boundary integrals over 0f).
Likewise we have, for the general case with n > 1, that

/(Cﬂi)xj :/ l/jCiU dSn, (2113)
Q G19)
forallj=1,...,mandallt=1,..., N = n+1, with expressions like (21.10)

and
of of

1 1
VK = yeeoy UN = 3
L /1E |V Om N /I VA Oz,
-1
UN = Vnt1 = W

for the normal unit vector v. Note that in (21.13) the integrals with ¢ =
k+1,...,m all vanish.

'We drop a conveniently chosen fixed upper bound in the n-integrals from the notation.
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We now use the fading functions to conclude that

[o=] Zi(@-v)xj - i [, = i [ vwds,

This latter expression is what we take as the definition of the boundary

integral
/ VjU dSn,
o0

in much the same way as in (21.9). We can then conclude that

/'ij :/ vjv dS,y,
Q 0

which is (21.11)) in Theorem

Remark 21.7. If we put a subscript j on v, and view v; as the coordinates
of a vector field V', we obtain

/v-vz/ vV dS,, (21.14)
Q o

the statement of the Gauss Divergence Theorem.

Remark 21.8. Applying (21.11) to the product of v and some other function
¢ € CHQ) we obtain the integration by parts formula

/ngiC: (vyidSN_l—/Cxiv. (21.15)
Q o) Q

For ¢ we may take a function such as one of the ; in to have integrals
of functions supported in one single block |a, b|.

Remark 21.9. The above approach avoids reparameterisations and the use
of other parameterisations to define and compute integrals over manifolds
such as M = 9Q and other manifolds, see Chapter[28 Of course we need
these later too, which requires Chapters[23 and[27

Exercise 21.10. In physics results like (21.6)) are usually taken for granted in view
of the trivial case that
Q= (a,b) = (a1,b1) x (ag,b2)

is a rectangle parallel to the axeﬂ. Verify directly that (21.14)) holds for v : [a,b] —
IR? continuously differentiable.

2https: //www.quora.com/What-is-the-plural-of-axis
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Exercise 21.11. Suppose that the boundary of a bounded open set Q C IR? is
given by a periodic solution of a system of differential equations & = P(z,y) and
7 = Q(z,y), with P,Q : IR> = IR continuously differentiable on Q. Show that

JNCa =
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22 Fourier theory

In another set of notes this began with the odd function defined by

s ( ) . sin 2x i sin3x  sin4x . sinbx  sin6x n sin 7x
r) =sinz — — —
! 2 3 4 5 6 7

which is periodic with period 27. On the interval (—m, 7) the graph of f; is
close to the graph of f(z) = %SB Replace 7 by N, take larger and larger NV,
and conclude that apparently

o0

Z kHsmk:x (22.1)

k=1

for these values of x. For lots of other examples see Section below, but
in Section we first cut a long story short. Another story not told here
could start from these two exercises.

Exercise 22.1. Connection with power series: The right hand side of (22.1)) is the
imaginairy part of

o0 k+1
¢ =e".

k=1

Determine the sum of this power series for || < 1. Hint: differentiate with respect to
¢, take the sum and then the primitive.

Exercise 22.2. The complex version of the Leibniz criterion says that the series in
Exercise [22.1] converges for all ¢ with || = 1 except ( = —1. Assume that the sum

you found in Exercise is valid for all such ¢. Verify (22.1)).

22.1 The sawtooth function
In the spirit of Exercise 22.2] and perhaps Section [0.6] consider

1 1
L+¢+C+-- 4+ and its primitive C+§C2+---+NCN,

put
(=¢e"=cosx+isinz,
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and take the imaginairy part multiplied by a cosmetic 2. What you get is
what we will call
Zn(z) = Z — sinnz. (22.2)

Exercise 22.3. Show that
:x—/ DN(S)dS:W—ZE+/ Dn/(
0 x

in whichl] N
sin(IV +
Dy(s) = 2%
O D
Exercise 22.4. (continued) Prove that as
N — o0

Zn(x) > m—x as

uniformly on every interval [d, 7] with 6 > 0. Then determine

Z(x) = lim Zy(x)

for every x € IR.

Exercise 22.5. (continued) The integral

/0 " D(s)ds

has extrema in the zero's of Dy. The first maximum My to the right of x =0 is in

T
T = T
N—|—§
Show that
~iT sin(N + 1)s Tsint  one
MN:/N+2 ( 2) ds — 2 ‘2N+t1 dt.
0 sin 5 0o t singyg

'See (22.9).
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Exercise 22.6. (continued) Show that

t
.2N+t1 N 1,
sSin INFT

uniformly on ¢ € [0, 7).

Exercise 22.7. (continued) Show that
MN — 2/ Lntdt
o ¢t

as N — oo.

Exercise 22.8. (continued) You must have seerﬂ the thoroughly improper integral

/ Pa=L
0t 2

So now explain why the first maximum of Zx(z) to the right of x = 0 converges to
™ o3 t
2/ ﬂdt>7r:li1rnZ(ac)
0 t z]0

as N — oo.

Remark 22.9. Conclusion: the function sequence Zy converges pointwise
to the sawtooth function Z which is defined by being 2m-periodic, odcﬂ and
Z(x) = m—x for x between 0 ancﬁ m, but its mazima and minima near O
and multiples of 21 over- and undershoot the values Z(0%) = &7 by a factor
of about 1.178979744.

22.2 Fourier series

We first consider complex valued 27-periodic continuous functions. Piece-
wise continuous functions as usually considered in this context, are de facto
functions of the form

g(x) = flx)+ > ApZ(xr — &) with f€Cor and Ay € €, & € (0,7),

k=1

2Computed using the complex function %
3S0 odd, draw a sawtooth picture of its graph.

4And thus also for 0 < z < 2.
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and since we already understand Z and its Fourier series we may just as well
restrict the attention to f € Cy;,.

Definition 22.10. The space of 2m-periodic continuous functions f : IR — €
is denoted by Car, a complete metric (complex vector) space with respect to
the metrid

(,9) = max | f (@) - g(x)].

For f € (U5, we consider the Fourier series of f, namely the right hand
side of the ~ symbol in

f(z) ~ nZOO ¢, e = % + ;(an cosnz + b, sinnz), (22.3)
in which
I I .
a, = —/ f(z)cosnzdx, b, = —/ f(z)sinnzx dz, (22.4)
) TJ_x

1 (7 ,
Cn = o /_7r flz)e "™ dx (22.5)

are the Fourier coefficients of f. In (22.3)) we use the symbol ~ because it’s
hard to say in which sense the left and the right hand side are equal to one
another. We sometimes write

znm R o 1 " —inx
~ 3 i Cf) = 5 / @) de, (22.6)

n=—oo

and we choose not to modify this notation. We're fine with 27 appearing
only in the integral formula, it’s the length of the interval of integration.
The formulas for the coefficients may be derived from considerations in-
volving the L2-inner product in below, but in what follows we take
them for granted and see what we can say about the N-th partial sum

N
Z cpe™t = % ;(an cos nx + by, sin nx) (22.7)

of the Fourier series of f in (22.3). A miraculous calculationf| with complex
exponential geometric series then first tells us that

Suf@) =5 [ Dufe-ndi=5- [ D (229

:27T

5Just like in Section
5You did it in Exercise we’ll do it below for Fourier series of functions f(x,y).
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in which
. 1
D, (@)= BIEIT_ 5 e (22.9)
sin 5 F—t

is called the Dirichlet kernel. We say that 27.S f is the convolution of D,
and f. The 27-periodic function D is called the Dirichlet kernel. For larger
and larger N it concentrates near 0, with a narrower and narrower peak,
while its integral remains constant and equal to 27. That’s good. What’s
bad is that away from 0 it oscillates between maxima and minima which in
absolute value remain larger than 1 as N gets large. These properties will
only make S, f(z) converge to f(x) if f is nicer than just being in the good
space (o, while the proofs of such statements are a bit cumbersome.

The average of Dy, ..., D, however, which via another miraculous calcu-
lation is equal to

1 1 sin? &F02
N = 5 0 e N == - 2 ) .
F,(z) N1 (Do(x) + -+ Dy (x)) Nl enZ: (22.10)

2

the 2m-periodic Féjer kernel, is much nicer. It is nonnegative, has integral
27, and concentrates in 0 as N gets large, thereby forcing it to be small away
from mulitples of 27r. Tanjd| called such functions good kernels. This not so
very hard theorem explains why.

Theorem 22.11. Define

1

onf = oSS+ Sif -+ 84 f),

the Cesaro sums of f. Then
rof@) =5 [ FuOf -

and o, f — f in Cor if f € Cor. That is, the convergence is uniform.

Exercise 22.12. Let f € Coy, let M = |f|  be the maximum of |f(z)| on IR,
and let € > 0. Explain why there exists 6 > 0 such that

2M 1

oI @) = 1@ = 5 [ @I+~ fliE <ot T

if |€] < d. Hint: split the integral in 3 parts. Then prove Theorem [22.11]

"She’s no longer at the UvA unfortunately.
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Exercise 22.13. Let £ € (0,7). Let Z(x) as in Exercise and further be the
sawtooth function. Determine the Fourier coefficients of Z(z — &) and show that the
partial sums are equal to Zy(z — ). Describe their behaviour as N — oc.

22.3 Fourier series with multiple variables
Thanks to the multiplicative property of

z

exp(z) = e

these results generalise to functions of more variables, With remarkably nice
multiplicative properties of the two convolution kernels (22.9)) and (22.10) m in

(22.11)) and (22.13) below. To see how let f be in C'zﬂ(]R ), iLe. f(x,y) is

continuous in (z,y), and 27-periodic in both z and y seperately . As before

we write
o

f(‘ra y) ~ Z Cmnei(mm—i_ny)u

m,n=—00

but now with

1 T T )
Cmn = (27)2/ / f($a y)e—z(m§+nn) dé d77

We prepared for the arguments below by using dummy variables £ and 7
instead of x and y.
It follows that

S E E Cmnez (mz+ny)

—M n=—N

M N 1 T A A
> G [ semetem deanere -
m=—M n=—N e
27T / / f(&m) Z Z im(@=8) gim(y=n) qe¢ dp =
—M n=—

N
eim (z—£) Z einly—n) d¢ dn,
m* M , n=—N
DME* €) DNG*??)
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sl

1 ™ ™
Sunl(,y) = 5 fle+&y+n)D,(E)Dy(n)dsdn, (22.11)
e ), )
in which
M —iME _ i(M+1)E in(M + L
_ ime __ € e _ sin(M + 7)¢
Dy (§) = m_§_Me — = Gl (22.12)

and likewise v 1)
sin(N + 3)n
Dy (y) = —12

sin 57

The averages

7 (M + 1)(N 1 1) 2= 2
1 1 L T
(2m)2 (M + 1)(N + 1) Z_(]Zo/ﬂ 7ﬂf($—§,y—U)Dm(ﬁ)Dn(n)dédn
(271T)2(M+1)1(N—|—1) /_7r /_7r f(x—ﬁ,y—ﬁ)ZDm(S)ZDn(U)den

rewrite as

oo (0 y) = - / /ﬂFM<5>FN<n>f<x+s,y+n>d5dn, (22.13)

in which

S
+
=
7~

Ful€) = 3 D) = (22.14)

M+1m0 :M—l—l sin

N (o

as you should verify, and likewise for Fyy(n). Again it follows that
ounf = [ in Cor(IR?) as M,N — oo,

and for sufficiently smooth f in Cy,(IR?) that S, f — f in Oy, (IR?) because
once both limits exisﬂ they have to be the same. Clearly all this generalises

to f(z1,...,2,), f € Cor(IR™).

8See Remark ??.
9An easy variant of Exercise W is needed here.
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22.4 Derivation of the integral Fourier transform

I first discuss Fourier transform for functions of one variable and start from
the intuitive presentation in §7.1 of Olver’s very nice PDE book, which I
slightly modify and then merge with the rigorous approach in Folland’s won-
derful Real Analysis book. It should be clear from the last part of the
previous section that for more variables the story is much the same. What I
like about the arguments above and below is that the theory can be built on
Riemann integral{™]

For a start let f = f(z) be defined and continuous on the real line, and
f(z) =0 for |z| > . If the function F' is defined by

r oy
T
we can write -
Fly)~ > Cue™ (22.15)

just as in (22.3) for f. Now assume that f and thus F' is smooth. We
write the Fourier coeflicients C,, = F'(n) of F(y) as n-integrals. It follows for
x € [—1,[] that

N=—00 \_

@ =Fw =Y 5= [ Flje ™y e,

E(n)

in which the series is uniformly convergent, uniformly in y € IR that is.

The Fourier series of f on the interval [—[,[] is obtained via scaling from
the uniformly convergent Fourier series of the 27-periodic smooth extension
of the smooth function F'. This gives

1 : —inme inT
W=7 X 17 | e (2216)

this is f(%7) if suppf C [=11).

for € [—1,1], in which as indicated the underbraced term is equal to

L[ fe)e T de

4
nAk

10Not that I dislike measure theory and Lebesgue integrals.
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for [ sufficiently large. Note that £ is just a convenient dummy variable, and

that we recognise

nim

[
Introducing the Fourier integral transfor ]?Of f by

~ 1 e ) 1 > .
k)= — z)e kT dp = —/ ek ¢
f) = o= [t | rgea
the terms in the sum on the right hand side of (22.16|) are

Ak f(nAk) glonak,

We then see that

flz) = m Z FnAk)e™™ ™ Ak,

n=—oo

in which the sum looks like a Riemann sum for

/ Z Flk)e™™ dk.

Note that we have changed the prefactor in order to have

— =nAk as an integer multiple of ? = Ak.

(22.17)

(22.18)

A fzk:p 1kx
f(k \/% / f(z dr and f(x \/% / f dk

as the outcome of a limit argument for Ak — 0.
Likewise it follows for [ sufficiently large that

| 1@Prde= 3 1Fmank s,

-0 n=—00

which looks like a Riemann sum for

CRE

(22.19)

and the identities (22.18)) and (22.19)) remain valid if we increase [ and thereby
decrease the step size Ak. Both Riemann sums are independent of Ak in the

limit Ak — 0. Can we conclude that then both

f(z) and / @) de

—00

1Note the notational difference between f(k) here and f(n) for Fourier coeffients.
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~

are also equal to the corresponding k-integrals? The answer is yes if f(k) is
continuous and decays sufficiently fast as |k| — o0, so as to make the tails
of both the k-integrals and the Riemann sums small. Then we can restrict
the convergence argument to integrals and Riemann sums on bounded k-
intervals.

