
Fundamentals of analysis and more

Not another ε-book

watch on you tube via

https://youtu.be/taKW6cNomJk
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About the videos for the course

Each playlist has a description of the playlist, and a list of the videos in it.
The videos have informative names, and descriptions with corrections and
links: to the notes, to every previous video and every next video. The first
6 playlists are for the course. Do sneak around in the others too. Whereas
the course notes are organised by topic, the videos are organised in part by
technique.

The short first playlist corresponds to the introductionary Chapter 1 and
sets the scene with YBC7289, Archimedes, and the (set of) real numbers.
The long second playlist then covers what can be done with ε−N arguments
in the context of convergence of sequences of real numbers, the concept of
continuity for functions, and sequences of continuous functions. The number
sequences include sequences obtained from the iteration of contractive maps,
such as in particular Heron’s sequence for

√
2.

Section 4.4 summarises the results on sequences of numbers, continuity
of functions, sequences of continuous functions, and spaces of continuous
functions. It is followed by the first (and only) completely abstract chapter:
Chapter 5 is about abstract metric spaces, includes an outlook on topology,
and concludes the first part (period 4) of the course.

The next four playlists 3-6 are about integration and differentiation,
Chapters 6-11 in the notes. These constitute part two (period 5) of the
course, which starts from square one again: Chapter 6, on the integration of
monotone functions, requires little more than Chapter 1.

Chapter 7 then builds on all of the first part of the course. It covers
the general theory for Riemann integration and uses the Banach Fixed Point
Theorem from Chapter 5 to solve integral equations in spaces of integrable
functions.

Only thereafter, Chapter 8 and playlist 6 introduce and exploit ε − δ
arguments, to establish in particular the integrability of continuous functions
and addresses the issue of the existence of convergent subsequences in Section
4.4. For bounded sequences of real numbers this was settled in Chapter 3.

Chapter 9 in turn, on the algebraic approach to differentiation for power
series, is largely independent of everything done before, although some of the
language from Chapter 4 is used to formulate the results. It introduces the
fundamental approach to differentiation with linear approximations and no
limits but error estimates.

The general theory of differentiation in Chapters 10 and 11 uses the ε− δ
machinery again, to establish the relation between integration and differenti-
ation, and most of the facts for and from calculus. The pointwise continuity
statement in Theorem 8.1 is used in Section 10.2.
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After the first 11 chapters, the student...

1. ... knows basic definitions concerning limits and continuity (convergence,
Cauchy sequence, limit, completeness, continuity, uniform continuity) and
is able to determine whether a sequence, series or function satisfies these
definitions;

2. ... knows the definition of differentiability (i.e., that a function can be
approximated by a linear one), can determine whether a function is differen-
tiable, and is familiar with the more algebraic approach for power series);

3. ... knows the definition of Riemann integrability and can prove that certain
functions (in particular, polynomials, monotone and uniformly continuous
functions) are Riemann integrable, and knows the limit theorems about limits
of integrals of uniformly convergent sequences of functions on [a,b], and of
pointwise convergent monotone functions1;

4. ... knows the definition of basic concepts from metric topology (metric,
convergence, completeness, Banach space) and can prove that certain sets of
functions satisfy these definitions, such as C([a, b]), the space of continuous
functions f : [a, b]→ IR with the uniform metric, and knows that convergence
in this space corresponds to uniform convergence2;

5. ... knows the statement of the Banach Fixed Point Theorem, and can
apply this theorem to solve fixed point equations, in particular integral equa-
tions in C([a, b]) for solutions of differential equations.

Course content

This course treats the rigorous mathematical theory behind Calculus: lim-
its, continuity, linear approximation, differentiability, integrability, and the
mutual relation between these concepts. The mathematical tools that are
necessary for formulating and proving the essential results of Calculus are
first presented in the context of real valued sequences and real valued func-
tions of a real variable, in such a way that everything can later be generalised
(to Y -valued functions of variables in X, with X and Y Banach spaces). The
space C([a, b]) of real valued continuous functions on an interval [a, b] will
appear as the first example of such a Banach space.

Starting point of the course are an ancient iterative scheme for solving equa-
tions, and the fundamental properties of (the set of) real numbers, in relation
to two if you like geometric numbers:

√
2 and 1

3
.

1This will be a not too hard part at the start of the second block.
2This will be a hard part at the end of the first block.
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‘I like fonctions of one variable’

Xavier Cabré adressing Abel prize winner Louis Nirenberg and a small analysis group at Tor Vergata in June 2015.

1 Introduction

These are lecture notes for a first course in mathematical analysis and what
can follow later. In these days of corona I made videos for most of the
topics covered. The video https://youtu.be/taKW6cNomJk should get you
started. Click MEER WEERGEVEN for an overview of the video playlists
that I listed on the front page of these notes. To go the next video click

go to https://youtu.be/4vj5LX_okSA next

and likewise in every second line of the text under every next video. The link
in every first line takes you back to the previous video.

Read the text with every video before you watch it, read the text with
every playlist before you play it. I will still be editing them. Every video has
a link to the playlist it belongs to. First course topics covered are

1. Cauchy sequences, convergence, limits;
2. Completeness of the real numbers; theorem of Bolzano-Weierstrass;
3. Continuity and uniform continuity;
4. The concept of differentiability;
(including differentiability of power series);
5. The concept of Riemann integrability (including Riemann integrability
of monotone and uniformly continuous functions);
6. The language of metric topology;
7. Completeness of the space C([a, b]), uniform convergence;
8. The Banach Fixed Point Theorem (with applications to integral
and differential equations, and the implicit function theorem).

Some of these terms may mean nothing to you yet. This introduction is meant
to give you a flavour of how and what we do in analysis, with some historical
perspective. We introduce some of the notation along the way, as well as a
few basic principles. Some familiarity with what once was highschool calculus
is assumed: limits, continuity, differentiability and integration, in the context
of real valued functions f(x) of a real variable x. In particular you must have
seen the integration formula∫ b

a

f(x) dx = F (b)− F (a),
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in which F is a primitive function of f , meaning that the derivative of F (x)
is given by F ′(x) = f(x).

Perhaps you have also seen Newton’s method, the scheme

xn = xn−1 −
f(xn−1)

f ′(xn−1)
= F (xn−1) (1.1)

for solving the equation f(x) = 0 numerically. Starting with some x0 and
n = 1 this scheme produces a sequence x1, x2, . . . , which typically converges
to a solution of f(x) = 0 very fast, see Chapter 12.2.

Figure 1: Newton’s iterative method for solving f(x) = 0 pictured with the
graph of f . To find the next iterate intersect the line tangent to the graph
in the previous iterate with the horizontal axis.

Exercise 1.1. Consider the graph defined by y = f(x). Use your highschool maths
to write down a formula for the line tangent to the graph of f in the point (x, y) =
(xn−1, f(xn−1)). Intersect this line with the x-axis and denote the x-value in the
intersection point by xn. Show that it is given by (1.1).

Hint: make a picture first, for instance if f is given by f(x) = x2 − 2.

Exercise 1.2. Show for f(x) = x2 − 2 that (1.1) reduces to

xn = F (xn−1) :=
xn−1

2
+

1

xn−1
(1.2)

and experiment, with x0 = 1 as starting value for instance.
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1.1 The square root of two

Have a look at https://youtu.be/DyG1B3WYh-k.

The example in Exercises 1.1,1.2 takes us way back to Babylonian times,
and the origins of differential calculus. It concerns

√
2, a geometric number

which appears as the length of the diagonal in the unit square. The first
recorded attempt1 to compute the positive number r defined by r2 = 2 can
be found on the Babylonian clay tablet YBC7289. Dating back around 37
centuries, it contains the picture of a square with its diagonals, and several
number sequences written in cuneiform.

In decimal notation one of these number sequences is

1 24 51 10

and stands for2

1 +
24

60
+

51

3600
+

10

216000
= 1.41421296,

which is a remarkably good hexagesimal approximation of
√

2 = 1.4142135 . . . ,

the irrational square root of 2.
In our notation this approximation is believed to have resulted from rather

clever calculations employing the approximation

√
1 + x ≈ 1 +

x

2

for small x. The clarifying formula would be that

√
2 ≈ 577

408
≈ 1 +

24

60
+

51

3600
+

10

216000
,

in which the Babylonian approximation is a truncated hexigesimal expansion
for 577

408
. This works as follows.

Let r > 0 be a possibly not so very good approximation of
√

2. Then

√
2 =
√
r2 + 2− r2 = r

√
1 +

2− r2

r2
≈ r

(
1 +

1

2

2− r2

r2

)
=
r

2
+

1

r
,

which is possibly a better approximation of
√

2. You should recognise the
example of Newton’s method in Exercises 1.1,1.2. Starting with the bad

1That I know of.
2The repeating part of the decimal expansion is underlined.
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approximation r = 1 the new approximation of
√

2 is 3
2
, which is not that

bad really. Redoing the approximation with r = 3
2

gives 17
12

, much better,
and r = 17

12
in turn gives

17

24
+

12

17
=

289 + 288

24× 17
=

577

408
≈ 1 +

24

60
+

51

602
+

10

603
,

the approximation on YBC7289, which is where the Babylonians apparently
stopped.

This method for approximating
√

2 is also known as Heron’s method. In
this course we will take these methods to the limit. In Chapter 2 we will
give a proper formulation and proof of the statement that the sequence xn
defined in Exercise 1.2 has the property that

xn →
√

2 as n→∞, (1.3)

to be pronounced as “xn goes to
√

2 as n goes to infinity”. We shall show
that it does so extremely fast.

Figure 2: The first step in the Babylonian scheme. The line tangent to
y =
√
x in (1, 1) intersects x = 2 in y = 3

2
. To find the next iterate intersect

the line tangent in (9
4
, 3

2
) with x = 2. And so on.

1.2 One third of what?

https://www.youtube.com/playlist?list=PLQgy2W8pIli9lL_Yp_4Tr_CG0grGUBdZa

The playlist linked to in the previous line starts with https://youtu.be/

taKW6cNomJk, and concerns another geometric number: the number 1
3

that
appears as the volume V of a pyramid with unit base area and unit height.
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To see how 1
3

appears we divide the pyramid into say 6 horizontal layers of
height 1

6
and write n for 6. The maximal width of each layer varies from 1

at the bottom to 1
6

= 1
n

at the top.

Exercise 1.3. Draw a picture and convince yourself that from top to bottom these
maximal widths are

1

n
,

2

n
,

3

n
, · · · , 1.

Thus the total volume V of the “unit” pyramid is certainly less than

1

n

(
1

n2
+

4

n2
+

9

n2
+ · · ·+ 1

)
=

1

n3

n∑
k=1

k2.

Likewise the minimal widths of the layers are

0

n
,

1

n
,

2

n
,

3

n
, · · · , n− 1

n
,

so V is larger than

1

n3

n−1∑
k=0

k2.

Combining the two bounds we have3

Sn :=
1

n3

n−1∑
k=0

k2 < V <
1

n3

n∑
k=1

k2 =: S̄n, while S̄n − Sn =
n2

n3
− 0

n3
=

1

n
,

in which we don’t really have to exhaust ourselves to understand that this is
also true for values of n different from 10 as large as we like.

How many numbers V can satisfy this inequality for all n? At most one
according to Archimedes. Because for two such numbers, say V < W , we
would have

0 < W − V < S̄n − Sn =
1

n
for all n ∈ IN. (1.4)

Archimedes took it for granted4 that therefore the difference of V and W
must be zero, and who are we to dispute? As a consequence of what we

3This is the first time we use the symbol < but you know what it means.
4https://youtu.be/4vj5LX_okSA
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now call the Archimedean Principle there is indeed at most one number that
qualifies as the volume of the pyramid.

By the way, Archimedes also knew the identity

(Cn)
n∑
k=1

k2 =
n3

3
+
n2

2
+
n

6
,

so the inequalities become

1

3
− 1

2n
+

1

6n2
< V <

1

3
+

1

2n
+

1

6n2

and we see that V = 1
3

fits. If we agree that the unit pyramid has a volume,
then its volume must be 1

3
because it is the only value that fits5. It’s quite

amusing that we actually found this value as the coefficient of n3 in (Cn).
In modern language we say that V is the integral∫ 1

0

(1− z)2 dz =
1

3
,

in which (1 − z)2 is the area of the intersection of the pyramid with a hori-
zontal plane at height z. The integration variable z ranges from z = 0 at the
bottom to z = 1 at the top of the pyramid.

Having guessed (Cn) one way or another you can prove it by induction:
starting with n = 1 and (C1) being a statement that is trivially true, the
implication

(Cn) =⇒ (Cn+1)

is easy to verify. Indeed, using (Cn) we have that

n+1∑
k=1

k2 =
n∑
k=1

k2 + (n+ 1)2 =
n3

3
+
n2

2
+
n

6
+ (n+ 1)2,

which happens to be equal to

(n+ 1)3

3
+

(n+ 1)2

2
+
n+ 1

6
.

So (Cn+1) holds if (Cn) holds. This is called the induction step, which here
is valid for every n ≥ 1. Verifying (C1) via

1∑
k=1

k2 = 12 = 1 =
13

3
+

12

2
+

1

6

5There is no obvious way to think of this volume as one third of the unit cube!
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we then conclude that for every natural number n the identity (Cn) holds
because

C1 =⇒ C2 =⇒ C3 =⇒ C4 =⇒ · · ·

This trick to prove (Cn) for all positive integers n is also called proof by
induction, or domino principle. Think of the nth statement (Cn) as being
written on the nth domino. Put all dominos in a never ending queue. Kick
the first domino (n = 1) over and watch. The statements still to be checked
are on the dominos still standing.

You may have noted that6∫ 1

0

(1− z)2 dz =

∫ 1

0

x2 dx.

This integral belongs to a family

J1 =

∫ 1

0

x dx =
1

2
, J2 =

∫ 1

0

x2 dx =
1

3
, J3 =

∫ 1

0

x3 dx =
1

4
, . . . ,

expressions that you must have seen before for the area Jp of the set

Ap = {(x, y) : 0 ≤ y ≤ xp ≤ 1}

in the xy-plane.
Archimedean type expressions for sums of powers can be used to show di-

rectly that the sequence J1, J2, J3, . . . continues as suggested. Unfortunately
the sum formulas for exponents p larger than 3 become a bit cumbersome.
The inequalities7

n−1∑
k=0

kp <
np+1

p+ 1
<

n∑
k=1

kp

do a quicker job. They hold for all positive integers p, n and dividing by np+1

it follows that
1

np+1

n−1∑
k=0

kp <
1

p+ 1
<

1

np+1

n∑
k=1

kp

for lower and upper approximations of Jp. Since these approximations differ
by 1

n
, Archimedes tells us that

Jp =

∫ 1

0

xp dx =
1

p+ 1
. (1.5)

6Via the substitution z = 1− x.
7Frits Beukers showed me this neat trick.
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holds for every positive integer p. An important goal in this course will be
to give a rigorous meaning to integrals such as (1.5). The above reasoning
will guide us in Chapter 6.

Figure 3: The volume of the tretahedron bounded by x = 0, y = 0, z = 0
and x+ y+ z = 1 in xyz-space is equal to the product of 1

3
and 1

2
. The latter

factor is the area of the triangular base, but how does 1
3

appear? And how
would you measure the object bounded by x1 = 0, x2 = 0, x3 = 0, x4 = 0
and x1 + x2 + x3 + x4 = 1 in 4-space?