For smooth compactly supported functions f : IR — € such decay rates
are obtained using integration by parts. Since

we havd™

Flk) = / ;(:) - J(c:k(;;? , (22.20)

and so on for the Fourier transforms of the derivatives of f, which remain
dryE under the wide hat in the notation. Therefore

70 < <= [ 1@l

For the limit Ak — 0 in both (22.16]) and (22.19) this suffices. The continu-
ity of f” and the compact support of f thus imply all but the smoothness
statements in the following theorem.

Theorem 22.14. Let f : TR — € be in C?, i.e. f and f' are differentiable

on IR, f" is continuous, and f has compact supporf]. Then defines
a smooth function f : IR — C satisfying the estimate

N 1 * " o ’f”|1
fl < o= | Ir@le = o=

for every real k # 0, so

Moreover,

o0

) = <= | Fwetar and [ ipwpie= [

12Because |e¢?| = 1.
130nly barely in case of f...
"So f, f, " € Ce.
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Proof. It remains to show tha f is smooth. In fact f € C. suffices to have
f smooth, thanks to Theorem [14.5| By differentiation under the integral we
have

-~

(FY (k) = =ik f(k),  (F)'(k) = (=ik)” F(R), (22.21)
and so 0 for the derivatives of f. O

Remark 22.15. We say that f 1s in O, If f is also in C°, the class of
smooth compactly supported C-valued functz’onﬂ on IR, then all derivatives
of f go to zero with a uniform decay rate faster than every p-th power of |k,

because and (22.21)) imply
> [k [ £,
k
)] <
for k #0. For f € C we thus have
Ve, Voeng Ioso Vier © kP |(F)P (k)| < C. (22.22)

The class of functions in C* that satisfy (22.27 m 1s called the Schwarz class.
If f 1s in C° then f 15 1n S, but in general not in CZ°.

Theorem 22.16. The implication
fesS = fes
holds for all f : IR — C.
Proof. For f € C2° this follows from Theorem in Section [14.2 Now

watch
https://canvas.vu.nl/courses/38607/pages/differentiation-under-the-integral

to see that the proof for f € S follows from a variant of Theorem [14.5| still
to be included in Section m The upshot is that the chains ([22.20) and

(22.21)) are also valid for f € S. O

22.5 The Fourier transform as a bijection

The pairingiﬂ

fey_ L [T —ifx )eic
f(f)—\/%/_oof(x dr and f(x \/%/ f d¢ (22.23)

5Not the same formulas as in (22.20) to begin with, but in the end they really are....
16The test functions used in the theory of distributions.
17T now prefer ¢ as name for the Fourier variable, so much for wave numbers.
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discovered with ( should of course define bijections between suitable

pairs of functlon spaces Which function spaces X allow f <> f as a bijection
between X and X itself?
To answer this question we first re-examine the definition

7 1 > —i€x
f(§ = E/oo f(z)e ™" da (22.24)

of f . For fAto be well defined it certainly suffices that f is in C'N LY, i.e
f IR — € is continuous and |f| = / |f| < 0. (22.25)
R

This is because
o= | [ e < Lo
V2 J s V2r
Moreover, this estimate implies that if a sequence f, in C'N L' is a Cauchy

sequence with respect to the 1-norm, then f, is a Cauchy sequence with
respect to the co-norm.

Theorem 22.17. The space Cy of continuous functions f : IR — ©C with
f(z) = 0 as |x| — o0 is a Banach space with respect to the norm defined by

f

The space Cy is a closed subspace of the space Cy of bounded continuous
functions f : IR — C, on which

fl.. = sup|f(z)|

zeR

o = AX[f(2)].

defines the norm. This space is also a Banach space, its norm reduces to the
mazimum norm for f € Cy. The space Cy is contained in the vector space C'
of all continuous functions f : IR — C, which is not a Banach space for any
reasonable choice of a norm. We write Co N L' for CoNC N LY, the class of

functions f that satisfy )
Proposition 22.18. If f € C N L' then f € Cy. If we write

fl@) = J©
then for every y,n € IR and a > 0 it holds that

flaa-n) >z f (S0, (22.26)

and



Proof. To prove that f € Cy we take a sequence of compactly supported
continuously differentiable functions f,, with |f,, — f| — 0. Then

V2r [ £a(€) - |—‘/ folz Zﬁxda:—/:f(x)e—fﬁwdx:

‘ [ i) = e i

SO f; — funiformly on IR. Since for each n the integral

/_Z fulx)e ™" da

reduces to an integral over a bounded closed interval [—R,,, R,,], the functions

fn are certainly continuous and thus fn — f in Cy. Integration by parts
shows that

< /_°° Fal@) = F@)] = [fu— f]. =0,

(&) = f’;_—ég), whence |f,(§)] < |f|g||1 and f, € Cp.
Since Cj is closed in O, it follows that ]?E Cp. The statement in (22.26) is
easily checked. O

Proposition 22.19. Let f,g € C N LY. Then f,§ € Cy and
| Feseric= | i)

e % de.

mn which ) -
) = Von /_ N g(§
Proof. We have that

var [ F@aerde= [ [ e degte) de

exists because f € Cp and g € C N L'. But

/_Z /_C: flx)e ™ d g(€) dE = /_Z /_C: F(@)g(E)e " du de.

because f,g € C' N L'. Changing the orde of integration and using that
g€ Cyand f € CNL!the statement in the proposition follows by reversing
the roles of z and &, and of f and g. OJ
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Theorem 22.20. Let
X={feCnL: feCynLY. (22.27)

Then C? C X, so X is nonempty. The Fourier transform is a bijection
between X and itself in the sense that

Je T dr = / )t de (2228
06 == [ s @) = <= £ (2229)
for all f,g € X. In particular the equalities in and hold

pointwise for every x and every & when f is in X. Moreover,

NGRS NG REEITE

Proof. We observe that X contains C? because of Theorem in Section
22.4] a statement which is independent of the rest of the theorem, which we
prove next. So let g be defined by the left hand side of (22.28)). Note that
f € Cy because of PI‘OpOSlthH . The extra assumption f € L1 is needed
when we apply Pr0p081t10nvv1th the function ¢(§) and g(x) that appear
therd™ replaced by

: ~ 1
e =30 L —pm(@n)®

a
The left hand side of the equality Proposition [22.19) then evaluates as

/ F(€)emee 27 dg — / F(&)e de

for a — 0, the limit statement holding thanks to fe L.
The right hand side of the equality Proposition [22.19| becomes is

/ f($)l 32 gy
o a

Put a? = 2t to recognise, up to the usual factor, the solution formula for the
heat equation u; = u,, with initial data w(0,z) = f(z), by convolution with

the heat kernel . ,

4t
5 \/ﬁe :
For this good kernel we have that F, x f — f uniformly@ as t | 0 for every
f € Cy. Get the prefactor right to conclude that the the right hand side of
(22.28]) holds. This finishes the proof of = in (22.28)). The proof of <—

in (22.28]) is of course similar. O
8Not to be confused with the ¢ in ((22.28))!

19For the pointwise convergence f € Cy N L' suffices!

Ei(x) =

277



Remark 22.21. If we denote the space of measurable complex valued Lebesgue
measurable integrable functions by L', then

fel' = fecq,

Thus there is no point in considering possible versions of Theorem |22.20
with Cy replaced by Cy or even C' in . The assumption f € C N L' is

sufficient to conclude

1 oo ) 0o 00
fa) = o= [ FOeas and [ iF@Pas= [ i s
- - - (22.29)
If also the (weak) derivative f' exists in L' then

f(&)—%f’(f) for €#0,

with f’ € Cy again. Denoting the class of measurable complex valued func-
tions f with bounded 1-norm

/ T f@)de = £,

by L' and the class with bounded 2-norm

/ @) o = |

o0

by L? we have that C° is dense in L.
Remark 22.22. In fact the bijection
F: X=X, F(f)=F

extends to an isometry
F:L*— L7

because X is dense in the Hilbert space L* of complex Lebesque measurable
functions with finite 2-norm. Upto a reflection in x, this map is its own
inverse. For all f,g € L* we have

/_ " () 9@ dr = / RO 70 e, (22.30)

which you should compare to Theorem [22.19. If f € L* N L* we can copy
, replacing the integral by a Lebesque integral.
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Theorem 22.23. The space X contains the Schwarz class S. Thus
defines a bijection on S and we have

1 > —i€x _ 1 > T
9(6) —\/—Q—W/_mf(x)e i = f(a) E/_mg“)e € de

for all f,g in S, just as in for f,g in X.

Proof. Theorem [22.16| implies that S itself maps to §. Therefore both f
and f are in CoN LY if f € S, and (22.28) holds for f,g € S. O

22.6 Connection with probability theory

Considering the Fourier transform

foo=7F

on L? we have that
]f]2 =1 ]gb[2 =1,

in which case both x — | f(x)[* and £ — |¢(£|* are probability distributions,
say of the stochastic variables X and =, with possibly great expectations

EX= [ wlf@Pdr ad B2= [ ¢loP e
if these integrals exist. If so, then the exponential factors in

e f(x —y) > e p(¢ —n)

don’t change X and = but the shifts do. They change X and = in y+ X and
1 + = and can therefore be chosen to put the expectations equal to zero.

In questions about variances we can thus restrict our attention to stochas-
tic variables X and = with zero expectation. Integrating the integral for the
squared 2-norm of f by parts with the 1—trick@ to get

o

1= [ t@P o= [er@F@] - [ o (r@f@ + 1) da

o0 o0

=—(f h) = (5 fh) L2Af, 1Al =21, [£1,,
in which for the moment f, ¢; are defined by
file) =zf(z) and  ¢1(z) = z(z).

2Recall ['Insds = ['1Insds =[slns]{ — [["silds=alnaz+z—1.
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Note that with this notation the rules for the derivatives of ¢ € S are

~1

o = za and /(/i?:iq?l.

Since

| n@rde= [l i
R C R e

this establishes the estimate
AEX?’EZ=?2>1

for the product of the variations of X and Z. For the standard deviations
the conclusion is that
20(X)o(2) > 1, (22.31)

which corresponds to the Heisenberg Uncertainty Principle.

22.7 Convolutions and Fourier solution methods

Both Fourier series and Fourier integrals are called Fourier transforms. In

both cases we can ask about the Fourier transform of a convolution f*g and of

a product fg. Statements about products can of course be obtained using the

inverse transform but below we discuss a more direct approach. Statements

about convolutions are somewhat easier, and in the context of solving linear

differential equations with constant coefficients they are extremely useful.
For example, the ordinary differential quation

—u(z) + u(z) = f(z)
transforms to the algebraic equation

€+ = T, 0 6= g

f(8)-

As we explain below, the solution of the ODE is found by taking the convo-

lution of the inverse of )

1+&2
with f itself, with some m-dependent prefactor. And likewise for problems

in which x is taken modulo 27, which we discuss first. Indeed, if we solve

the same equation for f € Cb,, then the solution will have to be in C3 |
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because differentiability of u' implies that «' is continuous and thereby that
u is continuous. But thenPT v’ = f — u is also continuous, so we know a
priori that the Fourier coefficients u(n) are going to have a quadratic decay.

We have that
u”(n) = n*a(n)
and therefore the differential equation becomes the algebraic equation

B 1
- 14n?
——

=g(n)?

(14 n2)a(n) = f(n) whence a(n) f(n).

Now recall that the convolution of two 2m-periodic integrable functions is
defined by

9@ = [ fe-veway= [ fwele-ndy (@23

whenever one of these integrals has a meaning for (almost) all x, which is
certainly the case if f,g € C5,.. Alternatively, read the next calculation
backwards to discover why we introduce f * g. Either way, we have

/ﬂ(f*g)(x) e_mdx:/: /: flz = y)gly)dye ™" da

—Tr

:/:/:ﬂx—wmwemﬂwm
= /_ 1 /_ 1 fla —y)gly) e ™ e du dy

= / / f(:p)g(y) e—in;r e—iny dx dy = / f(ZE) e—imc dax / g(y> e—iny dy

2 f(n) 2mg(n)

Upto an annoying factor 2w the Fourier coefficients of f * g are the products
of the Fourier coefficients of f and of g. Moreover, Corollary 77 allows to
conclude that the statement in this theorem holds.

Theorem 22.24. Let f,g € Cs.. Then

(f*xg)(x)=2m Z f(n)g(n)emx for all f,g € Cor, (22.33)

n=—oo

21 This line of reasoning only works for ordinary differential equations unfortunately.
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in which 27 f(n)§(n) are the complex Fourier coefficients of f % g. The right
hand side is uniformly convergent because

o0 oo o0

fal = D Ifmaml < | D IfmI2 ] > lam) =1/, 4l,.

n=-—oo n=—oo n=—oo

Summing up, the Fourier coefficients of f *x g followed by direct calculation
and the Fourier series converges uniformly because

1f9l, <11, 191,

For our above solution w all this leads to

1 1 ow 11 X cosna
u=Gxf C@=g5. ) oo 2;(§+21+n2>-

nea n=1

Note how we thus avoid the use of solutions with f replaced by the Dirac
0-function. In principal we can then avoid the distributions altogether when
using Fourier transformations to solve linear differential equations with con-
stant coefficients. But if we don’t we come to realise that the solutions of
equations such as —u”(x) +u(x) = 6(z) fit nicely in the mathematical theory
that combines Fourier transformations and distributions.