1.3 Number sets and the Archimedean Principle

We continue this introduction with an overview of the different number sets
that we use in analysis, tied up with Archimedes’ principle. You are of course
familiar with

IZ = {. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, . . . } ⊂ IQ =

{
p

q
: p ∈ IZ, q ∈ IN

}
,

the set of all integers and the set of all rationals. We think of IZ as a bi-
infinite sequence of marked points on a number line with no endpoints. The
other numbers of IQ lie in the intervals between. If r ∈ IQ is not in IZ then
r = m+ q with m ∈ IZ, q ∈ IQ and 0 < q < 1.

Many geometrically defined numbers such as π and
√

2 are not rational
and correspond to other points on the number line, which we think of as
corresponding to the set IR of all real numbers. Thus

IN ⊂ IZ ⊂ IQ ⊂ IR.
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Beginning with IN all of these are sets with infinitely many elements, as they
all contain the infinite set IN enumerated by 1, 2, 3, . . . . It is also easy to
enumerate IQ, but you really should convince yourself that such a one-to-one
correspondence between IN and the set of all points on the real number line
cannot exist.

To wit, assume
x1, x2, x3, . . .

is an enumeration of IR. Then IR is completely covered by the intervals8(
x1 −

1

4
, x1 +

1

4

)
,

(
x2 −

1

8
, x1 +

1

8

)
,

(
x3 −

1

16
, x3 +

1

16

)
,

(
x4 −

1

32
, x4 +

1

32

)
,

(
x5 −

1

64
, x5 +

1

64

)
,

(
x6 −

1

128
, x6 +

1

128

)
,

etcetera. The total length of these covering intervals is at most

1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
+

1

128
+

1

256
+ · · · ,

which I hope you agree is 1. Similar reasoning would bound the total length
by 1

2
, 1

4
, 1

8
, 1

16
, and so on. This is an absurdity that we are not willing to

accept: the total length9 of the real number line should be larger than any
positive number. Have we proved the following theorem?

Theorem 1.4. The set IR of real numbers is not enumerable. In other words,
IR is not a sequence of numbers.

A more direct proof of Theorem 1.4 is via never ending decimal expansions.
Indeed: one possible and very natural definition of the set IR of real numbers
is by means of such expansions. Assume that the real numbers between 0
and 1 are enumerated by

xn =
∞∑
j=1

dnj
10j

for n = 1, 2, 3, . . . ,

and put the digits10 dnj in a block

8For numbers a < b we denote by (a, b) the set of all real numbers x with a < x < b.
9Here we touch upon measure theory, see cartoon before Chapter 8 and Section 8.4.

10Which can be any of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
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d11 d12 d13 d14 d15 d16 d17 d18 . . .

d21 d22 d23 d24 d25 d26 d27 d28 . . .

d31 d32 d33 d34 d35 d36 d37 d38 . . .

d41 d42 d43 d44 d45 d46 d47 d48 . . .

d51 d52 d53 d54 d55 d56 d57 d58 . . .

d61 d62 d63 d64 d65 d66 d67 d68 . . .

d71 d72 d73 d74 d75 d76 d77 d78 . . .

d81 d82 d83 d84 d85 d86 d87 d88 . . .
...

...
...

...
...

...
...

...

Now choose dn with dn − dnn = 2 or dnn − dn = 2. Then the real number
∞∑
j=1

dj
10j

does not appear as any xn in our enumeration, a contradiction.
To make decimal representations unique, we may choose to exclude ex-

pansions which only have finitely many nonzero digits. The number 1 ∈ IN
is then represented in IR as

1 = 0.9999999 . . . =
9

10
+

9

100
+

9

1000
+ · · · , (1.6)

whence for example

1

9
= 0.11111111 . . . =

1

10
+

1

100
+

1

1000
+· · · = 1

10
+

1

102
+

1

103
+· · · =

∞∑
n=1

1

10n
.

This is just like

1 =
1

2
+

1

4
+

1

8
+

1

16
+ · · · =

∞∑
n=1

1

2n
, (1.7)

which relates to binary representations of the real numbers.
The equalities in the above expressions relate to the Archimedean prin-

ciple again. For instance, the absolute value of the difference between 1 and

1

2
+

1

4
+

1

8
+

1

16
+ · · ·

is clearly smaller than every power of 1
2
, and thus smaller than every 1

n
. Ac-

cording to Archimedes it must thus be zero. We shall honour Archimedes by
stating his principle as a theorem in which we use the modern symbols ∀ and
∃, as well as the proverbial epsilon. Enjoy https://youtu.be/CFGzPqAadEU.
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1.4 Enter the epsilons

The theorem below says that there is no positive real number smaller than
every 1

n
, which is what we used to conclude from (1.4) that the only candidate

for the volume of the pyramid is 1
3
. Our task will be to understand the

mathematical proof of what was obvious to Archimedes11.

Theorem 1.5. The Archimedean Principle:

∀ε>0 ∃N∈IN :
1

N
< ε.

Exercise 1.6. Maybe Archimedes thought of his principle as12

∀ε>0 ∃N∈IN :
1

N︸ ︷︷ ︸
whatever

≤ ε.

Looks weaker as a statement but it’s not13, why?

Exercise 1.7. Explain why the Archimedean Principle with ε = 1
x and x ∈ IR

positive leads to the equivalent statement

∀x∈IR ∃N∈IN : N > x.

Note that for x ≤ 0 the inequality holds for all N ∈ IN.

Exercise 1.8. We used the symbol N to exhibit that the statements in Theorem
1.5 and Exercise 1.7 concern the existence of a single N . For which n other than
n = N do these Archimedean statements also hold?

1.5 The geometric series

See

https://en.wikipedia.org/wiki/Geometric_series

11Don’t we do important work?
12If he ever did. Note the first use of the symbol ≤ and that you know what it means.
13We could choose to write all future ∀ε>0 · · · < ε statements with ≤ ε, but we won’t.
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for the title of this subsection. We have seen in Section 1.3 that in the set
IR it must hold that

1

10
+

1

102
+

1

103
+

1

104
+

1

105
+ · · · = 1

10− 1
.

Substituting 10 = n we “discover” that

1

n
+

1

n2
+

1

n3
+

1

n4
+

1

n5
+ · · · = 1

n− 1
. (1.8)

It’s easy to convince yourself why (1.8) should be true for every integer n > 1:
order one pizza for n−1 persons, slice it in n pieces, eat, slice, eat, and so. If
you have been born with n fingers (n > 1) you are likely to discover (1.8) as
a fact of every day arithmetic life, long before you eat pizza’s. Have a look
at

https://en.wikipedia.org/wiki/Zeno_of_Elea

before we continue but don’t spend too long there.
For x ∈ IR the more general expression

∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + · · · (1.9)

is called a geometric series. The formula

N∑
n=0

xn = 1 + x+ x2 + · · ·+ xN =
1− xN+1

1− x
(1.10)

for the finite sums leads to a remarkable conclusion.

Theorem 1.9. For x ∈ IR it holds that14

∞∑
n=0

xn =
1

1− x
if |x| < 1. (1.11)

Exercise 1.10. Sketch the graphs defined by

y =
1

1− x
, y = 1 + x, y = 1 + x+ x2, y = 1 + x+ x2 + x3, . . .

to see what this actually means.

14We use the absolute value |x| of x for the first time here.
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In particular it follows for all x with |x| < 1 that15

∞∑
n=1

xn = x+ x2 + x3 + · · · = x

1− x
,

which reduces to (1.8) for x = 1
n
, but is a far more general statement16.

A mathematical proof of Theorem 1.9 first of all requires an algebraic
proof of (1.10), i.e. that

N∑
n=0

xn =
1− x
1− x

N+1

=
1− xN+1

1− x︸ ︷︷ ︸
LaTeχ sucks

,

and then a limit argument for N → ∞, which boils down to the statement
that

xN → 0 as N →∞ if |x| < 1. (1.12)

You should contrast this with17

n
√
x→ 1 as n→∞ if x > 0. (1.13)

Making such and other limits statements mathematically sound is another
important task for this course, but don’t ignore the algebraic beauty in (1.10).
The temptation to for now leave Archimedes and the epsilons for what they
are and jump to Chapter 9 is hard to resist. Very hard.

1.6 Exercises

Exercise 1.11. Write
x

1 + x

as a power series for x with |x| < 1, and as a power series in 1
x for x with |x| > 1. As in

Exercise 1.10: draw graphs to examine how well the partial sums do as approximations.

Exercise 1.12. We turn (1.10) around. Show that for every x 6= 1 it holds that

xn − 1

x− 1
= 1 + x+ x2 + · · ·+ xn−1,

15Subtracting 1 on both sides, or multiplying by x.
16Play with this formula, for instance, replace x by −x and draw some graphs.
17How would you use (1.12) to prove (1.13)?
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and observe that the right hand side is equal to n if x = 1. Generalise to

xn − an

x− a
with a and x in IR. What does this tell18 you about the line tangent to the graph
defined by y = xn in x = a?

Exercise 1.13. Look at (1.1). Verify that

f(x) =
x

(1− x7)
1
7

gives F (x) = x8.

What does the scheme xn = F (xn−1) do in relation to f? Play with the obvious
similar examples.

Exercise 1.14. Use long division to find the expansion

1

7
=
∞∑
j=1

dj
10j

.

What’s the periodic part in the expansion? Divide the sum by that periodic part to
obtain (1.8) with n a power of 10 and check that your answer was right.

Exercise 1.15. Find the complete hexigesimal expansion19 of

17

24
+

12

17
=

289 + 288

24× 17
=

577

408
.

Hint: use hexigesimal long division to write the hexigesimal expansion of 12
17 , which

should come out periodic. Then add the finite hexigesimal expansion of 17
24 .

Exercise 1.16. Find a formula for
n∑
k=1

k3.

Hint: try an4 +bn3 +cn2 +dn, find a, b, c, d from n = 1, 2, 3, 4, then use dominos.

18In Chapter 9 this starts an approach to differentiation that avoids the usual limits.
19You need the multiplicative tables in base 60.
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Exercise 1.17. Let p ∈ IN. Complete the expression

ap+1 − bp+1 = (a− b)
p∑
j=0

. . .

and show that

(p+ 1)bp <
ap+1 − bp+1

a− b
< (p+ 1)ap

for a > b > 0. Then put a = k+1 and b = k and take the sum over k = 0, 1, . . . , n−1
to show that

n−1∑
k=0

kp <
np+1

p+ 1
<

n∑
k=0

kp

for p, n ∈ IN. NB In Chapter 6 these inequalities lead to∫ 1

0
xp dx =

1

p+ 1
.

Exercise 1.18. Referring to Exercise 1.12 take n = 7. Use long division to show
that

x7 − a7

x− a
= x6 + ax5 + a2x4 + a3x3 + a4x2 + a5x+ a6,

and then whatever algebra you like to deduce that

x7 = a7 + 7a6(x− a) + (x5 + 2ax4 + 3a2x3 + 4a3x2 + 5a4x+ 6a5)(x− a)2.

What’s the formula for general n ∈ IN?

Exercise 1.19. Use the Archimedean Principle in Theorem 1.5 to show that

∀ε>0 ∃n∈IN :
2019

n
≤ ε.

Exercise 1.20. Show that

∀ε>0 ∃n∈IN :
1

n2
< ε; ∀ε>0 ∃n∈IN :

1√
n
< ε; ∀ε>0 ∃n∈IN :

n

n2 + 1
< ε.
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Exercise 1.21. You may enjoy proving that

1

n
≥ 21−n

for all n ∈ IN. This tells us that

∀ε>0 ∃n∈IN :
1

2n−1
< ε.

Hint: domino principle. When you’re done do this next one:

Exercise 1.22. This exercise and (1.14) will be crucial in (3.8). Recall that we
accept (1.7) as the obvious inequality below, supplemented with an Archimedean
argument that the inequality cannot be strict. Let’s examine the inequality more
closely and cut it up in pieces, for instance

∞∑
n=1

1

2n
=

1

2
+

1

4︸ ︷︷ ︸
3
4

+
1

8
+

1

16
+

1

32
+

1

64
+

1

128︸ ︷︷ ︸
15
128

= 15
16

1
8
< 1

8
≤ 1

4

+ · · · ≤ 1,

to draw additional conclusions such as for example

7∑
k=4

1

2k
<

1

22
.

Generalise and prove that

∀m,n,N∈IN : m ≥ n ≥ N =⇒
m∑
k=n

1

2k
<

1

2N−1
.

Then take N as in Exercise 1.21 to conclude that

∀ε>0 ∃N∈IN ∀m,n∈IN : m ≥ n ≥ N =⇒
m∑
k=n

1

2k
< ε. (1.14)

Exercise 1.23. Use (1.10) to show for n ∈ IN that

nxn−1 <
1

1− x
if 0 < x < 1.
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Exercise 1.24. This exercise relates to (1.12). Suppose that 0 < x < 1. From
(1.10) it follows that20

(N + 1)xN <
1

1− x
for every N ∈ IN. Combine with Theorem 1.5 to show that

∀ε>0 ∃N∈IN ∀n≥N : xn < ε.

Exercise 1.25. This exercise relates to (1.13). Suppose that x > 1. For each
n ∈ IN let y = n

√
x be defined by yn = x. This implies that n

√
x < m

√
x if n > m. To

prove that
∀ε>0 ∃N∈IN ∀n≥N : 0 < n

√
x− 1 < ε

it therefore suffices to prove that

∀ε>0 ∃N∈IN : 0 < N
√
x− 1 < ε.

Prove this latter statement.

Exercise 1.26. This exercise also relates to (1.13). Suppose that 0 < x < 1. Prove
that

∀ε>0 ∃N∈IN ∀n≥N : 0 < 1− n
√
x < ε.

Exercise 1.27. This exercise introduces a happy couple for later. Let p > 1 and
q > 1 be real numbers. Show that

1

p
+

1

q
= 1 ⇐⇒ (p− 1)(q − 1) = 1 ⇐⇒ q =

p

p− 1
⇐⇒ p =

q

q − 1

20Compare to Exercise 1.23.
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1.7 Compound interest

Think of x in Exercise 1.29 as a fixed and positive annual interest rate on
your savings account, n as the number of months in a year, and the bank
multiplying your balance by 1 + x

n
every month. Wouldn’t you like to have

n→∞? And what if x turns negative?

Exercise 1.28. Have a look at

https://en.wikipedia.org/wiki/Binomial_theorem

and then use the domino principle to show that

(1 + a)n = 1 + na+
n(n− 1)

2
a2 +

n(n− 1)(n− 2)

3 · 2
a3 + · · ·

for every n ∈ IN and every a ∈ IR.

Exercise 1.29. (continued) Show that(
1 +

x

n

)n
= 1+x+(1− 1

n
)
x2

2!
+(1− 1

n
)(1− 2

n
)
x3

3!
+(1− 1

n
)(1− 2

n
)(1− 3

n
)
x4

4!
+ · · ·

for every n ∈ IN and every x ∈ IR.

Exercise 1.30. (continued) Write

sn(x) =
(

1 +
x

n

)n
and show that sn+1(x) > sn(x) for x > 0. What would you guess for −n < x < 0?
See if you were right by verifying and using that

sn+1(x)− sn(x) =

(
1 +

x

n+ 1

)n+1

−
(

1 +
x

n

)n+1
+
(

1 +
x

n

)n+1
−
(

1 +
x

n

)n
= (

x

n+ 1
− x

n
)

((
1 +

x

n+ 1

)n
+ · · ·+

(
1 +

x

n

)n)
+
(

1 +
x

n

)n (
1 +

x

n
− 1
)

=
−x

n(n+ 1)

((
1 +

x

n+ 1

)n
+ · · ·+

(
1 +

x

n

)n)
+
x

n

(
1 +

x

n

)n
=

x

n(n+ 1)

(
(n+ 1)

(
1 +

x

n

)n
−
(

1 +
x

n+ 1

)n
− · · · −

(
1 +

x

n

)n)
.
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Exercise 1.31. Show that the supremum

S(x) = sup
n≥−x

(
1 +

x

n

)n
exists as a positive number for every x ∈ IR and think of a better name for S. Hint:
how would S(x+ y), S(x) and S(y) be related?