We very briefly touch upon this theory in Section and illustrate the
advantage of the use of the J-function with an example. Usually way before
the theory is understood, solutions of equations with ¢ as the inhomogeneous
term on the right hand side are computed using smooth solutions of the
homogeneous equation with a singularity in x = 0. In the 27-periodic case
for —u”(z) + u(x) = 6(x) this means a negative jump in the first derivative
at x = 0 (and in the other integer multiples of 27), because v” = u — §, and
the “integral” of d(x) over any interval (—e¢,¢) is equal to 1. Combined with
symmetry and 27-periodicity this implies that??]
cosh(x — )

G(z) = for 0<ax <2m,

2sinh 7

and you easily check that indeed™]|

G(:U):an+1.

nel

22You may like to compare —G’(x + 7) to the saw tooth in Z(x) in Section M
2Draw the 2r-periodic graph and compute 27G(n) as fozw cosh(z — ) e7"® dzx.
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Next we consider the Fourier coefficients of fg. This is more difficult.
Again Corollary ?7? tells us that

o0

f(ZL')N Z f(n)eznac and g(;p)m Z g(n)ei’rm

n=—oo n=—oo

have a clear meaning if

L= [fm) <o and |3, = > |3(n)] < oo, (22.34)

because then the right hand sides in

o0

fx)= " fm)e™ and g(x)= Y g(n)e™,

are both uniformly absolutely convergent Fourier series. This justifies the

calculation f(x)g(z) =

o0

SO FEer > gmye™ = > Y fk)glm)e™,  (22.35)

k=—o00 m=—o00 n=—oo k+m=n
N g

v~

so if (22.34)) holds it must be that the underbraced factor is the n-th Fourier

coefficient of fg. We rewrite this factor as

> fRam) = > f(k)an—k), (22.36)

k+m=n k=—o00
a discrete convolution. For its partial sums we have that

™

20 Y fwatn -0 = > [ gwetin [ genray

_N -n

N s s
- > / f@)e ™) da g(y) e dy
=N/ TS

N

— [ [ tarn Y e gy ay, (2280
—Tr —TT k,

=—N

J/

TV
in view of (22.8)) this is 27 Sy f(y)
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so the conclusion should be that

Z FR)in k) = - / Sy flgln)e ™ dy (22.39)

L T sty

as N — oo. This only requires

/7r (Svfly) — fFW)gly)e ™dy =0 as N — oo,

—T

which is the case if [Syf — f| — 0, which in turn is a consequence of
ISnf = fl, <lonf — fl, = 0. We have proved the following theorem.

Theorem 22.25. Let f,g € Cy,. Then the complexr Fourier coefficients of
fg are given by

o | fwswe g = Y fat—n.  (2239)

k=—o00

Now let f, g € C,N LY. Then for the Fourier transform of the convolution

frgl / flx—y y)dy=/_oo fy)g(z —y)dy (22.40)

we need to examine
/ / f(x — y)dye T

-/ Z / Z f(z — y)gly) e dy du
= / O; / Z fla—y)gly) eV e dr dy =
/ Z / : [(@)gly) e e dur dy =

/ " @) e da / " gty e dy = 21 FO)FE).

We will need some estimates for convolutions that follow from estimates for

F(z) / K(x,y)f(y) dy, (22.41)



in which K (z,y) is continuous with

| K@yl md [ jE@yla<o

o0 —00

for all z,y € IR and some fixed C' > 0. For f € C, N L' we have

\Fuﬂs/fuamwuﬂMMys/muamwMMﬂmscug,

o0 —00

and also

\F|1:/ \/ K(z,)f dy\dx<// )| dy dz
[ iKewnswldsdy= [ [ Kl

sc/|<n@—cm,
You should check that in fact F' € C, N L. These estimates can be applied

to (22.40) with K(z,y) = f(z —y) or K(x,y) = g(x — y), all this proves the
following theorem about f * g.

Theorem 22.26. Let f,g € CNL'. Then the convolution f * g, defined by
(f = 9)( / flz—y)gly) dy = / fW)g(z —y)dy, (22.42)
is in C' N L' as well, and its Fourier transform is given by

Fxg(6) = V2rfle)g(e). (22.43)

Since both J? and g are in Cy also their product is. If g is bounded then f x g
is bounded and in L', f * g is integrable and

|fx gl <V2r|fgl, = V2r|fgl, < V2r|f] lgl.,

and finally Remark |22.21 applies to give

- [ Repeede
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Next we consider the Fourier transform of the product fg. For f,g € X
as in (22.27)) we have
o1 f(x)g(z) = / F(k)e™ dk / g(m)e™ dm

= [ Fwtm) e
= [ R = Ry
/ / F(R)G(m — k) dk & dm

= [ (Frpmenan,

SO

(f*G)(m) dm

g

1 1
z)g(x) =
flalgle) == [ —=
Let us check when the underbraced term is indeed

(f *G)(m).

(22.44)

- 1
fg(m) = NGT:

Solet f,g € CN L.
A direct calculation in the spirit of what followed after (22.36)) gives that

o / Fk)gim — k) dk = / / f(x)e ™ dy / g(y)e R qy dk

o0

fla@)e™ ™ g(y)e™ " du dy dk

— /_ ’ / h /_ N flz+y)e ™ g(y)e™™ dx dy dk

R J—o0 [eS)
00 R 00

[ s et
—o0 J—R J—00
00 (e%S) R ) )

— [ [ s [ earar ge
—00 J —o0 -R
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which you should compare to (22.37)), in which the underbraced factor equals

N
T N+
fz+1) Z Z’“dx—/ flx+vy) de with  f € Ch;,.

sin £
k=—N 2

Here the underbraced factor equals

/ / flz+y) z’mdkdgc_/ f(z Smedm with feCnL.

It’s a nice exercise to generalise the analysis of Sy f, which used

to the analysis of

/ f@+y) smex d.

S 2

1 [Fsi
1 / smxrx dr.
R J, 5

and arrive at the conclusion that (22.44)) holds for f,g € C N L.

using also

22.8 Remark on Fourier transforms of distributions

This section could build on an earlier section not written yet about the
distributional definition of generalised functions such as the J-function. With
Proposition [22.19| we showed that f,¢ € C'N L' implies f, ¢ € Cy and

- ["feei= [ swiwa = @
in which we use the notation
(f.9) = /_Oo 19. (22.46)

So certainly ([22.45]) holds for all ¢ € S if f € C'N L'. We now take (22.45))
as the defining property of f: S — Cif f: S — C is a linear functional
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defined for ¢ € S. This is very similar to the definition of f’ which copies
ro= [ r@ewd=- [ )@= ~(1.)
for e.g. f,¢ € C' N Cy to define the linear functional f': C* — € byﬁ

(f',0) = —(f.¢), (22.47)

if f is a linear functional on C¢°.
An example of such a linear functional is d, defined by

(5,.6) = 0(s).
We note that J is often written as (not the) function
ds(x) =d0(x — s) = (s — x),
with the convolution rule that
[ 16156 = 9 ds = o)
a rule we may like to make precise as the outcome of

/f(s)éS ds being equal to f when acting on  ¢.

This requires the integral to be defined in some dual space of the space for
¢, via its action on the space for ¢ as

( / F(5)5, ds, &) — / (F()05, 6) ds — / F(8)6(s) ds = (f, &),

If so then we have

/f(s)55 ds = f, informally written in turn as /f(s)é(x—s) ds = f(x).

24For ((22.45) the assumption on f is stronger, it needs to be a linear functional on S.
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22.9 Examples, details and inner product approach

Form old notes again, to be adapted. The series in (22.1) is called a Fourier
sine series. If we change the minus signs into plus signs in the definition of
f7 we get the function defined by

sin 2x n sin 3z n sin4x . sin bx . sin 6x n sin 7x
2 3 4 5 6 7
which is close to h(x) = %5* for (0,27).
The function

hr(x) = sinz +

( ) cos 2x . cos3xr cosdx n cosbxr  cosbx n cos 7x
T) = cosx — — —
97 4 9 16 25 36 49

is close to

The right hand side is called a Fourier cosine series. Substituting z = 0 we

find
2 1 1 1 1

L -4 =

12 479 16 25

Exercise 22.27. Let f be an integrabld®| 2r-periodic function. Show that

o f@) = £@) = 5 [ Fuly) (Hla—9) ~ £@) dy

:g .

Show that . i
o f(2) / Fo(y) (e — y)dy.

:% »

Exercise 22.28. Derive the equality in (22.10]) by writing

. (N +1)x
sin = + -+ + sin ———
2 2

Z’Riemann or Lebesgue integral.
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as imaginairy part of a finite geometric sum. Verify that

/ F,(z)dx = 2m,

—T

and that F (z) — 0 als N — oo, except in integer multiples of 2. To be precise

1 1
0<d<z<m = 0<F < .
<z<m < N<m)_N+1sin2%
For fixed 0 this upper bound is small when N is large. Note that F (x) is even and
2m-periodic. Make plots of F), for some values of N.

Exercise 22.29. Let f be 2w-periodic and continuous. Then is f uniformly con-
tinuous and bounded. Why? Prove that o, f converges uniformly to f as N — oo.

Exercise 22.30. Let f be 2r-periodic, bounded and piecewise continuous, with the
property that in every point the limits from the left and from the right exist. Show
that for every x the sequence o, f(x) converges as N — co. What's the limit? Hint:
split de integral in 4 parts.

Exercise 22.31. Let f : [-m,m] — IR be twice continuously differentiable with
f(xm) = f/(£m) = f"(£7r) = 0. Show that f is the sum of its (uniformly convergent)
Fourier series in every x € [—m,7]. Hint: use partial integration to show the Fourier
coefficients a,, en b, make for summable series.

Exercise [22.29] shows that in the space of continuous functions 27-periodic
functions equipped with the maximum norm

[f e = max[f(z)]

zeR

the Cesaro sums of f converge to f: |o f — f| ~— 0als N — oo.

Fourier series can be traced back to Daniel Bernouilli, who used them to
solve the wave equation

P
o2 Ox?’
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Fourier was perhaps the first to give integral expressions for the coefficients,
when he tried to solve the heat equation

ou  O*u

ot Ox
Nowadays we see the functions

1 : .
—,cos x,sin z, cos 2z, sin 2z, . . .,

and

—3ix _—2ix _—ix _Oix __ X ]
Lyl T e e e =1, e, e e L.

as orthonormal bases in a (Hilbert) space of functions, and the Fourier coeffi-
cients as coordinates with respect to these bases. For a large class of functions
f:(=m,m) — IR the Fourier coefficienten a,, b, and ¢, as coordinates of f
are thus well-defined.

Exercise 22.32. Compute

s T
/ cosnxrcosmxdr and / cosnx sin mx dx
—T —Tr

for integer m and n. Hint: if f”(z) + \f(x) =0 and ¢"(z) + pg(x) = 0 then

s 14"

evaluates as ....... using integration by parts.

Exercise 22.33. Use Exercise [22.32] to show that for f defined by
a N
0 .
f(z) = 3 + kgl(an cos nx + by, sinnz),

it holds that a,, and b,, are given by (22.4) for n < N.

The following programme is meant to get you aquainted with Fourier series.
Use Maple/Mathematica for the plots. The integrals you should do by hand.

291



Exercise 22.34. Let f : (0,7) — IR be given by f(z) = 1 and choose a 27-periodic
even extension f : IR — IR. Determine all Fourier coefficients a,, and b,,.

Exercise 22.35. Let f : (0,7) — IR be given by f(z) = 1 and choose a 27-periodic
even extension f: IR — IR.

1.
2.
3.

. Simplify S, f inz = 3

Determine all Fourier coefficients a,, en b,,.
Plot f and S, f (for some values of N) in one graph.

Investigate numerically what happens to location and value of the maximum of
Syfas N = oc.

us

and compare to f(5). Which sum of which series,
assuming Sy f(5) — f(5), do you obtain?

. Same question for x = 7.

Exercise 22.36. Let f : (0,7) — IR be given by f(z) = sinz. Choose an even
2m-periodic extension f: IR — IR.

1.
2.
3.

Determine all Fourier coefficients a,, and b,,.
Plot f and S, f (voor een aantal waarden van N) in een grafiek.

Simplify S, f in = 0. Compare with f(0). Which sum of which series,
assuming S, f(0) — f(0), do you obtain?

. ldem for z = g

Idem for x =

B

Exercise 22.37. Let f: (0,7) — IR be given by f(z) = cosz and choose an odd
2m-periodic extension f : IR — IR.

1.

Determine all Fourier coefficients a,, and b,, and plot f and S, f (for some
values of N) in one graph.

Compare the behaviour near z = 0 for IV large with that in Exercise [22.35]

. Now take the odd 2m-periodic extension of f(x) =1 — cosz (the difference of

the function in Exercise [22.35] and the function here). Investigate numerically
the behaviour of S f near x = 0 for large N.
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Exercise 22.38. Let f: (0,7) — IR be given by f(z) = 7 — x and choose an odd
2m-periodic extension f: IR — IR.

1. Determine the Fourier coefficients a,, and b,, and plot f and S, f (for some
values of V) in one graph.

2. Differentiate S, f(z) with respect to x and call the derivative d (x). Are there
values of z for which d (x) converges as N — 0o?

Exercise 22.39. Let f: (0,7) — IR be given by f(x) = xz(m — ) and choose an
odd 2m-periodic extension f: IR — IR.

1. Determine the Fourier coefficients a,, and b,, and plot f and S, f (for some
values of N) in one graph.

2. Simplify S f in x = 5. Compare with f(5). Which sum of which series do
you get if S, f(x) — f(x)?

3. Differentiate S, f(x) with respect to = and call the derivative g, (z). Show that
g (z) op IR converges uniformly on IR to a limit function.

4. Determine the limit function numerically.

5. Compare g, (0) with its limit. Which sum of which series do you obtain?

Convergence of Fourier series in the mean was not really discussed so far. Let
a, and b, be the Fourier coefficients of a 27-periodic integrable real valued
function, that is

1 [7 1 [7
ap = — f(x)cos(nz)dx and b, = —/ f(x)sin(nx) dx.
I - T ) .
To answer questions about convergence, i.e. about whether or not
N u N
n;N Cpe™t = 50 + ;(an cosnx + b, sinnx) — f(x)

N J/

Sn(f(z)
as N — oo, convolutions are of great importance.

But what about S f if we don’t have decay rates for the coefficients? We
consider convergence in the 2-norm. The integral

fog= / " f()gla) da (22.48)
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is called the inner product of the functions f and g. If f- g = 0 we say that
f and g are perpendicular. The 2-norm of f is defined by

fl.=~Ff-f, (22.49)

the length of f considered as a vector. Pythagoras could have told us told
us that
frg=0 = |f+gli=If+lgl}. (22.50)

Below we write

Syg(x) = % + Z(ck cos kx + dj. sin k). (22.51)

N
k=1

Now let f have real Fourier coefficients a; and by, and let ¢, and dj be the

real Fourier coefficients of g. Do the following exercises.

Exercise 22.40. The Cauchy-Schwartz inequality says that |f - g| < |f],l|gl,-

1. Prove this inequality for functions f and g with |f|, = |g|, = 1 by evaluating
0< [T (f(x) —g(x)?de=....

2. Prove the Cauchy-Schwartz inequality. Hint: apply[l]to f(z)/|f], and g(z)/|g],.

3. Prove that
|f+gl, <I1fl, + 1gl,- (22.52)

Exercise 22.41. Show that

N
1
5,12 (3 3k 1)
k=1

Exercise 22.42. Show that

N
1
SNf . SNg =T (CLQCO + Z(akck + bkdk)>

2
k=1
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Exercise 22.43. Define R, f = f — S, f and, with

1

UNJ?:‘Rfljf5bf4‘SLf+“"SNf%

let pr:f_UNf'

1.
2.

3.

Show that R, f- S, f=0.
Show that R, f -0, f =0.

Show that
|SNf|§ + |RNf‘3 = |f|3,

whence |S,, f|, < |f|, and (Bessel's inequality)

N
1 1 (7
§a§ +) (af +07) < = f(z)? dx. (22.53)
k=1 -
. Show that
’RNfE + ’UNf - SNf|§ = ’pr‘g
. In Exercise [22.29| we showed for f continuous and 2m-periodic that o, f — f

uniformly on IR as N — co. Prove that then also |R,, f|, — 0, so that (Parceval

equality)
1

1 > ™
S+ D (i + b)) = — [ f(x)*da. (22.54)
k=1 -

Hint: use part [4]

. Show that
f-g= (SNf+RNf) ’ (SN9+RN9)
=Syf-Syg+R,f Ryg.
For f and g continuous and 27-periodic show that

1 1

[oe) 1 T
iaoco + ;(akck + bdy) = = » f(x)g(x)dx = = f-g. (22.55)

Hint: use part [0} Exercise 22.42] and apply the Cauchy-Schwartz inequality to
R.f -Ryg.
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Exercise 22.44. We want to show that Parceval's equality (22.54) holds for 27-

periodic peiceswise continuous functions. Let f : IR — IR be such a function. Show

that there exists a sequence of 27-periodic continuous functions fi : IR — IR with
fi= 1= [ (te) = $@)Pdz =0

as k — oo. Hint: if f is discontinuous in xq, replace f(z) on the interval (z¢ —
%, To+ %) by a linear function, such that the new function f is continuous and linear
on ($0 — %,.’Eo + %)

Exercise 22.45. Prove (22.54)) for f. Hint: the desired equality is equivalent with
IR, fl, — 0. Write

RNf:f*karfk*SkaJVSka*SNf:(f*fk)+Rka+SN(fk*f)

and use (22.52)) and Exercise 3| for S, (fx — f) to make |R, f|, small. Let e > 0,
choose k large as needed, etc.

TO DO. The abstract construction] of a Hilbert space H from C(IRa)
is via Cauchy sequences f1, fo, ..., using the 2-norm, i.e. sequences with

’fn - fm‘Q —0

as m,n — oo. We think of such sequences as approximating some f in the
space H under construction. This is just like decimal or binary expansions
approximating real numbers, by which different expansions can define the
same real number, which we can picture on a number line if we like. Of
course the abstract construction by itself is completely independent of the
pictures.

The standard way to visualise a function is as the graph of that function,
in case of f : IR — IR a subset G of

R? = {(z,y) : z,y € R}
with the property that
VmeR El!yG]R : (fﬂ, y) c G

Here 3! means there exists precisely one with (in this case) the property that
y € R and (z,y) € G. This unique y may then be denoted by f(z). The
formal definition of a graph in IR? is de facto equivalent with the definition
of a function from IR to IR.

26Choices to be made in relation to Section m
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Fourier series in Olver’s book

More old notes to be adapted. Olver’s Section 3.1 derives

% + Z(ak cos kx + by sin kz)e ¥ (22.56)
k=1

as the general form for 27-periodic (in z) solutions u(t, x) of the one-dimensional

heat equation with unit diffusion coeffient:

Ut = Ugy

Important is the eigenvalue perspective, culminating in the table on page
68 and, in the 27-periodic context, (3.27). Note that (3.18) is a solution of
separated variables, the topic of Chapter 4.

The initial data of the solution in (3.27) is f(x) given by (3.28). Section
3.2 explains how the left hand side f(z) and the Fourier series on the right
hand side correspond to one another. The starting point is (3.34) and (3.35)

with a0
fla)~ 2 +>

This notation is introduced because a priori we do not know that or in what

sense a
f(x):3°+z...,

except when f is a trigonometric polynomial, see Exercise 3.2.4.

Note that we interested in both directions. If we compute solutions u(¢, z)
we find t-dependent coefficients of the solution and ask how well the solution
is defined and how smooth it is. If we fit the general solution u(t, x) to initial
data f we do this by fitting the coefficients to the coefficients computed from
f

There are two equivalent forms of the Fourier series, real and complex.
The real cos/sin form of the Fourier series allows a nice and useful distinction
between even and odd functions f(z): Prop. 3.14. The complex form (3.64)
allows for smoother formula’s and proofs and a much smoother transition
to the Fourier integral transform in Chapter 7. Both forms are intrinsically
related to a suitable inner product for functions: (3.30)/(3.61).

One can prove that C* 27-periodic functions f are sums of uniformly con-
vergent Fourier series computed through (3.35). A stronger localised state-
ment is given in Thm 3.30. The uniform convergence result remains valid if
f'(x) has finitely many jump discontinuities (corners in the graph of f) on
its interval of periodicity. However, if f itself has jump discontinuities the
convergence cannot be uniform. It still holds pointwise, but only under the
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strong assumption that f’ is piecewise continuous: Theorem 3.8, proved at
the very end of Section 3.5. A slight variant of that proof, using the mean
value theorem, shows the convergence is indeed uniform if f is continuous
and f’ is (piecewise) continuous.

Remark: jump discontinuities may be removed by subtracting suitably
scaled and shifted sawtooth functions. The resulting continuous piecewise
C'-function has a uniformly convergent Fourier series. For sawtooths we can
examine the behaviour of their Fourier series by direct calculations which are
somewhat reminiscent of the calculations in the convergence proof, and which
also clarify the Gibbs overshoot phenomenon illustrated in Figure 3.7. The
nicest sawtooth to illustrate what’s going on is the odd 27-periodic extension
of

_ZSinx 2sin2x 2sin3x 2sindxr  2sinbx

T =—y + 5 + 5 + 1 + E +... (0<z<m).

If you differentiate the right hand side you get an expression which diverges!
Its truncation after n terms is easily related to the outcome of (3.128) in the
convergence proof.

Exercise. Integrate the resulting expression to conclude that

2 i 2 si v sin(n + 1)s
sing smm::/ Dy (s)ds — =, Dn(s)zg
0

: S
1 n sin 5

This D, is called the Dirichlet kernel. Examine the integral using the n-
dependent scaling y = (n + 1)z (and likewise for s). Identify 7 as a limit of
the integral for n — oo when 0 < z < 7 and

7T‘t OOt
2/ ﬂdt>w:2/ L
o t 0 3

as the limit of the largest maximum of fox D, (s)ds, which occurs in -

1
2
Basis general facts about uniform convergence are Thm 3.26 and 3.27
(which implies Thm 3.29), Prop. 3.28, and the discussion about interchang-
ing sums and integrals just above Prop. 3.28. I will assume these facts
are known. Not mentioned here in the book is that uniform convergence,
illustrated in Fig. 3.11, also comes with a norm, called the maximum or
supremum norm,

IIfIImZSgplf(l“)I,

which is certainly defined if f is 2m-periodic and piecewise continuous in the
sense of Def. 3.6. Note that the inner product norm is controlled by the

298



maximum norm: if the truncation error goes to zero in the maximum norm,
it certainly goes to zero in the inner product norm (but not the other way
around!). It is in general not true that the partial sums s, of the Fourier
series of a 27-periodic continuous function f satisfy

||3n_f||m — 0,

as it is not even clear that s, (z) — f(z) pointwise.

Section 3.5 should be studied in mathematical detail. It discusses not
only uniform convergence, and pointwise convergence, but also convergence
in the mean. The latter is by definition equivalent to convergence in the inner
product norm (3.102) and allows one to think of and work with 27-periodic
functions (for which the inner product norm is defined) as column vectors,
and the Fourier modes as unit base vectors. Think of straight angles and the
Pythagorean theorem here, we will see expressions like

] 1 1 1 2
titott =g
The relevant formula’s are given in the complex notation (3.124), the real
version is discussed in 3.5.38. The proof relies on the essential observation
made in Thm 3.36 that in terms of the inner product norm the n-th partial
sum s, of the Fourier series is the best trigonometric approximation of de-
gree n to f, and that the error goes to zero as n — oo, which amounts to
convergence in the mean.

Convergence in the mean is in fact equivalent to the first Plancherel
(Pythagoras) formula in (3.124). On page 115 the author avoids the con-
sideration of different norms with a direct proof of the Plancherel formula
for the sum function of a uniformly convergent Fourier series. For general
square integrable functions the Plancherel formula then follows by approxi-
mation arguments (the details are not given in the book). Thus, although
for continuous functions even pointwise convergence may fail, as complicated
examples show, one can be content that convergence in the mean always
holds.

Section 3.2 emphasises that Fourier series are not like power series. There-
fore Section 3.3 on what is allowed in differentiation and integration of Fourier
series should be read with care. The statements are only about the coeffi-
cients, not about convergence of the Fourier series, and they follow from
integration by parts. Indeed, the formula’s for the Fourier coefficients can
be integrated by parts whenever f'(x) exists, giving similar formula’s with

1

prefactors  and thus better (and faster) convergence of the Fourier series

than expected from the defining formula’s. The smoother f, the more times
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we can integrate by parts and gain a prefactor %, and thus the better and
faster the convergence of the Fourier series. However, for uniform conver-
gence we need (3.99) with a > 1, which requires more than one derivative
for f, so this trick cannot compete with the direct convergence proof which
only needs the first order derivative.

Nevertheless, the larger we can choose n in (3.100), the smoother the sum

function of the Fourier series: Thm 3.31. Solving PDE’s, we compute Fourier

series solutions
u(t, x) ~ Z .

Solutions of the heat equation u; = u,, are easily seen to be very well-behaved
in this respect as soon as t > 0, even with ugly initial data, because of the
exponentials in (3.27). However, interesting (fractal) issues with respect to
lack of smoothness will appear in Chapter 7 when we solve u; = .., with
e.g. piecewise constant initial data.

Read also Section 3.4 yourself. It discusses simple changes of scale needed
to deal with [-periodic functions f(z), [ > 0. The limit [ — oo leads to the
Fourier integral transform in Chapter 7.

Exercise. Assume that f and f’ are piecewise continuous, so that f’ is
bounded by a fixed constant M. Show that the function g(y) defined imme-
diately after (3.131) is bounded in terms of M. Then split the integral of
g(y)sin(n + 3)y in f06 and [J". The first is bounded in terms of ¢ and M.
Integrate the second one by parts and estimate in terms of §, M and n which
appears in the denominator. Conclude the pointwise convergence proof with-
out using the Riemann-Lebesgue lemma and show that the convergence is
uniform if f is continuous and f’ is (piecewise) continuous.
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23 Transformation theorem

This chapter is only a sketch of what we want. Let’s see what that is from
an example. For R C IR? and continuous f : R — IR we have that

Ox 0 Jy Ox
J[ st sy =[] set0)u00.00) (5155 - 5L 5pparas
f

0 (r,0)—=(z,y) R

i

is reasonably nice. We explore how we can prove such statements.
If
@
(z,y) = (u,0)
is a bijection between R C IRiy and A C IR?W we would like to have that
the integral

//A g(u,v) dudv

relates to an integral with g(u(x,y),v(z,y)) and dxdy over R, perhaps with
the convention that dudv = —dvdu en drdy = —dydx. Let’s assume that R
is a rectangle, e.g. R =10, 1] x [0, 1].

Have a look at and read

(I)1<x7y) —u

F(a,y,u,v) = (@Q(x,y) —v

) instead of F(z,y) = g(y) — .
Unpackingﬂ the theorem we obtain an inverse function theorem which says
that if the Jacobi matrix in in (zg, yo), i.e.

0% 0%y
_ Jr Oy
oxr Oy
is invertible, in some neightbourhood of (ug, vo) = (®1(zo, yo), P2(x0, yo)) the
inverse function

(u,v) 25 (2, )

exists and continuously differentiable. The Jacobi matrix of the inverse map
is the inverse of the Jacobi matrix of ®.

For a transformation theorem we therefore assume that the Jacobi matrix
J(z,y) is invertible in every point of R. This makes A a region in IR, with
four boundary parts parameterised by

r— ®(x,0), y—P(ly), z— P(z,1), y— 0,y).

LChapter [18| explained how to unpack.
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Partitions
(P) 0=ap<ax;<---<zy=1 met N €,

(@) O0=yo<y<---<yw=1 met MeN,
then give (M + 1)(N + 1) parameterisations

r— O(z,y;)) en y— P(z;,y) (i=0,....,M,j=0...,N),

which form a grid of deformed rectangles S;; in A.
A proper definition of Riemann integrability of g : A — IR shouldE| give
that with
M;; =supg and m;; = glfg
ij

ij

> mi| Syl S/AQSZMU’SU’,

in which Sj; is the area of S;;. We then rewrite this as

|51 |51
E m; Ryj| < _E ; R;
]|R “ ]‘ //g J’le” J’

it follows that

and note that
M;; =supf and m;; = i}gff
i

ij

with f =go ®.
It remains to make precisd| that
15 ~ |detJ(x;, y;)| (23.1)
| i

as M, N — oo to obtain the Riemann integrability of

(z,y) = f(x,y)|J(z,y)]

//Rf\deuy://Ag. (23.2)

2To do, note that J is constant if ® is linear.
3See e.g. Section 5 of Chapter III in the Advanced Calculus book of Edwards.

over R and conclude that
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24 Differential forms

Have a look at Section and then look at the first part of the proof of
Theorem [21.6, Dropping the tildes we found that

/va:/abv(a:,f(a:))f’(x) dr and /va:—/abv(a:,f(a:))dx

for a function v € C'(2) vanishing outside a window in which we (locally)
describe the boundary as a graph y = f(x). It is tempting to write

/vm:—/ vdy and /vy:/ vdx, (24.1)
Q o0 Q G

in which the right hand sides are evaluated using the parameterisation[T]

r=z(t)=t and y=y(t)= f(1). (24.2)
z(t), y=f(@t), de=2'(t)dt=dt and dy=y'(t)dt= f'(t)dt.