1.8 Outlook: norms beyond the real numbers

A small detour: you will see elsewhere that (1.11) is true even in the form

∞∑
n=0

An = (I − A)−1, (1.15)

where A is a square matrix, and in which An is a matrix product21, i.e.

A2 = AA, A3 = AAA, A4 = AAAA,

and so on. To give a rigorous meaning to (1.15), we will in fact need a
condition of the form |A| < 1. A possible “absolute value” of a matrix is

|A|
Frob

=

√∑
i,j

A2
ij,

21Matrix products are explained in Section 18.1.
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the square root of the sum of all the squared entries of A. This is called the
Frobenius22 norm of A. The Frobenius norm has the remarkable properties
that

|AB|
Frob
≤ |A|

Frob
|B|

Frob
and |A+B|

Frob
≤ |A|

Frob
+ |B|

Frob
(1.16)

for all square23 matrices A and B of the same size.
In this course we will not so much study matrices and matrix norms.

However, we will often work with the “absolute value” of functions f : [a, b]→
IR, many of which you have seen before. This absolute value or maximum
norm is defined as

|f |
max

= max
a≤x≤b

|f(x)|, (1.17)

if this maximum exists. For two functions24 f and g we will have that

|fg|
max
≤ |f |

max
|g|

max
and |f + g|

max
≤ |f |

max
+ |g|

max
, (1.18)

where in general |fg|
max

< |f |
max
|g|

max
.

We will speak about fn → f for sequences of such functions, just like
we speak of convergent sequences of real numbers xn. This concept of con-
vergence of sequences of functions will be extremely useful for solving many
problems in analysis, including integral and differential equations.

1.9 An exam question: inverting functions

Figure 4: Using lines parallel to the tangent line in the starting point to
define functions g1, g2, . . . of y. Exam Problem 4 in Section 11.6.

22To some dismay of Euclides and Pythagoras perhaps.
23In general AB 6= BA! In fact the estimates only require AB or A+B to be defined.
24With clearly fg = gf .
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2 What Heron tells us about sequences in IR

https://www.youtube.com/playlist?list=PLQgy2W8pIli8enQPliiLO8VW6XdQF8rkT

Before you watch the above playlist recall https://youtu.be/DyG1B3WYh-k
and Exercise 1.2. Heron’s scheme with x0 = 1 produced the numbers

x1 =
3

2
> x2 =

17

12
> x3 =

577

408
> x4 =

665857

470832

and so on, a number sequence xn indexed by n ∈ IN, designed by Heron to
solve the equation

x2 = 2. (2.1)

In time we shall think of such sequences as actually defining real numbers.
For x > 0 we now introduce the notation

x̃ = f(x) =
x

2
+

1

x
, (2.2)

which we think of as an input-output relation defined by the formula1 f(x).
The input is some freely chosen x, and the output is some other x̃, defined
by (2.2). With this notation every xn in Heron’s sequence is obtained as an
x̃ from a previous x = xn−1, starting from the fixed initial value x0 = 1.

Figure 5: The xy-plane with the graph of f , the diagonal, and the first few
iterates on the axes. Such pictures help you understand what’s going on:
(fast) convergence to the solution. But we don’t need them to continue.

1Or the function f if you like, but note we’re not solving f(x) = 0 here, why?
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Note that2

x̃2 − 2 =

(
x

2
+

1

x

)2

− 2 =

(
x

2
− 1

x

)2

> 0

unless x2 = 2, and that x̃ differs from x by

x̃− x =
x

2
+

1

x
− x =

1

x
− x

2
=

1

2x
(2− x2). (2.3)

Thus it follows that

x2
n > 2 and 0 < xn+1 < xn for all n ∈ IN. (2.4)

In particular Heron’s sequence (of rational numbers xn) has

3

2
= x1 > x2 > x3 > · · · >

4

3
,

in which 4
3

is a rather arbitrarily chosen rational lower bound for the decreas-
ing rational numbers in the sequence. Our goal is to show that this lower
bound may be replaced by the larger lower bound

√
2, and that no larger

lower bound is possible.

Exercise 2.1. Prove that 4
3 is indeed a lower bound for the sequence, but that there

are larger rational lower bounds.
Hint: maybe verify first that

√
2 > 4

3 . Or maybe not. Simpler is to use that the
squares are all larger than 2 and the reciprocals are all bounded from below by 2

3 .
Write what xn+1 is and factor out the reciprocal of xn.

We shall want to be able to conclude that

xn →
√

2 (2.5)

as n gets larger and larger. We therefore have an urgent need for (a meaning
of) the statement

xn → x̄,

for some x̄ we usually don’t know yet a priori3. The reasoning should then
be that

xn = f(xn−1)→ x̄ = f(x̄), (2.6)

2The trick to remember is that (a+ b)2 − 4ab gives .....
3Although in this example we do have a hunch.
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and that therefore x̄ is a solution of

x = f(x) =
x

2
+

1

x
,

a purposefully perverted equivalent version of the equation x2 = 2 we were
hoping to solve. In particular this will involve the implication

xn → x̄ =⇒ f(xn)→ f(x̄), (2.7)

which will be called continuity of f in x̄.

Exercise 2.2. Verify that for x 6= 0 the equation

x =
x

2
+

1

x

is equivalent to the equation x2 = 2.

2.1 Bounded monotone sequences have limits!

This section comes with https://youtu.be/kqvlUrbURtk. We saw that
Heron’s sequence is strictly decreasing and bounded from below. Sequences
of numbers4 xn with either

x1 ≤ x2 ≤ x3 ≤ · · · or x1 ≥ x2 ≥ x3 ≥ · · · ,

are called monotone sequences, and we shall first restrict the attention to
such monotone sequences. There are two types of them: nondecreasing and
nonincreasing.

If such a sequence is bounded we think of it as approximating a number,
be it rational or irrational. For instance, the sequence

1

2
,
1

2
+

1

4
=

3

4
,
1

2
+

1

4
+

1

8
=

7

8
,
1

2
+

1

4
+

1

8
+

1

16
=

15

16
,
1

2
+

1

4
+

1

8
+

1

16
+

1

32
=

31

32
, . . .

is bound to approximate the rational number 1. Most nondecreasing bounded
sequences however will define a number which is not rational, as you can infer
from Theorem 1.4.

4For the moment rational numbers.
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Exercise 2.3. Show that there exists a sequence

x1 = 1 < x2 = 1.4 < x3 = 1.41 < x4 = 1.414 < x5 = 1.4142 < x6 = 1.41421 < · · · ,

such that for every n ∈ IN the number xn is the largest number5 with n digits that
has the property that x2

n < 2.

The idea behind the construction of IR is to add to IQ all the lowest upper
bounds of bounded nondecreasing sequences6 which do not approximate a
rational number. This is consistent with the decimal approach in the proof
of Theorem 1.4 and in Exercise 2.3. The resulting7 set IR has the property
that it contains IQ, and is just like IQ as far as the algebraic operations
addition and multiplication, and the ordering of the numbers are concerned.

Unlike IQ the set IR has the important property that every nondecreasing
bounded sequence xn in IR has a smallest upper bound (supremum)

S = sup
n∈IN

xn ∈ IR.

This number S will turn out to be the unique limit of xn. Likewise every
nonincreasing bounded sequence has a largest lower bound (infimum)

L = inf
n∈IN

xn ∈ IR

which must be the limit of that sequence. Let’s make these notions precise.

Definition 2.4. Let xn be a sequence of numbers in IR indexed by n ∈ IN.
Then the sequence is called

• nondecreasing if
∀n∈IN : xn ≤ xn+1,

i.e. xn ≤ xn+1 for every natural number n;

• strictly increasing if
∀n∈IN : xn < xn+1;

• nonincreasing if
∀n∈IN : xn ≥ xn+1;

5Counting 5 digits in 1.4142.
6And then also the real non-rational largest lower bounds of nonincreasing sequences.
7Details of this construction are omitted, we assume the existence of such a set IR.
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• strictly decreasing if
∀n∈IN : xn > xn+1;

• bounded from above if

∃M∈IR ∀n∈IN : xn ≤M,

in which case the number M is called an upper bound; a number S ∈ IR
is called a lowest upper bound (supremum) for the sequence xn if it is
an upper bound and if there are no upper bounds M with M < S,
notation

S = sup
n∈IN

xn ∈ IR;

• bounded from below if

∃m∈IR ∀n∈IN : xn ≥ m,

in which case the number m is called a lower bound; a number L ∈ IR
is called a largest lower bound (infimum) if it is a lower bound and if
there are no lower bounds m with m > L, notation

L = inf
n∈IN

xn ∈ IR;

• bounded if it is bounded from below and bounded from above.

For example, Heron’s sequence is a strictly decreasing bounded sequence,
bounded from above by M = x1 = 3

2
, and bounded from below by m = 4

3
.

In particular the following theorem applies to it.

Theorem 2.5. Every nonincreasing bounded sequence in IR has a unique
infimum in IR. Equivalently: every nondecreasing bounded sequence in IR
has a unique supremum in IR.

We will not prove this theorem8. It follows from every proper construction of
IR, for instance via decimal expansions as used in the proof of Theorem 1.4
and Exercise 2.3. Applied to Heron’s sequence Theorem 2.5 gives us L

Heron
,

the largest lower bound of the Heron sequence. Our goal is to prove that

L
Heron

=
√

2,

and we need some definitions to get started with this proof.

8But see Section 3.8.
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2.2 The epsilon-limit definition

This section comes with https://youtu.be/phCHnY6lCcI. The defining
property of the infimum L of a sequence xn is that xn ≥ L for all n ∈ IN,
and that there is no larger number for which this is also the case. Thus, if
ε > 0, the number L + ε is not a lower bound, meaning there must exist
N ∈ IN such that xN < L + ε. Since the sequence is nonincreasing it then
also follows that

L ≤ xn ≤ xN < L+ ε for all n ≥ N.

We conclude that

∀ε>0 ∃N∈IN ∀n≥N : |xn − L|︸ ︷︷ ︸
See Exercise 1.6!

< ε, (2.8)

a statement to be pronounced as9: for all (real numbers) ε > 0 there exists a
natural number N such that for all natural numbers n with n ≥ N it holds
that

the distance between xn and L︸ ︷︷ ︸
d(xn,L)=|xn−L|

is smaller than ε. For now d(x, y) is only a short hand notation for the
distance between two real numbers x and y, which we agree to be equal to

d(x, y) = |x− y|, (2.9)

the absolute value of x− y. Here we use algebra10 with real11 numbers.
By the way, the statement in (2.8) makes sense for every real L and every

real sequence12, not just for monotone sequences.

Definition 2.6. A sequence of real numbers xn indexed by n ∈ IN is called
convergent if there exists an L ∈ IR such that

∀ε>0 ∃N∈IN ∀n≥N : |xn − L| < ε.

We then write
xn → L (as n→∞),

or equivalently
lim
n→∞

xn = L.

The number L is called the limit of the sequence. We say that xn converges
to L (as n goes to infinity). We often don’t explicitly write “as n→∞”.

9Equivalent: ∀ε>0 ∃N∈IN ∀n∈IN : n ≥ N =⇒ |xn − L| < ε.
10For now: a human activity with the operations +,−,×, / and certain algebraic rules.
11So it’s not really algebra....
12It does not matter that n runs from 1 upwards, any other starting integer is fine.
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Take note of the convention that Greek letters always stand for real numbers
and the lower case letters in the middle of the alphabet are integers, unless
otherwise specified.

Remark 2.7. Convergence of the sequence xn means that

∃x̄∈IR ∀ε>0 ∃N∈IN ∀n≥N : |xn − x̄|︸ ︷︷ ︸
d(xn,x̄)

< ε. (2.10)

The negation of (2.10) reads

∀x̄∈IR ∃ε>0 ∀N∈IN ∃n≥N : |xn − x̄|︸ ︷︷ ︸
d(xn,x̄)

≥ ε. (2.11)

The negation is obtained from (2.10) by negating the statement following the
semi-colon, and changing every ∃ to ∀ and vice versa. Sequences that are not
convergent, i.e. for which (2.11) holds, are called divergent.

Remark 2.8. Is Definition 2.6 of any use? Recalling the continuity state-
ment (2.7) Heron’s method requires to know that

lim
n→∞

xn = L =⇒ lim
n→∞

x2
n = L2. (2.12)

Proof of (2.12). We know that the left hand side of the implication in
(2.12) says that |xn − L| is small for n large. To prove the right hand side
we have to show that |x2

n − L2| is small for n large. Note moreover that

|x2
n − L2|︸ ︷︷ ︸

small for n large?

= |xn + L|︸ ︷︷ ︸
not too large?

· |xn − L|︸ ︷︷ ︸
small for n large!

, (2.13)

in which the multiplicative dot is included for the purpose of clarification
only. We first make the smallness of the second factor in (2.13) precise using
the definition of xn → L. So let ε > 0. Then according to the definition of
xn → L there exists N ∈ IN such that

∀n≥N : |xn − L| < ε. (2.14)

With the factor |xn − L| small there’s neither need nor reason for the first
factor in the right hand side of (2.13) to be small. We do want get rid of
its n-dependence though, to make sure that the product of the two factors
is also small. To this end we apply the definition of xn → L with just one13

convenient choice of ε > 0, say ε = 1, and we obtain14

∃N1∈IN ∀n≥N1 : |xn − L| < 1.

13See also your proof Proposition 2.9 below.
14With a subscript 1 on N to distinguish from the N for the arbitrary choice of ε > 0.
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The triangle inequality15 then gives

|xn + L| = |xn − L+ 2L| ≤ |xn − L|+ |2L| < 1 + 2|L|, (2.15)

for all n ≥ N1. Note very carefully how we bring |xn − L| into play in the
first step of (2.15) by16 subtracting and adding L before we use the triangle
inequality.

Combining (2.14) and (2.15) it follows from (2.13) that

|x2
n − L2| = |xn + L||xn − L| ≤ (1 + 2|L|) |xn − L| < (1 + 2|L|)ε (2.16)

for all n ≥ max(N,N1). Writing M = 1 + 2|L| we have thus established that

∀ε>0 ∃N∈IN ∀n≥N : |x2
n − L2| < Mε. (2.17)

If it happens to be the case that M ≤ 1 then the proof is complete with
(2.17), but here this only occurs if L = 0. For L 6= 0 we have M > 1.

Now recall that to estimate the second factor in (2.13) we used (2.14)
with the ε > 0 that was given at the start of the proof. But we can also use
(2.14) with ε > 0 replaced by

ε̃ =
ε

M
, (2.18)

which is also positive17. This will give a different value of N , say Ñ , such
that

∀n≥N : |xn − L| <
ε

M

holds. It then follows that

|x2
n − L2| = |xn + L||xn − L| ≤M |xn − L| < M

ε

M
= ε

for all n with18

n ≥ max(N1, Ñ).

Since ε > 0 was arbitrary this then completes the proof that x2
n → L2.

Proposition 2.9 records one of the two19 important items in this proof. �

It’s https://youtu.be/CCApJK8xrdQ next.