We have skipped the spaces in front of dx and dy to allow v = v(z,y) =
v(t, f(t)) to cozy up with dz and dy. This reminds us of notation in and

below ((10.6). Can we see the right hand sides of (24.1)) as

/ acting on the 1-forms wvdy = v(z,y)dy and wvdr =v(x,y)dz?
o9

If so, how should we see the (double) integrals on the left hand sides then?
Recall that in Theorem we read the repeated integral

d b
/ / u(x,y) dr dy
C a

function of y

d b
/ {/ U(w,y)dx} dy
and wrote

d b b pd
/ u =/ / u(w,y)dr dy =/ / u(x,y)dy dz,
la,b] x[c,d] c Ja a Je

function of y function of z

as

'We only need a local parameterisation because v was localised by a fading function.
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with a little space in front of dx and dy. This is not yet a notation with
2-forms udxdy as hinted at under Theorem [10.12]
We shall now agred?| that

d b
/ / u(z,y)de dy = / u = / udzdy,
c Ja [a,b]x [c,d] [a.b]x[c,d S~
— —_——— ~——  2-form
function of y J as in Theorem 21.1] integral acting on

in which we view

/ as acting on the 2-form udxdy, u = u(z,y).
[a,b] X [c,d]

The result of this action is equal to

— / u(z,y)dydx
[a,b] x[e,d]

if we adoplﬂ the rule dxdy = —dydx. Likewise, we can then see
/ as acting on both  v,dydr and wv,dxdy,
Q

so that (24.1) can now be read with the forms
vpdydz, vdy, wvydxdy, vdx

having (two different) integrals acting on them. Let’s look at the formal al-
gebra first to see which rules will make the d-algebra work for the expressions
with x,y,d, dx, dy that we encounter.

24.1 Formal d-algebra

The algebra for such “differential” forms developes itself. After du = u'(x)dx
for u = u(x) what else could we have but

du = ugdr + uydy = ?dm + ?dy (24.3)
Z Y

for the d of the 0-vorm u = u(z,y)? This expression is of the formﬁ

fdx + gdy = f(z,y)dz + g(z,y)dy,

2Here we avoid the notation dz A dy used when defining an action of forms on vectors.
3Definition already led us to consider the sign of dz and also dy in relation to |.
4As it happens, a differential form.
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a 1-form that in turn must be ready and willing to have d acting upon it.
Here’s the obvious action:

d(fdz + gdy) = d(fdz) + d(gdy) (a sum rule for d)
= dfdx + fddx +dgdy + gddy  (twice a Leibniz rule for d)

d(}gw) d(;gy)
= (fudx + f,dy) dv + fddz + (g.dz + g,dy) dy + gddy.
S—— S——
definition of df definition of dg

= fodvdr + fydydx + g,dxdy + g,dydy + fddx + gddy  (bye bye brackets)
= fodrdr— f,dxdy+g.drdy+g,dydy+ fddz+gddy  (if we use dydr = —dzdy)
= (9. — fy)dzdy + fddx + gddy  (if we use dxdx =0 = dydy).
The Leibniz rules we used were
d(fdx) = (df)dx + f(ddx), which mimics d(fg) = (df)g+ f(dg),
and likewise
d(gdy) = (dg)dy + g(ddy).

Both rules can then be evaluated using the earlier definition of df and dg,
and a convenient rule for ddx and ddy. Let’s take the simplest choice, we
just introducd’] the rule that

ddx = ddy = 0.

Following old and new rules we then obtain

d
as the action of d on a 1-form. If we’re fine with this action it follows that
u(z,y) LN Uz dr + u,dy N (Uyy — Ugy)dxdy =0

if Uy, = uy,. We're fine with that. Apparently the rules imply that d* = 0.
Using a notation with differential quotients the rules for d-algebra with two
variables are

] d
f 5 Gede Gy, St gdy S G- Gdedy,
fdxdy N 0, gdxdy 4 0,

in which f = f(z,y), g = g(x,y). The (zero) action of d on 2-forms is a
consequence of the rules if we have only two variables.

*Recall we decided that dzdx = 0 because dxdy = —dydzx.
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Exercise 24.1. Look at the forms in (24.1) and see how they are related by the
d-algebra just developed.

We will be looking for a formulation in which the result is

/Q o = /m o (24.5)

for a 1-form w and a bounded domain 2 with sufficiently nice boundary
0€). This result will generalise to (n — 1)-forms and 2 C IR", and is in fact
equivalent to the Gauss Divergence Theorem, Remark in Section [21.11

Exercise 24.2. Do the algebra for

a Of of of
f— 8a:dx+ ayaly+ 8Zdz,
d ,0h Og of oh dg Of
fdz + gdy + hdz — (8y aZ)dydz + (82 ax)dzdnlj + (8x ay)dmdy,
fdydz + gdzdz + hdxdy 2 (g L%, %)dxdydz,
or Oy 0z

hdzdydz % 0,

with f = f(z,y,2),9 = g(z,y,2),h = h(z,y,z). Use the sum and Leibniz rule for
d, the anti-symmetry rules dxdy = —dydzx,dxdz = —dzdx, dydz = —dzdy, then also
dxdx = dydy = dzdz = 0, and ddx = ddy = ddz = 0. Verify ddf = 0 and also
dd(fdx + gdy + hdz) = 0. If dd kills z,y and z, then dd kills all forms. We like d.

Exercise 24.3. Do it again for F' 4 F'(x)dz and f(z)dx % 0 with f(z)and F(x).

Remark 24.4. The notation is consistent with
dr N dy = —dy N dx

in Adams’ calculus book and his treatment of such objects as acting on (pairs
of ) Uectm“sﬂ For now we find it easier not to write wedges between the dzx,
dy, etc.

6Tangent vectors really, written as xy-dependent linear combinations of % and a%'

306



24.2 Pull backs

If v —» f(z) = F'(x) and t — 2/(t) are continuous, say with z(0) = a and
x(1) = b, then

b b b
/f(x)da::/ F’(x)da::/ dF = F(b) — F(a) = F(z(1)) — F(2(0)) =

MW@%=AF%®W@ﬁ:AfWWfWﬁ

In

dx = o' (t)dt (24.6)

we recognise the d-algebra from Section [24.1] and we see that a 1-form f(z)dz
in x is pulled back by t — xz(t) to a 1-form

f(x)dx = f(x(t))'(t)dt (24.7)
in t. Likewise the 1-form
f(x,y)dz + g(x, y)dy

is pulled back by t — z(t) and ¢t — y(t) to a 1-form

[, y)de + g(@, y)dy = (f(x(t),y(t)2'(t) + g(x(t), y(1)y'(t))dt  (24.8)

int. Sot— (x(t),y(t)) leads to

F (e, y)da + gl y)dy "= (Fa(t), y(0)a' () + g(0 (D). y(0)y' (1) de
for a general 1-form, while for the 2-form dzdy we find
dady — o' (t)dt ' (t)dt = &/ (t)y/ (t)dtdt = 0,
not of much use, but

(r,0) = (2(r,0),y(r,0))

gives

ox ox oy oy oxrdy Oyox
dxd —d —do)(==d —Zdf) = (— = — <L —)drdb 24.
vdy = (G + 5 @) (5,0 + 5490) = (5. 56 ~ 3 9 440, (249)

with the determinant] of the Jacobi matrix.

"Plus or minus the area spanned by the two vectors, compare to 1) in Chapter m
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In case of x = rcosf,y = rsin@ this reads
dxdy — rdrdf.

Note that does not correspond to a coordinate transformation but
does. Have another look at the derivation of and replace t by ¢
in [0, 27]. With z(0) = z(27) and y(0) = y(27) this compares to (24.9) with
r fixed, and you discover how the pull back algebra works for

(0,0) = (x(0,9),y(0,9),2(0, ¢) (24.10)

and 2-forms in x,y, 2.

Exercise 24.5. Pull f(z,y,2)dx + g(z,y, 2)dy + h(z,y, z)dz back to a 2-form in
0 and ¢.

Remark 24.6. Note the notationaﬁ space that separates dx and dy in the
common notation with dx dy = dy dx. With x1 and x5 replacing x and y the

notation
/le :/le dx:// Vg, (21, 22) d(1, 22),
Q Q Q

and likewise for the other integral, would be more to my liking but everybody
writes dxy dxy and dz dy, rather than dx = d(z1,x2) and d(z,y). Without
the notational space we have forms dxdy = —dydx that are usually written
with wedges, namely dx N\ dy = —dy N dzx.

8Section [24] introduced notation with dz and dy not separated and dxdy = —dydx.
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25 Some integral equations in two variables

Have a look at Section before you read on. The integral equations in this
section relate to partial differential equations (PDE’s).

Exercise 25.1. Let F : IR — IR be continuous and suppose that u € C?*(IR?) is a
solution of

Uzy = F(u) (25.1)
with © = 0 of the both the axes. Show that
Ty
o) = [ [ Faenands @yem), (25.2)
O (u)(z,y)

This is like a two variable version of ([7.18) with ug = 0 which we solved in Exercise
7.41| using weighted norms.

Exercise 25.2. For F: IR — IR Lipschitz continuous we solve ([25.2)) first in C(Bg)
using the norm
u(z,y)|
max .
22+y2<Rr2 exp(u(a® +y?))

|u‘,u,R =

Show that for every R > 0 there exists u > 0 such that ® is a contraction. Use this
to show that (25.2)) has a unique solution in C(IR?).

Remark 25.3. Did we solve ¢ The solution of does have some
differentiability properties, but it is not so clear whether it is in C’Q(IRQ). Note
that s the nonlinear one-dimensional wave equation

Uyt = Vge + G(V) (25.3)
in disquise. For the linear inhomogeneous wave equation
Uy = Vg + F (8, 2) (25.4)

there exists the d’Alembert solution formula

2/, 2

1 1 T+t 1
v(t,x) = =(f(z — x — — F 25.5
tn =50+ fang [ g [P 039)

for the solution with initial data

v(0,2) = f(z), v(0,2)=g(x) (x€lR). (25.6)

309



I @3
Clt,e) ={(1,8): 0<7<tz+7—t<E{<ax+t—71}

is (part of ) the backwards light cone starting from (t,x), namely the triangle
with vertices (0,x +t) and (t,x). Its measure (area) is t>. Here we restrict
the attention tot > 0. The smoothness of v defined by depends on the
smoothness of f,q, F.

Exercise 25.4. Consider the integral equation

1 1 T+t 1
v(t,x):(f(x—t)+f(x+t))+/ g+// G(v), (25.7)
2 2 )t 2 C(t,x)
which would correspond to the solution of with initial data given by ([25.6)).
Assume that G : IR — IR is Lipschitz continuous with Lipschitz constant L > 0,
and f,g :— IR are continuous and bounded. Let Cr be the space of all continuous
bounded functions v : IR x [0, 7] — IR equipped with the supremum norm, i.e.

vl = sup [u(t, z)|.
z€R
0<t<T

Prove that (25.7)) has a unique solution in Cr for every T with LT? < 1.

Exercise 25.5. (continued) Modify the argument in the spirit of Exercise using
weighted norms

W Ler exp(ut)

0<t<T

to establish that ([25.7]) has a unique continuous solution v : IR x [0,00) — IR which
is in every Cr.

Exercise 25.6. Let I': IR — IR be Lipschitz continuous. Rewrite
Ugy> = F(u) (25.8)

with u = 0 if zyz = 0 as an integral equation and show that the integral equation has
a unique continuous solution u : IR?> — IR. Generalise to IR".
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26 Parameterisations and integrals

Part of this chapter was already done in Chapter 21} Let us recall the main
result, which concerns a bounded open set (2 C IRY with 9Q € C! and a
function v € C1(Q)NC(Q). In the proof of Theorem [21.11| we explained how

/vxi:/ v v (26.1)
Q 1)

follows from local calculations, in which the boundary integrals are actually
defined using parameterisations of a very special form, in the notation of
most of this chapter, v — ®(u) = (u, f(u)), with f : [a,b] — IR. The local
statements led to the global statement via arguments which involved cut-off
functiond] and partitions of unity, which will be discussed as an independent
topic in Section

26.1 The length of a curve

In the 1-dimensional case I now follow Edwardﬂ and write z = ~y(t) with
t € [a,b] and ~ : [a,b] — IRN. For any such ~ the natural definition of the
length would be the smallest upper bound on the set of numbers obtained
via

S ht) =10,

with

a=ty<tp < - <ty =0
Clearly this definition of length is invariant under reparameterisation of v via
strictly monotone bijections ¢ : [a,b] — [¢, d] as in Section[8.5 It’s not a very
hard exercise to show that for continuously differentiable v : [a,b] — IRN the
length is given by

so) = [ W,

and the change of variables formula applied to u = ¢(t) with ¢ € C*([a, b])
with ¢/(t) # 0 confirms that

D u— (o (u) (26.2)

T called them fading functions.
2This was written while teaching from his book Advanced Calculus of Several Variables.
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is in C'([e,d]) with [e,d] = ¢([a,b]), and has the same lengthf| Also, if
f = f(x) is continuous on 7([a,b]) = ®([¢,d]), it follows that

/f /fds—/f NI (B, dt = /f DI ), du= [ pas.

(26.3)
t
~ [ W, dr

defines a reparameterisation for which 4 = ® defined by v(t) = 4(s) = ®(s)

has
17 (s)], = [®(s)], = 1.

Such a reparametrised 7 is called a unit speed path.

As a special case we have that

26.2 Line integrals of vector fields along curves

Besides ([26.3]) as a 1-dimensional example of what is to come in (26.13) we
can also define an integral for F' = F'(z) € IR" continuous on v([a, b]), namely

b b /
[Feas= [ roaw)rwa- [ raw) O ) dr (26.)

but Edwards avoids the commonly used notation in the left hand side of

(26.4). Instead he writes
/ F-Tds,
.

with T" the unit tangent Vectorﬂ defined by
V(1)
1y (B,

For reparametrisations u = ¢(t) with ¢ € C'([a,b]) and ¢'(t) > 0 and P
defined as in (26.2)) above you easily verify that the work

W:/F-ds:/F-Tds:/F-Tds:/F-ds.
ol vy @ @

3The condition that +/(t) # 0 also carries over to ®’(u) # 0.
Twilluse 7 =1T.