15This triangle inequality will be reviewed in Exercise 2.13 below.
16The subtract and add the same term trick.
17Let’s call this the M -trick.
18With a tilde on N to distinguish from the earlier (also arbitrary) choice of ε.
19The other one being the trick with M .
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Proposition 2.9. Any convergent sequence is bounded, i.e. if xn is conver-
gent then there exists M > 0 such that |xn| ≤M for all n.

Exercise 2.10. Prove Proposition 2.9.
Hint: apply the definition of convergence with just one20 convenient choice of ε

and use the triangle inequality. Don’t forget the n with n < N .

Proposition 2.11. The limit of a convergent sequence is unique.

Exercise 2.12. Prove Proposition 2.11.
Hint: if not then there are two limits, say L1 and L2, and you can apply the

definition of convergence twice, with L1 and with L2; the subtract and add trick21,
the triangle inequality, and the specific choice22

ε =
1

2
|L1 − L2| > 0

allow you to derive a contradiction.

Exercise 2.13. Note that (2.8) is the first occurrence of an absolute23 value in a
definition. We recall that |x| = x for x ≥ 0 and |x| = −x for x < 0. In the proof of
(2.12) we used the triangle inequality, which reads

|a+ b| ≤ |a|+ |b|.

Prove that this inequality, as well as the reverse triangle inequality24

||a| − |b|| ≤ |a− b|

hold for all a, b ∈ IR. Combined these statements are equivalent to

||a| − |b|| ≤ |a+ b| ≤ |a|+ |b|, (2.19)

which you may like to memorise.

20So you don’t use the full strength of the definition!
21As in the proof of (2.12).
22This requires the full strength of the definition!
23Recall the absolute value |x| is also called the norm of x.
24A nice statement about the map x→ |x| from IR to [0,∞).
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Exercise 2.14. Substitute a = x− z and b = z − y to obtain

|x− y|︸ ︷︷ ︸
d(x,y)

≤ |x− z|︸ ︷︷ ︸
d(x,z)

+ |z − y|︸ ︷︷ ︸
d(z,y)

,

in which we indicate what the triangle inequality looks like if we implement the notation
introduced in the discussion of (2.9).

Theorem 2.15. If xn is a convergent sequence with limit L, then |xn| is also
a convergent sequence, with limit |L|.

Exercise 2.16. Prove Theorem 2.15.
Hint: use the reverse triangle inequality.

Exercise 2.17. Let N ∈ IN. Prove that

|x1 + · · ·+ xN | ≤ |x1|+ · · ·+ |xN |

for all x1, . . . , xN ∈ IR.

2.3 What about Heron’s limit?

We note from (2.3) that Heron’s sequence has

xn+1 − xn =
1

xn
− xn

2
,

whence
2xn(xn+1 − xn) = 2− x2

n. (2.20)

Exercise 2.18. Recall that Heron’s sequence is convergent. Use this to prove25

that xn+1 − xn → 0.

Exercise 2.19. Prove that it holds for Heron’s sequence that x2
n → 2.

Hint: combine (2.20) and Exercise 2.18.

25And give an example of a divergent sequence for which xn+1 − xn → 0.
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Exercise 2.20. Recall that

LHeron = inf
n∈IN

xn = lim
n→∞

xn.

Prove that L2
Heron

= 2.
Hint: combine Exercise 2.19 with (2.12).

Exercise 2.21. Prove there is only one positive real number L such that L2 = 2.
No hint.

Exercise 2.22. By construction LHeron is a positive number because LHeron ≥ 4
3 . Prove

that LHeron is the only positive real number which squares to 2. This then justifies the
conclusion that LHeron =

√
2.

Exercise 2.23. Exercise 2.3 produced a bounded nondecreasing26 sequence which
therefore has a supremum S. Prove that S2 = 2. Thus S = LHeron =

√
2.

2.4 Suprema and infima of sets

Every sequence xn ∈ IR indexed by n ∈ IN defines a nonempty subset

{xn : n ∈ IN} ⊂ IR.

Likewise every function f : [a, b]→ IR defines a set

Rf = {f(x) : a ≤ x ≤ b},

called the range of f . This section will be a bit of an abstract project on the
properties of subsets of IR, and is necessary for Theorem 4.4 in Chapter 4
and for the theory of integration in Chapter 6.

Definition 2.24. A nonempty subset A of IR is called bounded from above
if there exists M0 ∈ IR such that a ≤M0 for all a ∈ A. Such an M0 is called
an upper bound for A. Likewise, A is called bounded from below if there
exists m0 ∈ IR such that a ≥ m0 for all a ∈ A. Such an m0 is called a lower
bound for A.

26Is that sequence strictly increasing?
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We want to show that every nonempty subset A of IR which is bounded from
above has a lowest upper bound. Suppose that A is such a set, and let M0

be an upper bound for A. Take an a0 ∈ A and consider

m0 =
a0 +M0

2
.

If m0 is also an upper bound for A define a1 = a0 ∈ A and M1 = m0. If m0

is not an upper bound then there exists a1 > m0 with a1 ∈ A and therefore
a0 < m0 < a1 ≤ M0. In this case define M1 = M0. In both cases if follows
that

a1 ≥ a0, M1 ≤M0, 0 ≤M1 − a1 ≤
M0 − a0

2
.

Repeat the argument. This gives a2 ∈ A and an upper bound M2, a3 and
M3, and so on. We thus obtain two bounded monotone sequences. The
nondecreasing sequence an has a supremum ā and the nonincreasing sequence
Mn has an infimum that we will call S.

Exercise 2.25. Prove that S = ā, and that S is the lowest upper bound of A.

It may or may not happen that S ∈ A, but in both cases the conclusion is
the same:

Theorem 2.26. Let A be a nonempty subset of IR which is bounded from
above. Then A has a lowest upper bound S in IR, notation

S = supA.

Likewise, if A is bounded from below then A has a largest lower bound I in
IR, denoted27 by

I = inf A.

Remark 2.27. Thus S en I are real numbers, if they exist. If A is not
bounded from above we say that supA =∞. If A is not bounded from below
we say that inf A = −∞. Neither ∞ nor −∞ exists, for that matter.

27Before we used L, for reasons of presentation.
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2.5 Examples of convergent sequences

In Section 2.2 we tailored the definition of convergence so that the following
theorem has already been proved.

Theorem 2.28. Every bounded monotone sequence in IR is convergent. If
the sequence is nonincreasing then its limit is the infimum of the sequence, if
the sequence is nondecreasing then its limit is the supremum of the sequence.

This theorem in particular implies that the limit of the sequence

1

1
,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
, . . .

exists, but it does not yet tell us that this limit is 0.

Theorem 2.29. The set IN is not bounded from above in IR and therefore
(the Archimedean Principle in limit form)

lim
n→∞

1

n
= 0.

Exercise 2.30. Use Definition 2.6 to explain why Theorem 1.5 in Section 1.8 is
equivalent to Theorem 2.29.

Proof. By Theorem 2.28 the limit exists as the largest lower bound of the
sequence 1

n
. It is also clear that 0 is a lower bound. Could there be a larger

lower bound? If so this would imply that there is a lower bound28 m > 0 for
the sequence, i.e.

1

n
≥ m > 0 for all n ∈ IN and thus n ≤ 1

m
= M ∈ IR

for all n ∈ IN. This looks absurd: how could the sequence

1, 2, 3, 4, 5, 6, 7, 8, 9, . . .

be bounded?
Actually it cannot, according to the first statement in the theorem. If

it were, then the sequence xn = n would have a supremum S ∈ IR. With
this lowest upper bound S at our disposal29, we then observe S− 1

2
is not an

28Here m ∈ IR. Alternatively: reason from existence of ε > 0 with 1
n ≥ ε for all n ∈ IN.

29To dispose of in fact.
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upper bound. This means that there exists n ∈ IN with n > S − 1
2
. Hence30

the number n + 1 ∈ IN satisfies n + 1 > S + 1
2
> S and disqualifies S as

the supremum of the sequence xn = n, since S would not even be an upper
bound. This completes the proof of Theorem 2.29. In particular we have

inf
n∈IN

1

n
= 0, (2.21)

and Theorem 1.5 is also proved. �

Exercise 2.31. Why does it now also follow that

1

2n
→ 0

as n → ∞? Adapt the argument in the proof of (2.21) if that adapted proof wasn’t
already part of your answer.

It is highly unlikely that you will be impressed by Theorem 2.29 and the result
in Exercise 2.31, but we had to make sure that what obviously must be true
can indeed be proved within our framework for mathematical analysis. There
are many more such obvious statements.

Example 2.32. Spelling it out again. The sequence xn defined by

xn =
n− 1

n+ 1

is convergent. You don’t need to be knowledgable in mathematics to guess
its limit: when n is large the numerator and denominator contain the same
large term, so the limit is bound to be 1. To prove the obvious let ε > 0 be
arbitrary. We need to establish that∣∣∣∣n− 1

n+ 1
− 1

∣∣∣∣ < ε

for n sufficiently large, i.e. larger than some N which will depend31 on ε.
Observe that ∣∣∣∣n− 1

n+ 1
− 1

∣∣∣∣ =

∣∣∣∣ −2

n+ 1

∣∣∣∣ =
2

n+ 1
,

30We use that n ∈ IN =⇒ n+ 1 ∈ IN.
31As before we prefer not to use a subscript on N when ε > 0 is not specified.
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and that

2

n+ 1
< ε ⇐⇒ n+ 1 >

2

ε
⇐⇒ n >

2

ε
− 1 =

2− ε
ε

.

Thus the desired inequality is equivalent to

n >
2− ε
ε

,

which certainly holds for all n ∈ IN if ε ≥ 2. For ε < 2 we invoke the
Archimedian Principle again. Observe that it is more convenient to just use
the restated form in Exercise 1.7, without making the distinction between
ε ≥ 2 and ε > 0. This gives the existence of an N ∈ IN with

N >
2− ε
ε

,

for otherwise the set IN would be bounded from above. But then32 also

n >
2− ε
ε

for all n ≥ N.

In both cases we have shown that there exists N such that33 .∣∣∣∣n− 1

n+ 1
− 1

∣∣∣∣ < ε for all n ≥ N.

This proves the claim that34

lim
n→∞

n− 1

n+ 1
= 1.

�

2.6 Basic limit theorems for sequences

Proposition 2.33. Assume that

lim
n→∞

xn = L.

If xn ≥ a for some number a ∈ IR and all n ∈ IN then also L ≥ a. The same
statement holds with ≥ replaced by ≤.

32See the point made by Exercise 1.8.
33Was the careful reasoning with inequalities really necessary? See Exercise 1.6.
34More of the same in Exercise 2.52.
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Exercise 2.34. Prove Proposition 2.33.
Hint: assume that L < a and apply the Definition 2.6 with ε = a− L to derive a

contradiction. Can the conclusion of Proposition 2.33 be strenghtened if xn > a for
all n?

Exercise 2.35. Here’s a variant of the subtract, add, then trangle inequality trick
that we will use for product sequences next. Let a, b, c, d ∈ IR. Prove that

|ab− cd| ≤ |a− c| |b|+ |c| |b− d|.

Theorem 2.36. If xn and yn are convergent sequences, with limits x̄ and ȳ,
then so are the sequences xn + yn, xn− yn and xnyn, with limits x̄+ ȳ, x̄− ȳ,
and x̄ȳ respectively.

Proof of the sum statement: https://youtu.be/up8ET9go3FI. The
limit of the sequence xn + yn should be x̄ + ȳ, so we have to show that the
distance between xn + yn and x̄ + ȳ is small for n large. We will try to
estimate this distance in such a way that the distances |xn − x̄| and |yn − ȳ|
come into play. There is no general approach here, you have to figure out
how to do it. If we use the triangle inequality with an intermediate step we
obtain

|(xn + yn)− (x̄+ ȳ)|︸ ︷︷ ︸
d(xn+yn,x̄+ȳ)

= |(xn − x̄) + (yn − ȳ)|︸ ︷︷ ︸
reshuffled

≤ |xn − x̄|︸ ︷︷ ︸
d(xn,x̄)

+ |yn − ȳ|︸ ︷︷ ︸
d(yn,ȳ)

. (2.22)

The equality in (2.22) is a reshuffle trick. It uses the algebraic properties of
addition and subtraction in IR.

With (2.22) we are in position to start up the proof with a default sen-
tence.

Let ε > 0 be arbitrary.

Since xn → x̄ we have

∃Nx∈IN ∀n≥Nx : |xn − x̄|︸ ︷︷ ︸
d(xn,x̄)

< ε,

in which we use a subscript x on N to indicate that this is the statement for
the sequence xn to converge to x̄.
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We then do copy-paste followed by search x replace by y.

Indeed, since yn → ȳ we have

∃Ny∈IN ∀n≥Ny : |yn − ȳ|︸ ︷︷ ︸
d(yn,ȳ)

< ε,

in which we use a subscript y on N to indicate that this is the statement for
the sequence yn to converge to ȳ.

Next we set N = max(Nx, Ny) to let the ε-engine run.

Our initial estimate (2.22) and the two ε-statements establish that

∀n≥N : |(xn + yn)− (x+ y)|︸ ︷︷ ︸
d(xn+yn,x̄+ȳ)

< ε+ ε = 2ε. (2.23)

Now we are not completely happy with 2ε. Looking back at the proof of
(2.12) we conclude that we must invoke a 2-trick rather than an M -trick, see
(2.18). We replace the default choice ε > 0 above by

ε̃ =
ε

2
, (2.24)

which is also positive. This then gives two different values Nx and Ny, say
Ñx and Ñx, such that

∀n≥Ñx : |xn − x̄|︸ ︷︷ ︸
d(xn,x̄)

< ε̃,

and
∀n≥Ñy : |yn − ȳ|︸ ︷︷ ︸

d(yn,ȳ)

< ε̃.

With
Ñ = max(Ñx, Ñy)

our initial estimate (2.22) and the two new ε̃-statements establish that

∀n≥Ñ : |(xn + yn)− (x+ y)|︸ ︷︷ ︸
d(xn+yn,x̄+ȳ)

< ε̃+ ε̃ = ε.

Since ε > 0 was arbitrary we have verified that

xn + yn → x̄+ ȳ as n→∞.

�
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Remark 2.37. In hindsight we might just as well start with (2.22), jump
to (2.24) and continue from there to finish the proof. Before we allow our-
selves to think about such proof shortenings we do the proof for the product
sequence. And then we shall reconsider our lack of happiness with (2.23),
and maybe forget about (2.24) and what followed.

Proof of the product statement: https://youtu.be/up8ET9go3FI.
The limit of the sequence xnyn should be x̄ȳ, so we have to show that the

distance between xnyn and x̄ȳ is small for n large. Therefore we estimate
this distance first, trying to get the distances |xn − x̄| and |yn − ȳ| into play.
Again there is no general approach. If we use the subtract, add, then trangle
inequality trick from Exercise 2.35 and write

xnyn − x̄ȳ = xnyn − x̄yn + x̄yn − x̄ȳ = (xn − x̄)yn + x̄(yn − ȳ),

it follows that

|xnyn − x̄ȳ|︸ ︷︷ ︸
d(xnyn,x̄ȳ)

≤ |xn − x̄|︸ ︷︷ ︸
d(xn,x̄)

|yn|+ |x̄| |yn − ȳ|︸ ︷︷ ︸
d(yn,ȳ)

. (2.25)

Next we do copy-paste of what’s between (2.22) and (2.23) but undo paste
before we continue. Uuuuh, maybe not. Here’s a partial paste.

Let ε > 0 be arbitrary.