T(t) =
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done by the force field F' does not change under reparametrisations u = ¢(t)
with ¢'(t) > 0. Of course

W= / Fds = / F-Tds= / (FL W) + -+ Fu () () de

_ / B () A () dt - + / Fy(3(8)) u(t) dt

dzxy dxr N

leads to the notational convention
/F ~ds = / Fdxy +--- +/ Fydry = / Fidzy + -+ -+ Fydxy. (26.5)
¥ ¥ ¥ ¥

If F =V fitis common to write

/df /—dx1+ +5a—de—/Vf ds =

&

b

b
/ V@) -~ @) dt = f(y(1)],= f(y(b)) — f(7(a)),

a notation which generalises ((10.6]), after which d was seenﬂ as acting on f
to produce df = f’(x)dx. Here we have d acting on f asﬂ

af of
8I1d 1+t adeilZN (266)

df =
These 1-forms act on vectors. Whereas the a-dependent vector|
F(z) = Fi(z)er + -+ + Fy(2)en (26.7)

The vector
U =wv1€1 + -+ UNEN
have and x-dependent inner product

F(z)-v=F(x)vyy+---+ Fy(z)vy

the 1-form
w= F(x)dry + -+ Fy(z)dzy (26.8)

SWriting f instead of F again.

6Compare to l) in Section m

7As in Section [20.2| we consider the e; as column vectors.
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assigns to the same vector v the same x-dependent scalar
Fi(z)vy + - + Fn(z)v,

in which we can insert = y(t) and v; = /(t) to get a t-dependent quantity
that we can integrate from t = a to t = b to define

[ EaOR0+-+ B = [ o

Thus, w evaluated in © = (t) acts on 7/(¢) and is integrated from ¢ = a to
t = b to define f7 w. Note that a reparameterisation of v with u = ¢(¢) and
¢'(t) < 0 changes the sign of the integral.

The notation for w hides the z-dependence, just like the abuse of notation
in f = f(z). In conclusion we have fy f= f7 f ds defined for continuous
scalar functions f = f(z) and f7 w for 1-forms w = Fy(z)dx,+- - -+ F(x)dzy.

26.3 Surface area

We need some linear algebraﬂ for integrals over more general surface patches
then the ones encountered in Section 1.3l We now understand a surface
patch to be a set in IR* parameterised by a continuously differentiable injec-

tive map
®:[0,1] x [0,1] — IR?, (26.9)

with

o0P1 0Py OP3

o0P1 0Po 8@3)
Ous Ous Ous

V@ — (vq)l V@Q V(I)g) — (8u1 6u1 8u1

denoting the matrix of which the columns are the gradients of the N = 3
components ®1, Py, 3 of & with respect to the n = 2 variablesﬂ U1, U in
O = P(u) = O(uy,us), consistent with the notation in Section (20)).

Momentarily switching to a notation with &, ®5, 3 as functions of u, v,
V is the transpose of the Jacobian matrix

(29
ou ov "’

90
ou?

O, (u,v) = au + bv (26.10)

which has column vectors g—f. In the special linear case with

8Theorem
9Everything that follows should generalise or trivialise to 1 < n < N.
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the Jacobian matrix is the transpose of
ap Gz das
VO = AT = ,
( by by b3 )

the matrix example in ([19.14)) starting the discussion in Section below
on

the area My(a, b) of a parallelogram spanned by two vectors a and b

with entries ay, as,as and by, by, bg respectively. This parallelogram is then
the image of [0,1] x [0, 1] under ® defined by (26.10)), and its area is then

equal to Lo 90 9
d 0P

—,—)dud 26.11

/0/0M2(6U,76U) uav, (6 )

the integrand being independent of u,v, as a = 22 and b = 22 are constant

ou ov
vectors is the linear case ([26.10)).
It will be no surprise that (26.11)) will also be used to define the area of

the surface patch defined by ® if ® is not a linear map from [0,1]% to IR?,
and that everything generalises to ® : [0,1]" — IRN with 1 < n < N. We
expand on the linear case of this generalisation next.

26.4 Surface integrals
I now return to (26.11)). Generalising to 1 < n < N we consider

0P ! ! 0P 0P
ENdu =1 ... = 26.12
[0,1] Mn(au)du /0 /0 Mn(auf ’ 3un)dU1 i (26:12)

in which
0P 0P )
ou,” 7 Ouy,
L 1 1
is given by Theorem [19.8, Here du = du; - - - du,, and f[o g = Jo -+ ), are
just notational conventions.

In the special case that n = 1 we have

Mi(®,) = VO ()2 + -+ + P (w)2,

Mn( :Mn<q)u177(bun)

and

ds = My (®,) du = /" (u)2 + - + &' (u)? du

is a common notation, introducedm after a change of coordinates defined by

d
4 O AR

10Tn Edwards Section V.1, his v(t) would correspond ®(u).
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While not corresponding to a change of coordinates the notation
dS = My(®,, ,) dudv,

with the S of surface, is also common. Here I will use dS,, for

ds, = Mn<8_<1>> du = My (®y,,..., 0, ) du, ---du,

ou
in (26.12), i.c.

! ! OP O

For a function f = f(z) = f(z1,--- ,x,) which is continuous on
{z =) : wel01]"},

we write

[ ras.= [ s du= (26.13)
P [0,1]" u

! ! 0P 0P
/0/0 F@un, o )Mo o) du - du,

The subscript ® on the integral is consistent with the case n = 1 and ds =
dS1, and coincides with the notation in the second part of . Personally
I often drop the dS,, from the notation and just write [, f instead of [, fdS,,
and fﬂ{ fifn=1and v = ® is a path in IRN. Af course we can also allow
general closed blocks

[a,b] = [a1,b1] X -+ X [an, by

in stead of [0, 1]™.
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27 Varieties in Euclidean space

In this chapter we think of manifolds as solution sets of systems of equations
in IR". In Chapter [28) this will bother us a bit when we get the topology on
M only from the topology on IR". Think of lines and planes as nontrivial
examples in IR? of linear varieties M. Along M something varies, and the
variations are linear: by definition linear varieties in IRN are solution sets of
systemsﬂ of linear equations, which upon solving these systems are described
as graphs of linear functionﬂ. The typical exampldﬂ of M is the graph
defined byf]

y=Ax +b, (27.1)

in which z € IR", y € IR, A: IR" — IR™ linear, b € IR™, and N =n+m
with n, m € IN.

Exercise 27.1. Use your knowledge of linear algebra to show that a linear variety
M is always the graph of a linear function, unless M is a singleton, and then there is
no reason to call it a variety. After relabelling the variables M is given by (27.1)).

If we see z and y as column vectors then (27.1]) reads as

X

oo

):beIRm,

with C'= (A — I) a somewhat special matrix with m rows and N columns.
The first n columns form the matrix A, the last m columns the diagonal
matrix with entries —1. The matrix C' acts on column vectors

z =
Yy
in IRN. Thus (27.1)) is a system of m linear equation for Nunknowns z1, 29, . . ., 2y:

Ci1z1 4+ Ciazg + -+ -+ Cinay = by

Co1z1 + Conzg + -+ - + Conzy = bo;

!That is, Az = b with A a given matrix, b a given vector, and = the unknown vector.
2You may prefer to call them maps.

3Unless they are empty, a singleton or the whole space, you must have seen this.
4For some other matrix A and some other vector b of course.
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Cm121 + CmQZQ + e+ CmNZN = bm

In the example the coefficient matrix C' has maximale rank, which means
that you can choose m column of C' which together form an invertible square
matrix, in this example the last m columns. More generally, if C' = (A B)
with B invertible, then the system is solved for y via y = B~!(b— Ax), which
defines a graph, just like . We have

Cz=b<+= y=Az+b (27.2)

as equivalent descriptions of non-trivial linear varieties in IRN, under the
assumption that C' hax maximal rank.

27.1 Implicit function theorem in Euclidean spaces

Referring to Theorem [15.4] we use the notation
reX=R"yeY=R", (r,y)eZ=XxY=R""

to formulate the implicit function theorem in the neighbourhood of a point
(x,y) = (a,b). Aiming for a vector version of we assume that (x,y) —
F,(z,y) and (z,y) — F,(x,y) are continuous near (z,y) = (a,b). Equiva-
lently: F'is continuously differentiable in a neighbourhood of (x,y) = (a,b).

Theorem 27.2. (Implicit function theorem) For r > 0 let the IR™-valued
function F be continuously differentiable on B,.(a) x B,(b). If F,(a,b) is
invertible then there exist 69 > 0 and ey > 0, and a continuously differentiable
function

f : B5o(a) — B€0<b)’
such that

{(z,y) € Bsy(a) x Bz, (b) : F(z,y) = F(a,b)} = {(z, f(x)) : = € Bs,(a)}.

It holds that

fl(@) = =(Fy(w, f(2))) " Fa(x, f(z))  for all x € By (a).

The proof can be copied from the proofs of Theorems [I5.1] and [15.2]
Recall that the function  — F(x, f(x)) is never differentiated tot derive the
expression for f'(z) but differentiation of this function does help to remember
the result. The construction of y = f(x) requires first a choice of 0 < gy < r
and then a choice of §; > 0 sufficiently small, which in the end has to be

chosen even smaller to also have f'(z) = —(F,(z, f(x))) ' F.(z, f(z)) for
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|z| < dp. In general it will not be the case that §o > . Thus Theorem
27.2] can be read as stating the existence of 0 < §y < ¢y < r for which the
assertions hold.

Applying Theorem to
F(z,y) =z —g(y)

we obtain the inverse function theorem via the statement

{(z,y) € Bsy(a) x Be, (b)  g(y) = a} = {(2, f(x)) : = € Bs,(a)},
with f'(z) = (¢'(f(z))"! for all z € Bs,(a). The solution y = f(x) of

x = ¢(y) is constructed with the scheme

Yn+1 =Y — 9'(0) 7 (9(yn) — @),
starting from yo = 0. We formulate the result for X =Y =R"eng:Y — Y.

Theorem 27.3. (Inverse function theorem) Forr > 0 let g - Y — Y be
continuously differentiable on B,(b) and let a = g(b). If ¢'(b) is invertible
there exist 0 < 09 < €9 < r and a continuously differentiable injective func-
tion f : Bs,(a) — B, (b), such that for all (x,y) € Bs,(a) x B.,(b) it holds
that & = g(y) <= y = f(z), ond f/(z) = (¢/(F(x))~" for all z € By(a).

N.B. Theorem gives f : Bs,(a) — B.,(b) in Theorem 27.3| only as
continuously differentiable function. Because y = f(z) for © € Bjs,(a) it

follows that « = g(y) = g(f(x)), so f is injective on By, (a), and in view of
f'(x) = (¢'(f(x))~! it must be that f’(x) is invertible in every x € Bj,(a).

This argument does not immediately apply to g: to insert x = g(y) in
y = f(x) we must have g(y) in the domain of f. But Theorem can
be applied once more (interchange the roles of x and y) to obtain 0 < g <
61 < o and a continuously differentiable g; : B, (b) — Bjs, (a) such that for
(z,y) € Bs,(a) x B.,(b) it holds again that x = gi(y) <= y = f(z). From
the earlier equivalence z = ¢(y) <= y = f(z) for all (z,y) € Bs,(a)x Be,(b)
we have that g; = g on B, (b). Just as earlier for f : Bs,(a) — Be,(b) it
follows that ¢; and therefore g is injective on B, (b).

Summarizing we conclude that in the chain

B.,(b) % Bs,(a) = Bs,(a) & B.,(0) > X =Y =R

not only f but also the g in te first link is injective. The second link is the
inclusion map. The keten can be extended to the left. Starting from a met
continuously differentiable

R" > Bj,(a) L R" (27.3)

with f'(a) invertible, we have with b = f(a) a diagram that goes on forever:
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Every image is contained in the open ball. Except for the first top link,
every link is injective but in general not surjective, with invertible f’(x) and

g (y) (because of f'(z) = (¢'(f(z))™" and ¢'(y) = (f'(9(y))™"). Going down
the epsilons and deltas get smaller.

Exercise 27.4. Derive 27.2/from Theorem[27.3l Hint: use F to construct a function
F: RN = R" x IR™ — IR"™ x IR™ which has its last m components given by F(z,y)
and its first n components by x itself.

27.2 General subvarieties

For in general nonlinear subvarietied’]| we ask about an equivalence simliar to
(27.2), starting from the nonlinear version C'z = b, written in Theorem
as’

F(z) = F(z,y) =0,
with ' : IRN — IR™ continuously differentiable. We use the nonlinear version
of to agree what we mean by a subvariety M C IRN:

Definition 27.5. Letn € {1,...,N — 1}. An n-dimensional C*-subvariety
M C IRYN is a set that in a neigbourhood of any of its points can be written like
the level set F(x,y) = F(a,b) in Theorem [27.3: possibly after renumbering
the coordinates it must be that every point p € M has

p=(a,b) € M N By, (a) x Bz, (b) = {(z, f(2)) : & € By,(a)}-

5Not defined yet!
6We prefer to have y to the right of z in the notation.
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for some 69 > 0 and g9 > 0, and some f continuously differentiable from
Bs,(a) to B, (b). If n = N — 1 then M s called a hypersurface.

Exercise 27.6. Let F : IRY — IR™ be continuously differentiable. Assume that
for all z € IRN with F(z) = 0 the derivative F'(z), seen as matrix, has maximal
rank. Prove that {z € IRN : F(z) = 0} is an n-dimensional subvariety of IRN, with
n+m=N.

Exercise 27.7. Give an example of an n-dimensional subvariety M C IRN which is
not given by a function F' as in Exercise 27.6

The standard example for Exercise is the boundary of a ball in IR™ with
center (aj,as,...,a,) and radius 6 > 0:
(x1 —a1)*+ -+ (z, — a,)* — 6> = 0. (27.4)

There are three equivalent ways to say that M C IRN is an n-dimensional
subvariety:

(A) M is locally the graph of a continuously differentiable function
f:IR"—=1IR"™ (n+m=N),

given by y = f(x) after renumbering z = (z,y).
(B) M is locally the zero level set of

F:IRYN = R™ (n+m=N),

a continuously differentiable function with, after renumbering,
F, invertible in the points z = (z,y) € M under consideration.

(C) M is locally the imagd| of a continuously differentiable function
P : R" — IRV,
which is injective and has ®’ of maximal rank.

Theorem showed that (B) = (A), and (A) = (B) because (A) is
a special case of B with F(z,y) = g(y) — x. Likewise (A) is a special case of

"The inverse map of ® is called a chart on M.
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C with ®(x) = (z, f(z)). To complete the circle with a proof that (C) —
(A) we use Theorem and the chain rule.

To wit, consider ® as
®:R" —- R" x IR™,

with, after renumbering, ®(x) = (¥(z),x(z)), ¥ : B.(a) — IR" and x :
B.(a) — IR™ continuously differentiable, and ¥'(a) invertible in a. This
is possible because we assumed that ®’(x) is of maximal rank in = = a.
Theorem [27.3] applied to g = ¥ with y = z, provided us with a continuously
differentiable injective function f renamed here as ¢, ¢ : Bs,(¥(a)) — IR",
with ¢'(€) invertibld for all & € Bj,(¥(a)), and W(4(€)) = ¢ for all € €
Bs,(¥(a)). Thus

§ = @(0(€)) = (V(e(E)), x(0(£))) = (&, f(£)),

with f(&) = x(f(§)), parameterises M in a neighbourhood of b = ¥(a) and
hence M is locally given as the graph of f : Bs,(b) — IRN. The continuous
differentiability of f follows from the chain rule, the first time we use it
actually. The proof of

(A) <= (B) = (C)

is now complete.

Exercise 27.8. Let M C IR" be a subvariety and f : IR" — IR" continuously
differentiable in a neighbourhood of each and very point of M. If f’(x) is invertible
for every x € M and f is injective on M, then the image of M under f is again a
subvariety. Why?

Exercise 27.9. As Exercise 27.8] but with f : R" — IR™ and f’(z) of maximal
rank in every x € M.

8Not used here.
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27.3 Images of ball boundaries
With 0 < g7 < 6 < dg < g9 Theorem provided us with a chain

B.,(b) % Bs,(a) & B, (1)

in which both links are injective but not surjective as every mage is contained
in the open ball. The smaller §; and €; were needed for the injectivity of g
on the smaller closed ball B, (b).

The images of the boundaries 0B, (b) and 0B, (a) are the subvarieties
(0B, (b)) and f(0B.,(a)). In case g and f are linear maps and a = b = 0,
it is easy to see that these images are graphs over the unit sphere

Sl ={zeR": |z| =1}

If A: IR" — IR" is such an invertible linear map, then a height function
h: S"' — IR" can be constructed to make that the image of 9B;(0) under
A is of the form

Sy ={h(x)r: z € S"'}. (27.5)

The function h is contructed by intersecting the half lines
{A\z: A >0}

through x € S"~! with A(0B;(0)). You may prefer to use another name for
x here if you think in terms of y = Ax.

Exercise 27.10. Let A : IR" — IR" be an invertible linear map Prove that every
¢ € S"1 has a unique A > 0 such that \¢ € A(9B1(0)). Setting A = ha(&) defines
ha : S™ ! — IRT. Prove that the image of 9B;s(0) under A has heigth function
£ — dha(§).

These questions and answers about g(0Bx, (b)) and f(0B.,(a)) lead to the
question if the statements in Exercise also hold for the image of a small
ball boundery Bs, (0) under a continously differentiable map F : Bs(0) :—
IR™ of the form

F(z) = Az + R(z) with R(x)=o(|z|) for |z|— 0.

Theorem tells us that F os injective is on a smaller ball By, (0) with
F'(z) invertible (not only for x = 0 but also) for all z € By, (0). The next
exercise is a small project that also requires Theorem [27.2] to be expanded
on.
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Exercise 27.11. Prove the statement in Exercise for the image F(0Bs,(0))
of a small ball boundary Bs, (0). Establish the continous differentiability of the height
function h you construct in a neighbourhood of every point of S”~!, as function of
suitable chosen local coordinates.

27.4 Coordinate transformations

If a point P on an n-dimensional subvariety M of IRN lies in the image
of a ® and a ¥ as in (C) in Section [27.2] say with ®(¢) and ¥(n), and
P = ®(0) = ¥(0), with 0 an interior point of the domains of ® and ¥, then
¢ are n are related by statements as in Theorem in a neighbourhood of
0.

27.5 Higher order derivatives of the implicit function
Apply the implicit function theorem to
F: (z,h) — (F(z), F'(v)h)

and obtain statements about the second derivatives of the implicit function
f constructed before or simultaneously to describe the level set of F' as a
graph.
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28 Integration over manifolds

Section and Section below will concern 3 descriptions of what it
means for M C IRN to be an n-dimensional manifold in IRN. We now use
characterisation (C), and assume in addition that there exist finitely many
injective continuously differentiable

(DZ' : [ai,bi] — ]RN

defined on blocks [a;, b;] as in the elaboration on (C) in Section abovd']
such that

M = ®((a1,b))U- - UD,, ((an, by)) = P1([ar, b1])U- - - U, ([an, by)), (28.1)
and moreover that there exist corresponding smooth functions
C@' : IRN - {07 1]

with
(i+--+¢ =1 on M and supp (o P, C (&i,bi)

for every ¢ = 1,...,I. Here supp (; o ®; is the support of the function
u — (i(P;(u)), defined as the closure of the set

{u € (ai bi) - Gi(Pi(u)) # 0}

We say that v — (;(®;(u)) belongs to C!((ay,b;)), the class of C'-functions
with support contained in the open set (a;, b;).

You can think of each function ¢; as fading the patch ®;((a;,b;)), making
it fade away completely near its boundary where (; = 0, while together the
(; leave the whole of M as bright as it was before. Such fading functions (;
can be chosen to vanish outside a neighbourhood in IRN of the image ®;(K;),
and the collection (3, ..., (., is called a finite partition of unity on M, which
is then (turningﬂ a theorem around which says that such partitions exist if
M is compact) a closed and bounded subset of IRN.

If f: M — IR is continuous we now wish to define

/ fds, = | fadS,+---+ | FCndSy, (28.2)
M (oF] [

which requires a theorem that says this is independent of the choice of patches
and fading functions. We leave this issud’| for now.

'The index ¢ numbering the blocks now.
2Following Steenbrink in his exposition of the Poincaré conjecture in Noordwijkerhout.
3But see later sections.
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Of course the exposition above involves the change of variables theorem
and Section At the end of the day every theorem that we may wish
to prove involving integrals of functions over M may be proved by restating
and proving a local form only.

Finally we note that if the blocks [a;, b;] and the injective continuously
differentiable functions ®; : [a;,b;] — RN with ®'(u) of maximal rank can
be chosen such thatf]

M = (I>1([a1,b1]) UU@m([an,bn]) with @z((az,bl))ﬂq)J((a],bj)) = @
(28.3)
for i # j, then

/ fdS, = [ fdS,+ -+ / fds, (28.4)
M @1 ¢’"L

is the obvious definition which Edwards uses, and which is what you do in
examples. Usually there are many ways to choose the patches.

28.1 More integration of differential forms

We look again at the right hand side of with N = n+1, evaluated for
v; = Cv; with ¢ a cut-off function vanishing outside and near the boundary
of some window

[a’ b] = [abbl] X X [a’NabN]a

in which we now assume a local representation of QN [a,b] given byﬂ
(T1,...,2p) € [a1,b1] X -+ X [an,b,] and ay <any < f(x1,...,2,),

with f € C*([ay,b1] X -+ X [an, b,]) taking values in (ay,by), and

D(ug, .o ty) = (Ut ooy Upy fUr, ..o uy)) (28.5)

parameterising M N [a, b] = 02 N [a,b]. We denote the unit basis vectors by

€1,...,EN.
For n = 2 the vector obtained by the formal determinant manipulation

0P1 0%y 0P3

Auq gul gul 0P 0Dy 0o 0P3 0P3 0D

0P, 0P2 D3| _ | Ou ou ou ou ou ou

iy our ous| = 0B OBh| €3 |08h boh|ert(oeh bei|e2  (28.6)
Ouso Ouso Ouso Ouso Ouso Ouso

€1 €2 €3

4Edwards: a hard theorem says this can be done.
5Like in Section
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is commonly called the cross product of the vectors ®,, and ®,,, and for
D (ur, uz) = (ur, ug, f(ur, ug)) it evaluates agf]

of af of of

=————e — — 28.7
(‘9u1 (9u2 2 8’&1 “ 8u2 et “3: ( )

which is a positive multiple of the unit vector v characterised by having its
last component positive and being perpendicular to the graph defined by
us = f(uy,us). For any continuously differentiable

D : [al,bl] X [CLQ,bQ] — IRS

with ®,, and ®,, linearly independent, the vector defined by (28.6)) is per-
pendicular to the plane spanned by ®,, and ®,,, and can be normalised by
dividing it by its length, which we recognise as

MQ(CDUU (I)U2>

in view of Theorem If we call this normalised vector v, which in case

of (28.7) is simply]
1 of of

_ B _ , 28.8
v ) ( P! 8u262+63), (28.8)

and consider ¥; as the i"® component of a vector field & = (v defined on
M N [a,b], with v a vector field on M, then

/V'@dSQZ
M

0Py 0% 0%3 09, 0B, OB

'~ o 1o} ~ O o ~ F) B)
// (Ul o} 8;3’13‘ + U2 |58y 58| T U3 |5 Hbs > duy dus,
[a1,b1]% [az2,b2] duy  Oug Ous  Oun v 0w l) ——

du

in which we use the short hand notation du = du; dus = dus du;. We may
be inclined to write this as

/ 171 dl‘gdl’g + QNJQ d$3d$1 + 1~}3 d.TleL'Q = / w, (289)
P d

with
w = 1~}1 diL’QdiIZ’g + 1~)2 d%gdl’l + ’l~)3 dl’ld%Q,

6Denoting the partials with subscripts u; and us.
"Please allow the simultaneous use of both expressions in f,, = %.
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using formal rules such ag

3$2 81‘3 8‘I>2 6‘1)3
9 0 19; 19]

d&?gdwg agé aul du1 dUQ 321?2 (9(%1 du1 dUQ .
Ous  Ous i Ous  Ousz Adu

We then have that (28.9)) is equal to

/V v—/ V- o(x dx—/// @vl 0%, +0v dxy dzs dxs,
8x1 aZEQ 8x3 ﬁ/_/

which we will wish to write as an integral of the differential form

C(0n 0y O
dw = (6x1 + al‘g + 8I3

) dxldxgdl'g,
#d

in which dzidxadrs is part of a 3-form and not to be read as dr = dxq drg dxs.
All of the above generaliseﬂ to arbitrary N =n + 1, e.g. we also have

o, Oty 0By O
/Q <8x1 o T o 8934) dx (28.10)

= / 01 dxodxgdry + - - - (cyclicly permutated terms) --- = / w,
P >

using rules like

Oza  Ozz  Oza

iy x T
d$2d$3d$4 8u§ 8_u2 B_u; duldu2du3,

Oy Ows Ows| TN

dus Ous Ous #du

and (128.10]) should be the integral of the 4-form

< 00y 00y 003  OU4
dw =

dxidrodrsdry.
8x1+8x2+8x3+8x4) T1AT2 AL 0T

Clearly such a d-calculus requires rules such as dz;dr; = —dx;dz,. I played
with the formal rules that one might like to have in Chapter [24] see also the
discussion after Theorem [10.12] The notation, used in Edwards, is cumber-
some as the difference between spaces or no spaces between dz; and dz; is
hardly visible, which is a reason to write dx; A dx; instead of dx;dz;.

8Compare this to in Section

9This is why we put the unit vectors in the last row of the determimant in 1}
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We conclude with the simplest but slightly confusing case, n = 1 and
N = 2, when (28.6|) should be replaced by

92, 0%y 0P, 0P,
ou o | =272, 071 28.11
e €3 ou “ ou ©2, ( )

which for
®(u) = (u, f(u))
€2 — f/(u)ela

and leads to

~ o 8(I>2 0(131 (%1 8172
/]\/[ Vv dSl —/[Ll,b} ( Ul ou + 0 ) // <8{L‘1 8;152) dl‘ldl‘g,

in which we dropped the subscripts in a1, b1, u;. Here we have

W = —’171 dQZQ + 'l~12 dl’l with dw = (% -+ %) dxldﬂfz,
1 2

fue= fe

In 2,y notation for w = p(z,y)dr + ¢(x,y)dy we have dw = (g, — p,)dzdy
and

and

/ p(z,y)dr + q(x,y)dy = / (g — py)dzdy, (28.12)
Rlo) Q

which should make you wonder about

/ Py, 2)de + a(.y, 2)dy + (2 y, 2)d,

Y

for v : [a,b] — IR® as in Section m Section below explores what'’s
going on here.

Note that in all these examples the N-form w = f(x)dz;---dzy inte-
grated over the domain €2 should sensibly be agreed to givﬂ

/Qw:/ﬂf(x)dx1~~d:cN:/Qf.

9Don’t confuse this f with f in the local description of the boundary of a domain.

329



28.2 From Green’s to Stokes’ curl theorem

Now consider as a local description of a manifold M and forget about
2 as being a domain with M = 0. Instead let 2 be as in (26.1)) with
N = 2 and let M be the graph of f : @ — IR. Assume for simplicity
that 0f) is parameterised by a 1-periodic continuously differentiable function
t — u(t) = (ui(t),us(t)). Then

t = (un (), us(t), f(ua(t), us(t))) (28.1)
parameterises the “boundary”
OM = {(u, f(u)) : ue 0N},
D (u)

and
u (u, f(u)) (28.2)

parameterises M, with u = (uy, uy) € €.
For
F(.CE) = F1<33'>€1 + Fz(l')ez + Fg(l‘)@g

we introduce
w = Fi(x)dxy + Fy(x)dzy + F3(x)dxs

as in (26.7) and (26.8]) and consider the integral

[ w
oM

/8M w = /0 (Fr(v(0)71 (1) + Fa(v(0)9(1)) + F3(y(8))75(t))) dt

as in (26.5)). It evaluates as

:/o (Fa(u(t), f(u(®)ur(t) + Fa(u(®), f(u(t)))fu (wt)u; (1)) dt

+/0 (Fa(u(t), f(u(®)usy(t) + Fa(u(t), f(u(t))) fu, (ut)uy(t)) dt =

/8 <= /Q ac, (28.3)

0 0
CZ (F1 + Fga—f> du1 + <F2 +F3@_f> du2

U U2

in which
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Next we compute

OF, OF, Of OF, of OF; of of 02 f
= F: dusd
d( (81’2 * 8ZE3 8uQ + 81’2 (‘9u1 + 8133 8’&2 8%1 + 30u28u1 2t
OF, OF, df O0F, 0f OF, Of of 2 f
F: duyd
+ (8271 + 8233 811,1 + 81‘1 @uQ + 0:1:3 8U1 aUQ + 38U18U2 iz,
which in view of dusdu; = —du,duy reduces to
dC = ¢(U1, u2)du1du2 (284)

with ¢(uq,uz) given by

6= oFy 0K\ 0f  (O0Fy  OF 8f oF, 0F (28.5)
N 8952 8;1:3 8u1 81'3 8 a’LLg 8371 8332 B ‘

Vv TV
G1 Gz G3

You should note that the second order derivatives of (28.2)) are dropouts in
the calculations that lead to (28.5)).