Since xn → x̄ and yn → ȳ we have

∃N∈IN ∀n≥N : |xn − x̄|︸ ︷︷ ︸
d(xn,x̄)

< ε and |yn − ȳ|︸ ︷︷ ︸
d(yn,ȳ)

< ε,

in which N is the maximum of the two subscripted N ’s we had from the
definition of xn → x̄ and the definition of yn → ȳ.

Now we use (2.25). We arrive, for the same N ∈ IN, at

∀n≥N : |xnyn − x̄ȳ| ≤ |xn − x̄|︸ ︷︷ ︸
<ε

|yn|+ |x̄| |yn − ȳ|︸ ︷︷ ︸
<ε

. (2.26)

If we are not happy with the prefactor |x̄|, we are even more unhappy with
the n-dependence in the postfactor |yn|. Fortunately we have Proposition 2.9
at our disposal. Thus there exists M > 0 such that |yn| ≤ M for all n ∈ IN
and it follows from (2.26) that

∀n≥N : |xnyn − x̄ȳ| < (M + |x̄|)ε. (2.27)

Now we are happy again, because with (2.27) we are at the same point as
in the proof of (2.12) with (2.16). The M -trick with M replaced by M + |x̄|
concludes the proof that xnyn → x̄ȳ and well deserves a remark next. �
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Remark 2.38. A sequence xn converges to x̄ if and only if

∃M>0 ∀ε>0 ∃N∈IN ∀n≥N : |xn − x̄|︸ ︷︷ ︸
d(xn,x̄)

< Mε,

so from now on we will be happily content with < Mε in the proofs of ∀ε>0-
statements ending with < ε, or ≤ ε for that matter.

Exercise 2.39. Prove the statement in Remark 2.38 as well as the statement in
Theorem 2.36 for xn − yn.

Theorem 2.36 does not deal with quotients. Suppose xn 6= 0 is a convergent
sequence with limit x̄ 6= 0. We would like to prove that

1

xn
→ 1

x̄
as n→∞.

You may like to sketch the graph defined by

y =
1

x

in the xy-plane for what follows. We observe that

|xn − x̄| < ε ⇐⇒ xn ∈ (x̄− ε, x̄+ ε) (2.28)

so applied to ε = 1
2
|x̄| we have

xn > x̄− ε =
1

2
x̄ > 0 if x̄ > 0, xn < x̄+ ε =

1

2
x̄ < 0 if x̄ < 0,

for n ∈ IN with n ≥ N as in (2.8). In both cases it follows that

|xn| >
1

2
|x̄| whence

∣∣∣∣ 1

xn

∣∣∣∣ < 2

|x̄|
(2.29)

and therefore also ∣∣∣∣ 1

xn
− 1

x̄

∣∣∣∣ =
|xn − x̄|
|x̄| |x̄n|

≤ 2

|x̄|2
|xn − x̄|.

This basically proves the following theorem35.

35You may like to state and prove a theorem which only requires the limit to be nonzero.
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Theorem 2.40. Let xn be a sequence with xn 6= 0 for all n. If xn is conver-
gent with limit x̄ 6= 0 then the sequence 1

xn
is convergent with limit 1

x̄
.

Exercise 2.41. Recalling the continuity statement (2.7) you should note here again
that Theorem 2.40 is in fact the same statement in every x̄ 6= 0 for f defined by

f(x) =
1

x

in x 6= 0. Write out a complete proof of Theorem 2.40. And verify that, no matter
what value we assign to f(0), this statement is false in x̄ = 0.

2.7 Exercises

Exercise 2.42. Let a, b ∈ IR with a < b. Use the Archimedean principle to show
that there exists q ∈ IQ with a < q < b.

Hint: b− a > 0. This is called the density of IQ in IR.

Exercise 2.43. Let a, b ∈ IR with a < b. Show that there exists c ∈ IR with
a < c < b but c 6∈ IQ.

Hint: consider a−
√

2 and b−
√

2 and use the result in Exercise 2.42.

Exercise 2.44. Define sequences sn and Sn by

sn =
n∑
k=1

1

k(k + 1)
and Sn =

n∑
k=1

1

k2
.

Use partial fractions to compute a formula for sn and take the limit n → ∞. Then
prove that

lim
n→∞

Sn

exists.
Hint: the conclusion would follow from Sn ≤ sn, but that’s not the case because

k(k + 1) > k2. If you use k(k + 1) < (k + 1)2 however....
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Exercise 2.45. Define the sequence sn by

sn =
n∑
k=1

1

k(k + 2)
.

Determine the limit as n→∞.

Exercise 2.46. Same question for

n∑
k=1

1

k(k + 3)
.

Exercise 2.47. Same question for 3 replaced by 4, 5, 6, . . . : find a nice sum formula
for the limit of

n∑
k=1

1

k(k +m)

as n→∞ if m ∈ IN.

Exercise 2.48. It’s not easy to generalise the telescope trick in Exercise 2.44 for

Sn =
n∑
k=1

1

k2

to other exponents in the denominator. Here’s that neat trick36 of Gauss again, for
sums of the form

Sn =
n∑
k=1

bk,

with bk nonnegative and nonincreasing. Play with

b1 + (b2 + b3) + (b4 + b5 + b6 + b7︸ ︷︷ ︸
22b7≤···≤22b3

) + (b8 + b9 + b10 + b11 + b12 + b13 + b14 + b15︸ ︷︷ ︸
23b15≤···≤32b8

),

and so on. See what you conclude for

n∑
k=1

1

kp

as n→∞, depending on p > 0.

36See also Exercise 1.22.
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Exercise 2.49. Use monotonicity arguments to examine the convergence of the
sequence xn defined by xn = f(xn−1) if x0 = 1 and f is given by

f(x) =
1

4− x
, f(x) =

√
2 + x, f(x) =

√
2x.

Exercise 2.50. Does the sequence

√
2,

√
2 +
√

2,

√
2 +

√
2 +
√

2, . . .

converge?
Hint: figure out37 what’s on the dots and determine a limit if you can.

Exercise 2.51. Same question for

√
2,

√
2
√

2,

√
2

√
2
√

2, . . . ,

and then, for both sequences, play with p ≥ 1 instead of 2, as we so often do.

Exercise 2.52. For each of the following sequences decide on convergence and
prove your conclusion directly from Definition 2.6.

(−1)n,
1 + n

2 + n
,

n2

n2 − 1
2

,

√
1 + n2

n
,

√
n+ 1− 1√

n
, n

(√
1 +

1

n
− 1

)
,
1 + n2

n
.

Determine, without proof, the suprema and infima of these sequences, if they exist.

Exercise 2.53. We define the integer part of x ∈ IR by

[x] = sup {n ∈ IN : n ≤ x}.

For each of the sequences38 xn in Exercise 2.52 decide on convergence of [xn].

37Which f would generate the sequence?
38Call them xn.
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Exercise 2.54. Suppose that the sequence xn is convergent with limit L. Referring
to the proof of (2.12): give a proof in the same spirit that x3

n → L3 if n→∞.

Exercise 2.55. Let k ∈ IZ and xn be a sequence indexed by

n ∈ INk = {n ∈ IZ : n ≥ k}.

Give the obvious definition of xn being convergent.

Exercise 2.56. Give a definition of xn → ∞ which is equivalent to xn > 0 for
sufficiently large n and 1

xn
→ 0 as n→∞.

Exercise 2.57. Referring to Theorem 2.36: assume that ȳ 6= 0 and prove that

xn
yn
→ x̄

ȳ

as n→∞, the quotient rule for limits of sequences.

Exercise 2.58. Let xn be a convergent sequence of real numbers indexed by n ∈ IN,
and let

ξn =
1

n

n∑
k=1

xk =
1

n
(x1 + · · ·+ xn)

be the sequence of averages. Does

lim
n→∞

ξn

exist? Prove your answer. Can it happen that this limit exists if the sequence xn is
divergent?

Exercise 2.59. For a sequence xn we can define the sums

Sn =
n∑
k=1

xk and the “Cesàro” sums σn =
1

n
(S1 + · · ·+ Sn).

Find an example of a sequence xn → 0 with Sn divergent en σn convergent.
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Exercise 2.60. For a ∈ (0, 1
4) define the sequence xn by x0 = 1 and

xn = 1− a

xn−1
.

a) Use induction to show that xn >
1
2 for all n ∈ IN.

b) Use induction to show that xn < xn−1 for all n ∈ IN.

c) Prove that the sequence xn is convergent. What is its limit?

Exercise 2.61. For a ∈ (0, 1
4) define the sequence xn by x0 = 0 and

xn = a+ x2
n−1.

a) Use induction to show that xn <
1
2 for all n ∈ IN.

b) Use induction to show that xn > xn−1 for all n ∈ IN.

c) Prove that the sequence xn is convergent. What is its limit?

Exercise 2.62. Let P be the second degree polynomial given by39

P (x) = x+
x2

2
.

This is to show that the equation P (x) = 1 has a unique solution in (0, 1) without
actually solving it. Note that P (0) = 0 and P (1) > 1. Define the sequence xn by

xn = xn−1 + 1− P (xn−1) for all n ∈ IN and x0 = 1.

a) Show that in the xy-plane the point (xn, 1) is the intersection of the line y = 1
with the line through (xn−1, P (xn−1)) with slope 1.

b) Show that
P (x)− P (y) > x− y if 0 ≤ y < x ≤ 1,

c) Prove that xn and P (xn) are strictly decreasing sequences with P (xn) > 1.

d) Show that
inf
n∈IN

P (xn) = 1.

39This will come back in Exercise 7.79, and the same ideas in Exercise 7.74.
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e) Let
p = inf

n∈IN
xn ≥ 0.

Show that P (p) ≤ 1. Hint: if not then P (xn) > P (p) > 1.

f) Show that
P (x)− P (y) < 2(x− y) if 0 ≤ y < x ≤ 1.

g) Show that P (p) = 1. Hint: if not then P (p) < 1, use P (xn) < P (p)+2(xn−p).

h) Why is x = p the unique solution of P (x) = 1 in (0, 1)?

Exercise 2.63. Show that

x+
x2

2
− x3

6
− x4

12
= 1

has a unique solution in the interval (0, 1).
Hint: get your inspiration from Exercise 2.62.

Exercise 2.64. Show that

x+
x2

2!
− x3

3!
− x4

4!
+
x5

5!
+
x6

6!
= 1

and

x+
x2

2!
− x3

3!
− x4

4!
+
x5

5!
+
x6

6!
− x7

7!
− x8

8!
= 1

have unique solutions in the interval (0, 1).

Exercise 2.65. Let A and B be nonempty subsets of IR. We say that A ≤ B if
a ≤ b for all a ∈ A and all b ∈ B. Prove that supA ≤ inf B if A ≤ B.

Exercise 2.66. Let A and B be nonempty subsets of IR. What can you say about
the supremum of A ∪B in terms of supA and supB? Prove your statement.
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Exercise 2.67. Same question for the suprema and infima of40 A+B and A−B
in terms of supA, supB, inf A and inf B.

Exercise 2.68. Let In = [an, bn] be a sequence of closed intervals in IR with
In+1 ⊂ In for all n ∈ IN. Prove there exists c ∈ IR such that c ∈ In for every n ∈ IN.

2.8 Cliffhanger: limits and limit points

Recall that Remark 2.7 and (2.10) said convergence of xn ∈ IR means

∃x̄∈IR︸ ︷︷ ︸
limit exists

∀ε>0 ∃N∈IN ∀n≥N : |xn − x̄| < ε. (2.30)

Clearly one issue remains: a reformulation of (2.30) that does not involve the
limit x̄, which Proposition 2.11 said was in fact unique if (2.30) holds true,
while Proposition 2.9 said that any such convergent sequence is bounded.

It is clearly not true that every bounded sequence is convergent, as the
simple counterexample

xn = (−1)n

shows. The sequence

xn = (−1)n +
1

n

provides another such example, but do note that x2n → 1 and x2n−1 → −1,
so 1 and −1 do seem to appear as limits. Since they are not, not of the
sequence xn that is, we think of them as limit points instead.

We now announce a fundamental theorem that says that

every bounded sequence in IR has a limit point41,

and we will use this very limit point theorem to prove that a certain French
engineer was right in proposing that a sequence xn should be convergent if
and only if

∀ε>0 ∃N∈IN ∀m,n≥N : |xn − xm| < ε. (2.31)

That is to say, if (2.31) holds, then

∀ε>0 ∃N∈IN ∀n≥N : |xn − x̄| < ε (2.32)

holds, and x̄ ∈ IR is then the unique real number for which this is the case.

40A+B = {a+ b : a ∈ A, b ∈ B}, A−B = {a− b : a ∈ A, b ∈ B}.
41A point that satisfies ∀ε>0 ∀N∈IN ∃n≥N : |xn − x̄| < ε, spot the difference with (2.32).
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3 Contractions and non-monotone sequences

Until Section 3.3 this corresponds to https://youtu.be/RgzhfiwrCkk in the
epsilon-N playlist. We present another approach to conclude that Heron’s
sequence has a limit, the story of the first part of this course really. In this
approach we do not use the monotonicity of the sequence, but look at the
size of the “increments”

ξn = xn − xn−1.

These increments or steps can be used to reproduce xn from x0 because

xn − x0 = x1 − x0︸ ︷︷ ︸
ξ1

+ · · ·+ xn − xn−1︸ ︷︷ ︸
ξn

=
n∑
k=1

ξk︸ ︷︷ ︸
Sn

. (3.1)

In n steps1 we get from x0 to xn. The special case x0 = 1 was dealt with in
Chapter 2. In the exposition below we will take x0 > 0 as a parameter that
we can vary2.

The strategy in Section 3.1 below will be to show that all these increments
can not take the sequence xn very far. To do so we look for estimates that
guarantee that sums of the form

Mn = |ξ1|+ |ξ2|+ |ξ3|+ · · ·+ |ξn|

remain bounded as n → ∞, using the geometric series of Section 1.5 that
Zeno never liked so much. In fact this will force the sequence xn converge.
The issue of general sums

Sn =
n∑
k=1

ξk

will be dropped for now, but will come back in Section 3.9, see Theorem 3.73.

3.1 Estimates for the increments

This is the beginning of a main story line that will come back, see e.g. (11.32)
in Problem 4 of the 2020 exam. The scheme there is easier to analyse, but
it contains a parameter, which by itself makes things more complicated3.
Here we continue with Heron’s scheme and use some algebra to estimate
every d(xn+1, xn) = |xn+1 − xn| = |ξn+1| in terms of the previous distance

1We denote the steps by ξ1, ξ2, . . . here, in the exam by s1, s2, . . . , sorry.
2By the way, variation of parameters helps in solving equations, see Exercise 3.35.
3Did you do Exercises 2.60 and 2.61?
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|xn−xn−1|. This will get us started towards Theorem 5.14 at the end of this
story, which will rely on an abstract version of Definition 3.3 below. Here we
go.

Exercise 3.1. For x0 > 0 let the sequence xn > 0 be defined by (1.2) in Exercise
1.2, i.e.

xn =
xn−1

2
+

1

xn−1
,

and let ξn = xn − xn−1. Show that

ξn+1 = ξn

(
1

2
− 1

xn−1xn

)
,

and that therefore

−1

2
≤ ξn+1

ξn
<

1

2
(3.2)

for every n ∈ IN.
Hint: you need xnxn−1 = 1

2x
2
n−1 + 1 for the inequalities.

From Exercise 3.2 it follows that

|xn+1 − xn| = |ξn+1| ≤
1

2
|ξn| =

1

2
|xn − xn−1| for all n ∈ IN, (3.3)

i.e. every consecutive increment is at least twice as small as the previous
one. Now the first increment has norm |ξ1| = |x1 − x0|, which may be large
(depending on x0). But every next increment is much smaller because4

|ξ2| ≤
1

2
|ξ1|, |ξ3| ≤

1

2
|ξ2| ≤

1

4
|ξ1|, |ξ4| ≤

1

8
|ξ1|, |ξ5| ≤

1

16
|ξ1| =

1

24
|ξ1|,

and so on. It follows that

|ξn| ≤
1

2n−1
|ξ1| (3.4)

for all n ∈ IN. Thus the increments get smaller and smaller exponentially
fast.

Exercise 3.2. Let the map5 f be defined by

f(x) =
x

2
+

1

x

4The inequalities are strict unless the increments are zero.
5Or function, we often prefer to use the word map for functions which are not IR-valued.

52



as in (2.2). Verify that f has the property that

∀x≥1 ∀y≥1 : |f(x)− f(y)| ≤ 1

2
|x− y|, (3.5)

and that therefore the sequence xn defined by xn = f(xn−1) has

|xn+1 − xn| = |f(xn)− f(xn−1)| ≤ 1

2
|xn − xn−1|. (3.6)

for all n ∈ IN if x0 > 0.

If f satisfies (3.5) then f is called contractive (with contraction factor 1
2
) on

the set
A = [1,∞) = {x ∈ IR : x ≥ 1}.

This a special case of what is called Lipschitz continuity:

Definition 3.3. Let A ⊂ IR. A function f : A → IR is called Lipschitz
continuous with Lipschitz6 constant L > 0 if for all x, y ∈ A it holds that

|f(x)− f(y)| ≤ L|x− y|. (3.7)

If L < 1 and f(A) ⊂ A then f is called a contraction with contraction factor
L. If f(A) is not necessarily a subset of A then f is called contractive if
L < 1, and nonexpansive if L = 1.

Exercise 3.4. Show that the map x→ |x| is nonexpansive.

Exercise 3.5. Let f : A→ IR be contractive. Prove that there can be at most one
solution x ∈ A to the equation x = f(x).

Hint: if there were two solutions you can use (3.7) with L < 1.

Exercise 3.6. This is a warming up exercise for what’s to come. Let A be a subset
of IR and suppose that f : A→ A is a contraction with contraction factor 1

2 . Suppose
that the sequence xn, defined by xn = f(xn−1) and some given x0 ∈ A, converges to
a limit x̄ in A. Prove that x̄ is a solution of f(x) = x.

Hint:

|f(x̄)− x̄| ≤ |f(x̄)− f(xn)|+ |f(xn)− x̄| = |f(x̄)− f(xn)|︸ ︷︷ ︸
≤ 1

2
|x̄−xn|

+|xn+1 − x̄|.

6We shall prefer another symbol when L < 1.
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Recall from Exercise 3.5 that there is at most one solution to f(x) = x. What do you
conclude about sequences starting from other initial values x0 in A?

3.2 Properties of Heron’s sequence due to contraction

Look at (3.1). What can happen to Heron’s sequence xn after say N steps?
For m > n the difference between xm and xn is equal to

xm − xn = xn+1 − xn + · · ·+ xm − xm−1 = ξn+1 + · · ·+ ξm.

Using (3.4) it follows that

|xm − xn| ≤ |ξn+1|+ · · ·+ |ξm| ≤
|ξ1|
2n

+ · · ·+ |ξ1|
2m−1

.

Now go back to (1.14) and what we spelled out in Exercises 1.21 and 1.22
with the observation that

∀m,n,N∈IN : m ≥ n ≥ N =⇒
m∑
k=n

1

2k
<

1

2N−1
.

It follows that

|xm − xn| ≤ |ξ1|
m−1∑
k=n

1

2k
≤ |ξ1|

m∑
k=n

1

2k︸ ︷︷ ︸
<ε

, (3.8)

in which the ε-estimate holds for all m,n with m > n ≥ N , provided N is
as in Exercise 1.21. We conclude that for all ε > 0 there exists N ∈ IN such
that7

|xn − xm| < ε for all m,n ≥ N,

which brings us to a crucial section next.

3.3 Cauchy sequences, monotone subsequences

https://youtu.be/T6pSZcV3Oqk and https://youtu.be/REITj_IigqE

We just concluded that the Heron sequence x1, x2, x3, . . . has the property
that

∀ε>0 ∃N∈IN ∀m,n≥N : |xn − xm|︸ ︷︷ ︸
d(xn,xm)

< ε, (3.9)

7Also for m = n.
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a statement to be pronounced as: for all (real) ε > 0 there exists a natural
number N such that for all natural numbers m,n with m ≥ N and n ≥ N
the distance between xn and xm is smaller than ε.

Definition 3.7. A sequence of real numbers xn indexed by n ∈ IN is called
Cauchy, or a Cauchy sequence, if (3.9) holds, or equivalently8 if

∀ε>0 ∃N∈IN ∀m,n≥N : |xn − xm|︸ ︷︷ ︸
d(xn,xm)

< ε.

If so we say that d(xn, xm)→ 0 if m,n→∞.

We already knew that Heron’s sequence is convergent. Compare Definition
3.7 to Definition 2.6 in Section 2.2 for convergence of xn. Unlike Definition
2.6 the new definition does not involve any number that candidates for being
the limit of the sequence. Thus it may be verified without knowing the limit.
Can it be used as an alternative definition of convergence?

Exercise 3.8. Prove that every convergent sequence is a Cauchy sequence.
Hint:

|xn − xm|︸ ︷︷ ︸
d(xn,xm)

≤ |xn − x̄|︸ ︷︷ ︸
d(xn,x̄)

+ |x̄− xm|︸ ︷︷ ︸
d(x̄,xm)

.

Theorem 3.9. A sequence is a convergent if and only if it is Cauchy.

Proof of Theorem 3.9. Exercise 3.9 proves that every convergent sequence
is Cauchy, so it remains to prove that every Cauchy sequence is convergent.
We will do this in a number of steps, each of which by itself is not very hard,
although Theorem 3.10 is rather clever.

Theorem 3.10. Let xn be a sequence of real numbers indexed by n ∈ IN.
Then there exists a sequence of positive integers nk, indexed by k ∈ IN, with
the property that

n1 < n2 < n3 < · · · ,

and such that the subsequence xnk , indexed by k, is monotone9. In other
words: every sequence has a monotone subsequence.

8See Exercise 1.6 again!
9In particular this statement also holds for every sequence of rational numbers.
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Exercise 3.11. Prove Theorem 3.10.
Hint: call an integer m ∈ IN a topindex of the sequence xn if xm > xn for

all n > m. A sequence may have no topindices at all. Show that it then has as a
nondecreasing subsequence. A sequence may have only a finite number of topindices.
Reduce this to the previous case. It remains to consider the case that the sequence
has an infinite number of topindices. Conclude.

Exercise 3.12. Prove that every Cauchy sequence xn is bounded, hence so is every
subsequence xnk of xn.

Exercise 3.13. Suppose that xn is a Cauchy sequence of real numbers which has
a convergent subsequence xnk with limit x̄. Prove that the sequence xn is itself
convergent and that its limit is x̄. That is to say

lim
n→∞

xn = lim
k→∞

xnk .

Once you know Theorem 3.10 you observe that every Cauchy sequence is
bounded by Exercise 3.12. Thus so is the monotone subsequence provided
by Theorem 3.10, which then has a limit in view of Theorem 2.28. By
Exercise 3.13 this limit turns out to be the limit of the whole sequence as
well. This completes the proof of Theorem 3.9. �

3.4 The Banach Contraction Theorem in IR

We have seen that if f is a contraction from a subset A of IR to itself with
contraction factor 1

2
, then every sequence defined by xn = f(xn−1) starting

from any x0 ∈ A is convergent.
The reasoning started with estimate (3.8) and your answer to Exercise

2.31. We concluded that the sequence xn had the property stated in (3.9),
i.e. that it is a Cauchy sequence.

In Section 3.3 we then established a basic property of the real numbers
with Theorem 3.9. It stated that every Cauchy sequence is convergent. In
particular the sequence xn defined by xn = f(xn−1) in Exercise 3.6 is conver-
gent. Next we formulate a condition on A which implies that its limit is in
A.
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Definition 3.14. A subset A of IR is called closed in IR if the convergence
of a sequence xn ∈ A implies that its limit x̄ is in A, i.e.

A 3 xn → x̄ as n→∞ =⇒ x̄ ∈ A.

Let us now assume that A is closed. Then x̄ ∈ A if x̄ is the limit of the
sequence xn in Exercise 3.6. By Exercise 3.6 it is the unique solution of the
equation f(x) = x in A.

This proves a special case of Theorem 3.16 below, namely for closed sets
A ⊂ IR and contractive maps f from A to A with contraction factor 1

2
. Here’s

the general theorem, which requires a definition first.

Definition 3.15. Let A be a set and f : A → A. Then x ∈ A is called a
fixed point of f if x = f(x).

Theorem 3.16. (Banach contraction theorem for closed subsets of IR) Let
A be a closed subset of IR and let f : A→ A be a contraction, i.e.

∃θ∈(0,1) ∀x,y∈A : |f(x)− f(y)| ≤ θ |x− y|. (3.10)

Then f has a unique fixed point x̄ ∈ A. For every x0 ∈ A this x̄ is the limit
of the sequence xn defined by xn = f(xn−1) for all n ∈ IN.

Proof of Theorem 3.16. We first formulate two essential ingredients for
the proof as exercises.

Exercise 3.17. Assume that θ ∈ (0, 1). Prove that θn → 0 as n → ∞. This
exercise generalises Exercise 2.31 and also establishes, somewhat overdue perhaps,
(1.12) and (1.13).

Hint: the sequence θn is decreasing10.

Exercise 3.18. Prove for the sequence xn defined in Theorem 3.16 that

|xm − xn| ≤ θn|ξ1|+ · · ·+ θm|ξ1| ≤
θN

1− θ
|ξ1|

for m > n ≥ N .

10Incidentally, it is defined by x0 = 1 and xn = θxn−1 for n ∈ IN.
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These two exercises imply that xn is a Cauchy sequence. Thus xn is conver-
gent and the limit x̄ lies in A because A is closed.

We reason as in the hint for Exercise 3.6 to conclude. The subtract, add,
then triangle inequality trick gives

|f(x̄)−x̄| ≤ |f(x̄)−f(xn)|+|f(xn)−x̄| = |f(x̄)− f(xn)|︸ ︷︷ ︸
≤θ|x̄−xn|

+|xn+1−x̄|, (3.11)

in which the estimates depend on n, while what’s being estimated clearly does
not. To deal with the n-dependent final estimate in (3.11) we let ε > 0 and
apply the definition of xn → x̄, i.e. there is an N ∈ IN such that |x̄−xn| < ε
for all n ≥ N . We then conclude from (3.11) that11

|f(x̄)− x̄| ≤ θ|x̄− xn|+ |xn+1 − x̄| < (θ + 1)ε

for all n ≥ N .
Since ε > 0 was arbitrary we conclude that |f(x̄) − x̄| = 0, so f(x̄) = x̄

is a fixed point of f . This limit x̄ is in fact the unique solution of x = f(x)
in A, because (3.10) prevents the existence of two solutions. Indeed, for two
solutions x and y with x 6= y we would have that

0 < |x− y| = |f(x)− f(y)| ≤ θ|x− y| < |x− y|

because 0 < θ < 1, a contradiction. This completes the proof of Theorem
3.16. �

Remark 3.19. You should carefully note that

we concluded that f(xn)→ f(x̄) because xn → x̄ (3.12)

and f is contractive. The conclusion in (3.12) holds for a much larger class
of functions than those satisfying (3.10) in fact. This will take us to the issue
of continuity, but first we discuss a bit more about sequences and sets.

3.5 Convergent subsequences

We note that Theorems 2.28 and 3.10 also immediately imply Theorem 3.20
below, which is crucial for proving theorems12 about continuous13 functions
later on.

11Note that with n ≥ N also n+ 1 ≥ N .
12Like the integral

∫ b
a
f having a meaning for f : [a, b]→ IR continuous.

13We used this term in relation to (2.7).
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Theorem 3.20. (Bolzano-Weierstrass) Let xn be a bounded sequence of real
numbers indexed by n ∈ IN. Then xn has a convergent subsequence.

Proof. The standard proof of Theorem 3.20 is different. It is given in the
very end of Section 3.8. In the proof here we simply observe that Theorem
3.10 states that every bounded sequence has a monotone (and also bounded)
subsequence, and that Theorem 2.28 says this subsequence must be conver-
gent. �

Definition 3.21. A limit of a convergent subsequence of a sequence is called
a limit point of the original sequence.

Exercise 3.22. Prove that x̄ is a limit point of the sequence xn if and only if

∀ε>0 ∀N∈IN ∃n≥N : |xn − x̄| < ε.

Not easy, no hint. Test your abilities. Do note the mind boggling difference with

∀ε>0 ∃N∈IN ∀n≥N : |xn − x̄| < ε

and xn → x̄ stipulated next.

Remark 3.23. Theorem 3.20 states for bounded sequences xn of real numbers
that

∃x̄∈IR ∀ε>0 ∀N∈IN ∃n≥N : |xn − x̄| < ε.

This looks deceptively similar14 to the convergence statement (2.10).

Theorem 3.24. A bounded sequence of real numbers is convergent if and
only if it has exactly one limit point.

Exercise 3.25. Prove Theorem 3.24.
Hint: by Theorem 3.20 the sequence has a limit point x̄; to get one of the two

implications in the statement of Theorem 3.24 assume the bounded sequence xn does
not converge and reason from (2.11); reapply Theorem 3.20 to obtain another limit
point. For the other implication you are on your own.

14Both statements have an equivalent version with ≤ of course, see Exercise 1.6.
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3.6 Closed and open sets

This section is about points and sets in IR. We systematically use (2.9) and
write d(x, y) instead of |x − y| to prepare this section to be carried15 over
to16 Chapter 5. We recall that we defined in Definition 3.14 what a closed
subset of IR is.

Remark 3.26. Informally Definition 3.14 says that a subset A of IR is closed
if you cannot get out of A by taking limits, which makes “closed” a natural
adjective; “closed” and “bounded” are important adjectives for a set A ⊂ IR:
bounded to have convergent subsequences of sequences in A by Theorem 3.20,
closed to have their limits in A.

Definition 3.27. Let A ⊂ IR. Then ξ ∈ IR is called an accumulation point
of A if17

∀δ>0 ∃x∈A : 0 < d(x, ξ) = |x− ξ| < δ. (3.13)

An accumulation point of A need not be in A. The name is explained by the
following theorem.

Theorem 3.28. Let A ⊂ IR. Then ξ ∈ IR is an accumulation point of A if
and only if there exists a sequence xn ∈ A with xn 6= ξ and xn → ξ.

Proof. Let ξ be an accumulation point of A. We have to prove the existence
of a sequence with the properties stated in Theorem 3.28. We use Definition
3.27. For each n ∈ IN let xn ∈ A be provided by (3.13) with δ = 1

n
. To prove

that xn → ξ let ε > 0 be arbitrary. Choose18 N ∈ IN with 1
N
< ε. Then

d(xn, ξ) <
1

n
≤ 1

N
< ε

for all n ≥ N , as desired for one of the two implications in the theorem. The
other implication is left as Exercise 3.29. �

Exercise 3.29. Prove the opposite implication in Theorem 3.28: if such a sequence
exists then its limit ξ is an accumulation point

Theorem 3.30. Let A ⊂ IR. Then A is closed if and only if A contains all
its accumulation points.