Now compare (28.5) to v in (28.8) and recall that for & given by (28.2))

we know that
M?(q)upq)uz) = \/ 1 + fgl + f52

Summing up we thus have

AJFWM&Z

(hello forms)

[ o [ e

(goodbye forms)

/gb / (G-v Mg(éul,CI)uQ):/M(G-y)dSz,

with G derived from F' as indicated in ([28.5), and commonly denoted as
G=VxF,i.e.

(/(FwM&:/XGwM& with G =V x F, (28.6)
oM M
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using the parameterisations as indicatedEL But don’t say goodbye:

28.3 Pullbacks and the action of d
We already saw in the reasoning from (26.5) to (26.6) that d acting on a

Cl-function f = f(xy,...,2y) produces a 1-form
f of of
df = d ——dxy = ——dux;, 28.7
f ry+ -+ (%er TN — a$z i ( )
using the convention that we sum over repeated indices. With f(zq,...,2y)

replaced by u(x,y) this is in Section m There I played with the
d-algebra that emerges whenever you do integration using formal notations
such as , which is just with n = 1 and f(xy,---,2n) replaced
by F(z).

Now consider a parameterisation z = ®(u) as in (C) in Section 27.2] We
use @ to pull back expressions with  and dx4,...,dry back to expressions
with v and duq,...,du,, in a way that is consistent with the discussion
leading to and the formal rules that emerge in the calculations to do
so. Thus we certainly want to deal with

f(z) =¢(u) via z=d(u). (28.8)
A mathematician’s way to do so is to introduce
»=9"(f)=fod, (28.9)
the pullback of f via ®, which then also provides us with
do = (b duy + -+ ;idun. (28.10)

If g is another function of x then clearly

O*(f +g) =2 (f) + 2%(9), @*(fg) = 2" (f)®"(9),
which suggests as a definition of the pullback of a 1-form w = f;dz; that

O*(fidx;) = @*(fi) ©*(dx;), (28.11)

@i

" Figure out that annoying + afterwards? We have, depending on the parameterisation:

/BM(F-T)dSl:i/M(G-u)dSQ.
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in which ¢;(u) = f;(®(u)) as before. This definition would imply that
_of
©*(Dif)(u)

®*(df)

(((u)) ©*(dz;). (28.12)

Note that D;f as notation for the ¥ first order partial derivative of f has
the advantage of not using the variable x in the notation.

On the other hand (28.10]) implies via the chain rule that

= @) du; = 57 (@) T

€T an

d(®*(f)) du;, (28.13)

and comparing to (28.12)) we see that, if we define the pullback of dz; under
® to be

0D,
O* (dx;) = — du,; 28.14
() = o (28.14)
it follows that
O*(df) = ®*(df). (28.15)

The definition of ®*(dx;) by (28.14) is just a formalisation of the familiar

(Lrule”

axi
dr; = — du;
ﬁuj J
for expressing dz; in u, duy, ..., du,, just like expressing f(z) in u via (28.8

is formalised by (28.9)). It implies that the pullback of the 1-form in (28.11

evaluates as

0P,

0,
O*(fidx;) = ¢; . duj = fi(®(u)) E

N J/
-~

with ¢;(w)=Ff;(®(u))

duj = fi(®(u)) D;®;(u) du;. (28.16)

Next we observe that d acting on the resulting 1-form in (28.16)) may be
evaluated, using the chain rule and duydu; = —du;duy, as

09;

() = AU (D(0) G ) = S (0 (w)

0P,
8uj

) dugdu,

- (aiuk(fl(q)(u))) gq)i dugdu; + fi(P(u)) 072,

u; ?ukauj

dupdu; =

~
zero the hero!

o, 00D,
duy, duj = O (Dy f;) 0 02,

of; & 0P, 09,
Ouy, Ou,

oxy, ¢ a_uk Ou,

duy, du;, (28.17)

333



in which we used 5
8$k

in the u-variables. Recall that this was the definition? in Section 24.1] of the
action of d on 1-forms. With

——
@ij
as the obvious defining analog of , we have that
Ofi
k

Comparing to (28.20) to (28.17)) it follows that

provided we define
0P, 00; 09, 00; 09, 00;
O (dxpdx;) = — — dug du; = — duy, du;
(dzvdz:) Ouy, Ou, Gt (8uk Ou;  Ouy 8uj) il R
sum ove;rlgk,jgn sum ove:rlgk<j§n
O( Py, D)
= ————~ duy du; 28.22
aUkan Uk uJ, ( 8 )

in which the underline indicates that we sum over all k, j with 1 < k < 7 < n.
Just as in we see that the actions of d and ®* commute.

Note that the second order derivatives have disapperared in . The
derivation is typically done under the assumption that ® € C?, also in Ed-
wards, and an additional analysis argument is neededﬁ to give meaning to
the results if ® is only in C*, because the determinants in are exactly
the determinants that showed up in and the subsequent derivation
of , where effectively dv = dx; dxydxs is first replaced by a 3-form
dxidxrodrs pulled back to a 2-form dujydus, which in turn is replaced by
du = duy duy again.

The step by step generalisation to the action of d and ®* on k-forms of
any order k is easily made once the reasoning above is understood. For any
k-form

W= fiy,.idTiy - - - dxi,

12Recall the choice to set ddz; = 0, leading to ddw = 0 for any form w.
13Using approximation arguments.
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we have

O*(dw) = d(P*(w)) (28.23)

Every such form may be written as
w= fi i dr--dr;, = ﬁlzk dx;, -+ - dwx;, , (28.24)
where in the second expression we sum only over those iy, ...,4; for which

1 <4 <+ <1 < N. For instance
w = fijdvidz; = (fij — fj) dxiday,
5/_/ ———
but this is not compulsory, as the examples
w= fidzy+ fadrs + f3drs
with cyclic notation for
dfs  0f2

ofi  0fs fs  Oh

dw = (== — ==) dxod — — —") dzad —= — ——) dzd
w (8x2 8303) 2085 + (8ZE3 8951) T3ar1 + <8x1 81’2) 11
— — —
g1 92 g3
and
( = g1 dxodrs + go drsdry + g3 dridzs
with

_ dg1 992 Ogs
d¢ = ((%C1 + D2y + 8953) dzdydz

in Section 28.4] show.

Finally we observe that if we put the coefficients fi, fo, f3 of this w in
a vector F' = fie; + faes + fzesz and the coefficients g1, g2, g3 in this cyclic
representation of dw in a vector G = g1e; + goes + gses, we obtain that

G =V xF,

the curl of F', whereas with the coefficients of 7 we obtain the coefficient of
d¢ as 5 5 5
91 92 93
5’x1 + 8x2 + 8373 =V G’
the divergence of G. These appear in the Gauss divergence and the Stokes
curl theorems for vectorfields in IR® in Section belo. The general
statement is also called Stokes Theorem. It has both theorems in IR® and

Green’s Theorem in IR? as special cases.

4The statement that ddw = 0 corresponds to the div of a curl being always zero:

V- VxF=0.
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28.4 From Gauss’ to general Stokes’ Theorem

From Section and partitions of unity arguments we have that for €2 C
IRN = IR™"! open and bounded, with 99 a compact (N — 1)-dimensional
C'-manifold, and in every p € M, after renumbering, a local description of
QN la,b] given by

ay < zy < f(x1,...,2,) < by
or

an < f(x1,...,2,) < xy < by,

with f € C' and p € (a,b), that there exists a globally defined normal
vectorfield v : 992 — IRN with v(p) pointing out of  in every patch as
above. For every continuously differentiable V :  — IRN it now holds that

u/vv:/‘wvab (28.25)
Q 0N

and this statement is called the Gauss Divergence Theorem.

We now use the reformulation with differential forms and pullbacks of
forms with ® : IR™™! — IRN with N > n + 1 to formulate Stokes’ Theorem
for integral n-forms over ®(M) considered as the boundary of ®(Q), first for
n+1=2and N =3. So let

w= fi(z)dxy + fo(x)dzy + f3(x)dxs (28.26)

and @ : IR> — IR®. Then

. 9P 9P . 9P aP
P P
(I)*(d.ilﬁg) = %dul + %du%

8u1 aUQ
and with 9251 = q)*fl, ¢2 = q)*fg, qbg = q)*fg we have
8(131 8(I>2 aq)S

O(F) = (15— + o + d3—) duy + (92512;1:21 + @9

0P, 0P
8u1 8u1 8u1 + ¢3

81@ 8u2

) dUQ

= p1(u, ug)duy + pa(ur, ug)duy = ¢,
a 1-form that can be integrated over M = 0, and to which ([28.12)) applies,

whence

0 0
/ C:/ p1(ug, ug)duy +p2(“17uz)du2=/(ﬂ—ﬂ)dmdl@:/ dg.
o0 o0 o Ouy  Ouy Q
(28.27)
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Observe that the second equality in (28.27]) holds in view of (28.12)), which
is a rewritten version of (28.25) with N = 2, while the first and the third

merely substitute w = pjdu; + padus and evaluate dw according to ([28.18)).

We need
/ C:/ d*w :/ w, (28.28)
a0 £y} (9Q)

Ld@:Adémuié¢%m0:Amﬁm (28.29)

to conclude for w given by ([28.26f) that

and

/ W = fidzy + fodxoy + f3dxs = / dw, (28.30)
s s s

in which S = ®(Q). It is the last equality in each of (28.28)) and (28.29)

that has to be checked, the other equalities follow from our d-algebra and

the commutation of d and ®*.
Let us once more spell out the d-algebra by which (28.18)) evaluates as

0 0 0
dw = (8_:de1 + a—;f:;dxg + a—idaz;;)da:l

—l—(%d:cl + %dxg + %dﬂfg)dl'Q

0xq 0xs Ows
df3 0f3 0f3 B
+(8x1 dxy + o, dzy + D, dws)drs =
%d:ﬁgdm + %d$1d$2 + %d:ﬁgdm + %d$1d$3 + %dﬂfz + %dargdxg
8962 3x1 8963 8x1 8953 8@
_0f Of fy  of; of  Of;
= (axl axQ)d.Ildl’g + (@1‘2 a$3>dx2d$3 + <81‘3 61:1 )dl’gdl‘l
dfs  0fs oft  Ofs dfy  Of
(6_@ a—x?))dxgdl'g + <8_:v3 Q_le)dx?’dxl + <E)_x1 a—m)dxldm

= qrdzodrs + godrsdry + gsdxidxs.
Comparing to (28.9) we recognise for F'(z) = fi(z)e1 + fa(x)es + f3(x)es that

frdzy + fodwy + fadrs =
ds

afs  0fs ofi  0fs af, Of
/s (6x2 8x3)dx2dx3 + (8m3 axl)dxgdm + (3371 axQ)dxlde

337



:/SG-y:/S(VxF)-u, (28.31)

in which ¢1(x)e; + ga(z)es + g3(z)es = G(x) = V x F and v is the normal
vector on S = ®(Q) defined by ([28.6)).

It thus remains to check the two analytical statements

/ @*w:/ w and /@*(dw):/ dw, (28.32)
e o(09) Q ()

which complement the d-algebra presented above, and which are both of the

form
/ d*w = / w, (28.33)
M (M)

with respectively M = 002 and M = . For this we need again Section
combined with the usual localisations via partitions of unity. Not very hard
but still to be done.

It will be convenient here to have ®(M) described by compositions of ¢
and patches of M, see the remark at the end of Section Also, we still
have to deal with integrals over manifolds with boundaries, to obtain

/ W= / dw, (28.34)
2(69) a(Q)

as the final result in which M = ®(2) is a manifold with boundary OM =
O(092), with Q € IR" as described at the beginning of this section, ¢ a
continuously differentiable injective map from €2 to IRN with Jacobian matrix
of rank n throughout €2, and w an n-form with continuously differentiable
coefficients. Generalisations to piecewise C'-boundaries then still have to be
discussed.

28.5 More exercises

Let €2 be the open unit disk. Then its boundary 0f is the circle defined by
=1
Graph parameterisations such as
z— (,V1—22), x— (z,—V1—22), (28.35)

y—= (WV1I-v%y), y—(—vV1-v%y)
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are ugly for calculations. Much nicer and more in common is of course
¢ — (cos ¢, sin ¢), (28.36)

but parameterisations obtained from substitutions like y = tz in the defining
equation 22 + y? = 1 for 90 are also handy: from 2% + t?2? = 1 we have

1 t 1 t

— Yy =— and rT=———, Yy = ———
vite ! T iie vite!T T Vite

parameterising two semicircles if we let ¢ run from —oo to +o0. With

s
1—s

t= (28.37)

this gives
1—s5 S

VI—2st2s2 ) VT-2s1 252

parameterising {(x,y) € IR : £ >0, y > 0, 22 +y*> = 1} with s € [0, 1].

Exercise 28.1. Use the t-parameterisations above to calculate the area of the unit
disk via integrals such as [xzdy of [ydx over Q. You should get and evaluate
integrandﬁ like
| 1
(1+2)2 142 (1+12)2

Exercise 28.2. Referring to line integral notation with 1-forms, consider the form
w = (a20x2 + a1y + a02y2>dx + (bgoxz + brixy + bong)dy

and evaluate [, w for @ = {(z,y) € R? : 2% +y* < 1} with 9 parameterised such
that (28.11)) defines a vector pointing out of (.

Exercise 28.3. Same as Exercise [28.2] but with
w = (a30x3 + ag 2y + apzy® + aogy?’)daﬁ + (b30x3 + bo1 2y + biazy? + b03y3)dy

Which coefficients disappear in the calculations? Generalise to the obvious nt" order
case.

00 1 e8] 1 o0 1 3
15Recall ffoo Wdt:ﬂ', ffoo mdt: g, ffoo mdt: %7
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Edwards has a nice exercise about Descartes’ Folium from which I lifted
the y = ta-trick above. It allows to find the solutions of

F(z,y) =2 +y* — 32y =0, (28.38)
in the form . 52
t t

with ¢ € (0,00), ¢t € (—1,0) and ¢t € (—o0, —1) giving the smooth parts of the
curve. The origin (0,0) is the intersection of two solution curves, one given

by (28.39)) with ¢t € (—1, 1), the other by (28.39)) with x and y interchanged.
Exercise 2.3 in Chapter V of Edwards is about

Q={(z,y) €