15Only Theorem 3.20 will not generalise to the metric space context in Chapter 5.
16With IR replaced by X, X and d as in definition 5.6.
17See Exercise 1.6, what’s the obvious equivalent statement?
18This uses the Archimedean Principle in the form of Exercise 1.7 again.
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Proof. Suppose ξ is an accumulation point of A. By Theorem 3.28 it is the
limit of a sequence xn in A and thereby in A if A is closed. So A contains all
its accumulation points if A is closed.

Conversely, suppose A is not closed. Then there is a sequence xn in A
which converges to a limit x̄ which is not in A. But then, by Theorem 3.28,
x̄ must be an accumulation point of A that is not in A. This completes the
proof. �

Definition 3.31. A point x0 in a subset A of IR is called an interior point
of A if there exists δ > 0 such that for all x ∈ IR with d(x, x0) < δ it holds
that x ∈ A. That is to say19

Bδ(x0) = {x ∈ IR : |x− x0|︸ ︷︷ ︸
d(x,x0)

< δ} = (x0 − δ, x0 + δ) ⊂ A.

The set of all interior points of A is called the interior of A, notation int(A).

Definition 3.32. A subset O of IR is called open if int(O) = O.

Theorem 3.33. A subset A ⊂ IR is closed if and only if its complement

Ac = {x ∈ IR : x 6∈ A}

in IR is open.

Remark 3.34. It is more common in the literature to first define what open
sets are, and to then call a set closed if its complement is open.

3.7 Exercises

Exercise 3.35. Solve the equation x3 + x = q using Cardano’s trick x = y+ z and
an additional equation for y and z which gets rid of the terms y2z and yz2. Compare
what you get to the obvious “solution” q = x3 + x for the parameter q.

Exercise 3.36. Referring to Definition 3.3, let f : A→ IR be Lipschitz continuous
and assume that xn is a convergent sequence in A. Prove that the sequence f(xn) is
convergent. Then, denoting the limit of xn by L, assume that yn is another convergent
sequence in A with the same limit L. Prove that

lim
n→∞

f(xn) = lim
n→∞

f(yn).

19In Chapter 5 the set Br(x0) is called an open ball, but it’s not. It’s an open interval.
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Exercise 3.37. For each of the functions in Exercise 2.49 find a closed subset
A ⊂ IR such that f : A→ A is a contraction.

Exercise 3.38. Which of the following sequences is a Cauchy sequence? Prove
your conclusion directly from Definition 3.7.

(−1)n,
1 + n

2 + n
,

n2

n2 − 1
2

,

√
1 + n2

n
,

√
n+ 1− 1√

n
,

1 + n2

n
.

Exercise 3.39. Let xn and yn be Cauchy sequences in IR. Prove that xnyn is a
Cauchy sequence.

Exercise 3.40. Let xn and yn be Cauchy sequences in IR. Assume that yn > 0 for
all n ∈ IN. Does it follow that

xn
yn

is a Cauchy sequence? Same question if yn > 1 for all n ∈ IN. In both cases, give a
proof or a counter example.

Exercise 3.41. Determine all limit points of the sequences defined by

xn = (−1)n, xn = (−1)n +
1

n
, xn = (−1)n + (−1)2n.

Exercise 3.42. Let xn be an enumeration of IQ. Prove that every element of IR is
a limit point of this sequence.

Hint: use that every x̄ ∈ IR appears as the limit of a sequence in IQ.

Exercise 3.43. For a > 0 let the sequence xn be defined by

xn =
1

2

(
xn−1 +

a

xn−1

)
and x0 = 1.
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Does the sequence convergence? If so prove it and determine (the square of) the limit.

Exercise 3.44. For x ∈ IR with x > 0 let

f(x) = 2 +
1

x
.

a) Show that f : [2,∞)→ [2,∞) is a contraction.

b) Define the sequence xn by x0 = 1 and

xn = 2 +
1

xn−1
.

Why is this sequence convergent? What is its limit?

Exercise 3.45. For a > 1 let the sequence xn be defined by

xn =
1

2

(
xn−1 +

a

x2
n−1

)
and x0 = 1.

Does the sequence converge? If so prove it and determine (the cube of) the limit.

Exercise 3.46. Same question for 0 < a < 1.

Exercise 3.47. For x ∈ IR let

f(x) =
1

2
+ x(1− x)

and define the sequence xn by x0 = −1
5 and

xn = f(xn−1).

a) Prove that xn ∈ [1
4 ,

3
4 ] for all n ∈ IN.

b) Prove that |xn+1 − xn| ≤ 1
2 |xn − xn−1| for all n ≥ 2.
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c) Let N ≥ 2. Prove that

|xn − xm| <
1

2N−1

for all m,n ≥ N .

d) Why is the sequence xn convergent? What is its limit?

Exercise 3.48. Let f : IR→ IR be defined by

f(x) =
x

1 + x2
.

Prove that f is Lipschitz continuous with Lipschitz constant L = 1.
Hint: use your fractional abilities to write

f(x)− f(y) = (x− y)
. . .

. . .

and rework the quotient as the difference of two terms, one of which is f(x)f(y). Use
this to first show that |f(x)− f(y)| < |x− y| if x, y ≥ 0 and x 6= y.

Exercise 3.49. Let f : IR→ IR be defined by

f(x) =
x

2 + x2
.

Use your tricks from Exercise 3.48 to prove that f is a contraction.

Exercise 3.50. Which of the functions defined by the following formulas is Lipschitz
continuous on [0, 1]? And on [1,∞)? And on [0,∞)?

f(x) = x2, f(x) =
√
x, f(x) =

√
x+ 1, f(x) =

1

1 + x
,

Exercise 3.51. Prove that Bδ(x0) in Exercise 3.31 is itself an open subset of IR.
Hint: use the triangle inequality.

64



Exercise 3.52. Let a, b ∈ IR with a < b. Prove that the closed interval [a, b] is a
closed subset of IR.

Exercise 3.53. Let a, b ∈ IR with a < b. Prove that the open interval (a, b) is an
open subset of IR.

Exercise 3.54. Let a, b ∈ IR with a < b. Prove that the intervals (a, b] and [a, b)
are neither closed nor open in IR.

Exercise 3.55. Prove Theorem 3.33.

Exercise 3.56. Let A and B be closed subsets of IR. Prove that A∪B and A∩B
are closed.

Exercise 3.57. Let I be any index set and let Ai ⊂ IR be closed for every i ∈ I.
Prove that the intersection

∩i∈IAi = {x ∈ IR : x ∈ Ai for all i ∈ I}

is closed. Formulate and prove similar statements for open subsets.

Exercise 3.58. Let Gn be a sequence of closed subsets of IR with the property that
Gn+1 ⊂ Gn for all n ∈ IN. Such sequences are called nested. Is it necessarily true
that there exists c ∈ IR such that c ∈ Gn for every n ∈ IN? If not, which additional
assumption is required?

Exercise 3.59. Consider the set C of numbers

∞∑
n=1

tn
3n
,
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with tn ∈ {0, 2} for every n ∈ IN, but no further restrictions20. Prove that C is a
closed uncountable set with empty interior, and that for two such numbers

∞∑
n=1

tn
3n

=
∞∑
n=1

t̃n
3n
⇐⇒ ∀n∈IN : tn = t̃n.

Hint: construct C from nested closed sets Cn of such numbers with tn ∈ {0, 1, 2}.

Exercise 3.60. (continued) The representation of numbers in Cn is not unique but
in C it is. The set C is called Cantor’s discontinuum. Describe D = {x ∈ [0, 1] :
x 6∈ C} as a countable disjoint union of open intervals indexed by a binary tree.

3.8 From the rational numbers to the real numbers

Exercise 3.61. Let xn ∈ IQ be the Heron sequence defined in Exercise 1.2 and let
yn be the sequence defined by

yn =
yn−1

2
+

1

yn−1
and y0 = 2.

Prove that yn ∈ IQ is also a Cauchy sequence of rationals and that |xn − yn| → 0 as
n→∞. In particular the ε-statements21 hold for all ε of the form ε = 1

k .

In everyday practice real numbers are represented by Cauchy sequences
of rational numbers, e.g. as in Section 1.3. In the following exercises we first
develop the algebra for such rational Cauchy sequences, taking the natural
nonuniqueness22 of such real number representing Cauchy sequences properly
into account.

Exercise 3.62. Let qn ∈ IQ be a Cauchy sequence in the sense that

∀k∈IN ∃N∈IN ∀m,n≥N : |qn − qm| <
1

k
,

20Unlike in the context of (1.6), when expansions ending in only zero’s were excluded.
21This is the true way of analysis, see that book.
22Not all populations in our universe can be expected to use base 10 for arithmetic.
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and let pn ∈ IQ be a another such Cauchy sequence. Prove23 that pn + qn, pn − qn,
and pnqn are also24 Cauchy in this sense.

Exercise 3.63. When should we think of two such Cauchy sequences of rationals
as being the same in relation to their task? Answer25: let qn ∈ IQ and sn ∈ IQ be any
rational sequences. We think of qn and sn as being the same for our purposes and
write qn ∼ sn if26

∀k∈IN ∃N∈IN ∀n≥N : |qn − sn| <
1

k
.

Clearly qn ∼ qn for every sequence and qn ∼ sn if and only if sn ∼ qn. Let rn ∈ IQ be
another rational sequence and assume that rn ∼ qn and rn ∼ sn. Prove that qn ∼ sn.

Exercise 3.64. Let qn ∈ IQ and rn ∈ IQ be sequences, and assume qn is Cauchy in
the sense of the k-statement in Exercise 3.62. Prove that so is rn.

Exercise 3.65. Let pn, qn, rn, sn ∈ IQ be Cauchy sequences with pn ∼ qn and
rn ∼ sn. Continue from Exercise 3.62 to show for the Cauchy sequences pn + rn,
qn + sn, pnrn, qnsn that pn + rn ∼ qn + sn and pnrn ∼ qnsn.

Exercise 3.66. So we’re fine with rational Cauchy sequences for adding and mul-
tiplying. Let pn, qn ∈ IQ be such Cauchy sequences. Prove that |pn − qn| is a Cauchy
sequence. Show that pn ∼ qn if and only if |pn − qn| ∼ 0, the Cauchy sequence
0, 0, . . . encountered in Exercise 3.62. For which rational Cauchy sequences qn is 1

qn

also a rational Cauchy sequence? And what can you then say about 1
pn

if pn ∼ qn?

Exercise 3.67. Now that we have a meaningful27 algebra for Cauchy sequences of
rationals we turn to analysis and say that a rational sequence ql indexed28 by supercript

23See Exercise 3.39.
24In particular pn − pn = 0 is a Cauchy sequence, and so is every q ∈ IQ.
25Why is this the answer? Exercise 3.65.
26Beware this notation is also used with a quite different meaning, see (13.13).
27Whatever some people may think about meaning....
28A change of notation to sneakily prepare for dropping l from the notation.

67



l is easily k-controled if

∃L∈IN ∀l≥L : |ql| < 1

k + 1
.

Prove a rational sequence ql is easily k-controled for every k ∈ IN if and only if ql ∼ 0.

Definition 3.68. Let qln be a sequence of rational Cauchy sequences, with
subscript n numbering the sequences, and superscript l numbering the ratio-
nals in every such Cauchy sequence. Dropping l from the notation we say
that qn → 0 as n → ∞ if for every k ∈ IN there exists N such that the
Cauchy sequence qn is easily k-controled for every n ≥ N . Likewise we say
that |qn − qm| → 0 as m,n→∞ if for every k ∈ IN there exists N such that
the Cauchy sequence qn − qm is easily k-controled for all m,n ≥ N .

Theorem 3.69. Let qn be a sequence of rational Cauchy sequences with
|qn− qm| → 0 as m,n→∞. Then there exists a rational Cauchy sequence r
with qn − r → 0 as n→∞.

Exercise 3.70. Prove the theorem. Hint: For each n choose a number rn ∈ IQ
such that qn−rn is easily n-controled. Then show that rn is a Cauchy sequence which
does the desired job.

Exercise 3.71. Reflect on the upshot: we don’t get anything new by considering
Cauchy sequences of Cauchy sequences of rationals. We thus may recognise IR as
simply being the set of all equivalence classes of rational Cauchy sequences. Then we
also introduce the real distance between two such Cauchy sequences, to quickly forget
about the above notion of easy k-control. You may bring back the epsilons now, or
restrict to ε = 1

k , as in the book “The Way of Analysis”.

We complete this section with another diagonal argument. Here is the
standard proof29 of Theorem 3.20. Assume xn ∈ IR is a bounded sequence,
say xn ∈ [0, 1]. Then at least one of the intervals [0

2
, 1

2
], [1

2
, 2

2
] must contain

xn for infinitely many values of n. Call this interval

I1 =

[
m1

2
,
m1 + 1

2

]
.

29Similar arguments will be used in the proof of the Arzelà-Ascoli Theorem.
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So m1 = 0 or m1 = 1. Enumerate these n as n1j ∈ IN. The first index 1
indicates that this is the first subsequence we choose.

Apply the same argument again. One of [m1

2
+ 0

4
, m1

2
+ 1

4
] and [m1

2
+ 1

4
, m1

2
+ 2

4
]

must contain a further subsequence. Call this interval

I2 =

[
m1

2
+
m2

4
,
m1

2
+
m2 + 1

4

]
,

and enumerate this subsequence as n2j ∈ IN. And so on. We obtain further
and further subsequences

xnkj ∈ Ik =

[
k∑
l=1

ml

2l
,

k∑
l=1

ml

2l
+

1

2k+1

]
= [ak, bk],

and the diagonal30 subsequence has

xnkk ∈ Ik = [ak, bk]

for every k. The proof will be completed in the following exercise. �

Exercise 3.72. Finish this proof of Theorem 3.20.
Hints: ak ≤ xnkk ≤ bk, the sequences ak, bk are monotone, bk − ak = 2−k.

3.9 Absolute and unconditional convergence

Referring to (1.7) the expression

∞∑
k=1

xk = x1 + x2 + · · ·

is called a series. Another example of such a series is

1− 1

2
+

1

3
− 1

4
+ · · · , (3.14)

and calls for some debate which will be concluded in Section 6.6.

Theorem 3.73. Let xn be a sequence of real numbers indexed by n ∈ IN.
Suppose that

Mn =
n∑
k=1

|xk| = |x1|+ · · ·+ |xn|

30A diagonal argument was also used in the proof of Theorem 1.4.
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defines a bounded sequence Mn. Then Mn is convergent and the sequence
defined by

Sn =
n∑
k=1

xk = x1 + · · ·+ xn

is also convergent. Its limit S satisfies

|S| ≤ M̄ := lim
n→∞

Mn = sup
n∈IN

Mn ∈ IR.

Proof. Do the following two exercises31 . �

Exercise 3.74. Prove the convergence of both sequences Mn and Sn.
Hint: for m,n ∈ IN with m < n use

|Sn − Sm| =

∣∣∣∣∣
n∑

k=m+1

xk

∣∣∣∣∣ ≤
n∑

k=m+1

|xk| = Mn −Mm.

Exercise 3.75. (continued) Show that the limit S in Theorem3.73 satisfies

|S| ≤ M̄ := lim
n→∞

Mn = sup
n∈IN

Mn ∈ IR.

Remark 3.76. Informally we write

∞∑
n=1

|xn| <∞ =⇒

∣∣∣∣∣
∞∑
n=1

xn

∣∣∣∣∣ ≤
∞∑
n=1

|xn|, (3.15)

to say that the series
∞∑
n=1

xn

is absolutely convergent, by which we merely mean that the monotone se-
quence Mn is bounded and thereby convergent. We then write

S =
∞∑
n=1

xn. (3.16)

31See Exercise 5.26 for a more general statement about absolutely convergent series.
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It may of course happen that the sequence Mn is not bounded. Then (3.15)
has no meaning but (3.16) may still hold for some number S ∈ IR. In that
case we say that the series is convergent with sum S, but not absolutely
convergent.

Exercise 3.77. Think about (3.14) and show that

1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

defines a real number32.
Hint: look at partial sums with even and odd numbers of terms.

Can we manipulate with such sums like (3.16) as we do with finite sums?
For instance,

x0+x1+x2 = x0+x2+x1 = x1+x0+x2 = x1+x2+x0 = x2+x0+x1 = x2+x1+x0

is 6 ways to write the same sum

3∑
k=0

xk.

We would similarly like to have that

S =
∞∑
k=0

xφ(n) =
∞∑
k=0

xk (3.17)

for every bijection φ : IN0 → IN0.

Proof of (3.17) if Mn is a bounded sequence. We wish to conclude for

Sφn =
n∑
k=0

xφ(n) and M̄φ
n =

n∑
k=0

|xφ(n)|,

that
Sφn → S and M̄φ

n → M̄ (3.18)

as n→∞. Let’s see how this can be done.

32Which number? See Exercise 6.26 and further.
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What we know is that

|Sn| ≤ M̄, |Sφn | ≤ M̄, Sn → S, Mn → M̄, |S| ≤ M̄.

So for all ε > 0 there exists an integer N ∈ IN0 such

M̄ − ε <
N∑
k=0

|xk| ≤ M̄, (3.19)

for otherwise M̄ is not the lowest upper bound. But then also

M̄ − ε <
n∑
k=0

|xk| ≤ M̄

for all n ≥ N . This is just the proof that

Mn → M̄ =
∞∑
k=0

|xk|

redone.
Subtracting the partial sum in (3.19) from (3.19) we obtain in particular

that
∞∑

k=N+1

|xk| − ε < 0 ≤
∞∑

k=N+1

|xk|,

whence
∞∑

k=N+1

|xk| < ε. (3.20)

Now what about M̄φ
n? The bijection φ : IN0 → IN0 is a permutation of IN0.

If we enumenerate
IN0 = {k = φ(l) : l ∈ IN0}

via φ with l ∈ IN0, then

{0, 1, . . . , N} ⊂ {φ(0), φ(1), . . . , φ(L)}

for some L ∈ INN Therefore

M̄ − ε < MN ≤ M̄φ
L ≤ M̄φ

l ≤ M̄.

if l ≥ L. We also have that

|Sφl − SN | ≤
∞∑

k=N+1

|xk| < ε,

because Sφl −SN is a finite sum of terms xk with k > N if m ≥ L. The proof
of (3.17) is completed by the following exercise. �
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Exercise 3.78. Show that Sφn converges to the same sum S ∈ IR if Mn is bounded.

Exercise 3.79. The series in Exercise 3.77 has sum ln 2. Show that the bijection
φ : IN→ IN can be chosen to make the sequence Sφn converge to zero.
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4 Continuous functions

This chapter is about functions f : [a, b]→ IR which have the property that
f is continuous1 in every point of [a, b], and the space2 C([a, b]) of all such
functions. Here [a, b] is a given bounded closed interval with a < b. Our
tools will be

sequences of real numbers;
the equivalent3 definitions of convergent and Cauchy sequences;
the elementary properties of convergent sequences;
the Bolzano-Weierstrass Theorem;
the suprema and infima of bounded sets of real numbers4.

The existence of convergent subsequences of bounded sequences in IR will be
needed for the proof that (1.17) is indeed a proper definition of the “absolute
value” of a function f ∈ C([a, b]) in Definition 4.5 below.

Recall that we use the notation

xn → x̄

to say that
∀ε>0 ∃N∈IN ∀n≥N : |xn − x̄|︸ ︷︷ ︸

d(xn,x̄)

< ε.

Definition 4.1. Let A ⊂ IR be nonempty, f : A→ IR and ξ ∈ A. Then f is
called continuous in ξ if

f(xn)→ f(ξ)

for every sequence xn in A with the property that

xn → ξ.

If f is continuous in every ξ ∈ A then f : A→ IR is called continuous.

Remark 4.2. If f fails to be continuous in ξ, then it is still possible that
there exists L ∈ IR such that

f(xn)→ L

1Continuity was mentioned in (2.7), Definition 4.1 below should not come unexpected.
2We call it a space and not just a set because of Theorem 4.7 below.
3In hindsight.
4See Section 2.4.
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for every sequence xn in A with xn 6= ξ and xn → ξ. In that case we say that
the limit

lim
x→ξ

f(x)

exists and is equal to L. This terminology makes sense if and only if ξ is an
accumulation point of A, and there’s no need to assume that ξ ∈ A.

4.1 Extrema and the maximum norm

This is https://youtu.be/OhCBZUmSZGQ in the playlist. One of the high-
lights of analysis is that a real valued continuous function that is defined
on a closed and bounded subset A of IR, has a global maximum and global
minimum on A. Here’s a definition that is needed to formulate this result
more precisely.

Definition 4.3. Let A be a set and let f : A→ IR a real valued function. If
x̄ ∈ A has the property that f(x) ≤ f(x̄) for every x ∈ A, then M = f(x̄) is
called a global maximum of f and x̄ is called a maximiser of f . Likewise, if
x ∈ A has the property that f(x) ≥ f(x) for every x ∈ A, then m = f(x) is
called a global minimum of f and x is called a minimiser of f .

The question which functions f : A → IR have global extrema, i.e global
maxima and minima, is a central issue in analysis.

Theorem 4.4. Let A ⊂ IR be a nonempty bounded closed subset, and let f :
A→ IR be continuous (in every point of A). Then f has a global maximum
and a global minimum on A.

Proof of Theorem 4.4. With Theorem 3.20 the hard work has already
been done. Let

Rf = {f(x) : x ∈ A}

be the range of f .
Suppose Rf is bounded from above. Theorem 2.26 says that Rf has a

smallest upper bound which we call M . By definition every M − 1
n

with
n ∈ IN is not an upper bound then. Therefore there exist xn ∈ A with

M − 1

n
< f(xn) ≤M.

It follows that f(xn)→M .
If Rf is not bounded from above then no n ∈ IN is an upper bound. Then

we know that for every n ∈ IN there exist xn ∈ A with f(xn) > n.
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In both cases the sequence xn is bounded because it is contained in
the bounded set A. So in both cases it has a monotone convergent sub-
sequence xnk because of Theorem 3.10 and 3.20. The limit x̄ is in A because
A is closed5. Since f is continuous in x̄ it follows from Definition 4.1 that
f(xnk)→ f(x̄). Proposition 2.9 then says that f(xnk) is a bounded sequence.
This excludes the possibility f(xn) > n for every n ∈ IN.

Thus Rf is bounded. With both limits f(xn) → M and f(xnk) → f(x̄)
then established, it follows that M = f(x̄). This is because Proposition 2.11
says the limit of the convergent subsequence f(xnk) is unique. But then
M = f(x̄) is the global maximum of f , and x̄ is a maximiser6.

The argument for the global minimum is similar. This completes the
proof of Theorem 4.4. �

Definition 4.5. Let [a, b] ⊂ IR be a closed interval. The set of all continuous
functions f : [a, b] → IR is denoted by C([a, b]). Because [a, b] is closed and
bounded we can now define for every f ∈ C([a, b]) the number

|f |
max

= max
a≤x≤b

|f(x)| ∈ IR,

the maximum norm of f . This norm is to the function f what the absolute
value |x| is to the real number x.

Exercise 4.6. Let f ∈ C([a, b]) and ε > 0. Explain very carefully why7

|f |
max

< ε ⇐⇒ ∀x∈[a,b] : |f(x)| < ε.

Hint: explain first that |f | defined by |f |(x) = |f(x)|, is in C([a, b]), and that

| |f | |
max

= |f |
max
.

Theorem 4.7. Let f, g ∈ C([a, b]). Define the functions f + g and fg by

(f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x).

Then f + g ∈ C([a, b]), fg ∈ C([a, b]), and

|f + g|
max
≤ |f |

max
+ |g|

max
and |fg|

max
≤ |f |

max
|g|

max
.

5You showed this for A = [a, b] in Exercise 3.52.
6Which need not be unique, see Exercise 4.37.
7Note that |f |

max
≤ ε ⇐⇒ ∀x∈[a,b] : |f(x)| ≤ ε is easier to prove.
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Proof of Theorem 4.7. There is not much to prove. Thanks to Theorem
2.15, Theorem 2.36 and Definition 4.1, the functions f + g and fg are in
C([a, b]).

For example, let ξ be any point in [a, b] and xn a sequence in [a, b] with
xn → ξ. Then f(xn) → f(ξ) and g(xn) → g(ξ) by Definition 4.1, because
f and g are continuous in ξ. By Theorem 2.36 we therefore have that the
sequence f(xn)+g(xn) converges to f(ξ)+g(ξ) and the sequence f(xn)g(xn)
to f(ξ)g(ξ). This holds for every sequence xn → ξ with xn ∈ [a, b], definition
4.1 then says that f + g and fg are continuous in ξ. Moreover, the argument
is valid for every ξ ∈ [a, b]. Thus f + g, fg ∈ C([a, b]).

Finally, let x̄, ȳ, z̄, w̄ ∈ [a, b] be the maximisers for the continuous8 func-
tions |f |, |g|, |f + g|, |fg| respectively. Then

|f + g|
max

= |f(z̄) + g(z̄)| ≤ |f(z̄)|+ |g(z̄)| ≤ |f(x̄)|+ |g(ȳ)| = |f |
max

+ |g|
max

and
|fg|

max
= |f(w̄)| |g(w̄)| ≤ |f(x̄)| |g(ȳ)| = |f |

max
|g|

max
.

This completes the proof. �

4.2 Uniform convergence

This is https://youtu.be/J_KdlZObeQI in the playlist.

Definition 4.8. For f, g ∈ C([a, b]) the number

d(f, g) = |f − g|
max

(4.1)

is called the uniform distance between f and g. It is defined as the maximum
norm of the difference of the functions f and g, just as the distance between
two real numbers x and y is defined as the absolute value of x− y.

Definition 4.9. A sequence of functions fn in C([a, b]) is called uniformly
convergent if there exists f ∈ C([a, b]) such that

d(fn, f) = |fn − f |max
→ 0 as n→∞,

i.e. if
∀ε>0 ∃N∈IN ∀n≥N : d(fn, f) = |fn − f |max

<ε.

The sequence fn is called a uniform Cauchy sequence if

∀ε>0 ∃N∈IN ∀m,n≥N : d(fn, fm) = |fm − fn|max
<ε. (4.2)

8See the hint in Exercise 4.6.
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Exercise 4.10. Why do we need to assume that fn is in C([a, b]) in Definition 4.9?

Exercise 4.11. Take a = 0, b = 1, f(x) = x2, g(x) = x(1− x). Compute d(f, g).
Hint: sketch the graphs of y = f(x) and y = g(x) in the xy-plane and explain

what d(f, g) is before you actually compute it. Then draw the graphs of some other
functions f for which d(f, g) has the same value. Wat are the largest and smallest of
such functions?

Exercise 4.12. Show that there are bounded sequences in C([0, 1]) which do not
have any uniformly convergent subsequence.

Hint: fn(x) = xn. Argue by contradiction9 with the pointwise limit.

Proposition 4.13. For all f, g, h ∈ C([a, b]) it holds that

d(f, f) = 0; (4.3)

d(f, g) = d(g, f) > 0 if f 6= g; (4.4)

d(f, g) ≤ d(f, h) + d(h, g). (4.5)

Exercise 4.14. Prove Proposition 4.13. Explain why (4.5) is called the triangle
inequality. The property in (4.4) that d(f, g) = d(g, f) is called the symmetry of f .
The property in (4.4) that d(f, g) > 0 if f 6= g is called the positivity of d. Note the
similarity with the distance function (2.9) on IR.

The following theorem is the counterpart for sequences in C([a, b]) of one of
the two implications in Theorem 3.9 for sequences in IR.

Theorem 4.15. Let fn be a uniform Cauchy sequence in C([a, b]). Then fn
is uniformly convergent. Its limit is defined by the (pointwise) limit

f(x) = lim
n→∞

fn(x)

for every x ∈ [a, b]. In particular, f ∈ C([a, b]).

9In Exercise 4.42 you use your calculus abilities for a more direct proof.
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Exercise 4.16. Formulate and prove the counterpart for sequences in C([a, b]) of
the other implication in Theorem 3.9.

Proof of Theorem 4.15. Let fn be a Cauchy sequence in C([a, b]) and let
ε > 0. Then there exists N ∈ IN such that

|fn − fm|max︸ ︷︷ ︸
d(fn,fm)

<ε for all m,n ≥ N. (4.6)

Note that N depends on ε > 0. By Exercise 4.6 the statement in (4.6) is
equivalent to

∀m,n≥N ∀ξ∈[a,b] |fn(ξ)− fm(ξ)|<ε, (4.7)

with N depending only on ε. We say that fn is a uniform Cauchy sequence.
In particular it holds for every ξ ∈ [a, b] that fn(ξ) is a Cauchy sequence in
IR and thereby convergent10. We denote its limit by f(ξ).

Since ξ ∈ [a, b] was arbitrary this defines a function f : [a, b] → IR.
Moreover, for every fixed ξ ∈ [a, b] and every fixed n ≥ N we can take the
limit of the left hand side of (4.7) as m → ∞. Exercise 2.33 then tells us
that

|fn(ξ)− f(ξ)| ≤ ε (4.8)

for all n ≥ N . Recall that N depends on ε > 0, but not on ξ.
Suppose that f ∈ C([a, b]). We can then take the maximum of (4.8) over

ξ ∈ [a, b] and conclude that

d(fn, f) = |fn − f |max
= max

a≤ξ≤b
|fn(ξ)− f(ξ)| ≤ ε

for all n ≥ N , and this would complete11 the proof.
In fact the continuity of f is consequence of the statement in Theorem

4.17 below. With a proof of Theorem 4.17 the proof of Theorem 4.15 will
thus be complete.

Theorem 4.17. Let fn be a sequence in C([a, b]), and let f be another func-
tion from [a, b] to IR. If

∀ε>0 ∃N∈IN ∀n≥N ∀x∈[a,b] : |fn(x)− f(x)| ≤ ε, (4.9)

then f is in C([a, b]).

10This part of the reasoning does not use that fn ∈ C([a, b])!
11Explain how. NB in the limit < ε became ≤ ε.
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Proof of Theorem 4.17. Let ξ ∈ [a, b]. To prove that f is continuous in ξ
let xk be a sequence converging to ξ. We need to show that f(xk)→ f(ξ) as
k →∞.

Let ε > 0. The splitting

f(xk)− f(ξ) = f(xk)− fn(xk) + fn(xk)− fn(ξ) + fn(ξ)− f(ξ)

implies that

|f(xk)− f(ξ)| ≤ |f(xk)− fn(xk)|︸ ︷︷ ︸
≤ε

+|fn(xk)− fn(ξ)|+ |fn(ξ)− f(ξ)|︸ ︷︷ ︸
≤ε

.

We indicated with underbraces that (4.9) can be applied to two of the terms.
The inequalities hold for all n ≥ N .

In particular it follows with n = N that

|f(xk)− f(ξ)| ≤ 2ε+ |fN(xk)− fN(ξ)| (4.10)

before we let k →∞. The second term on the right hand side of (4.10) goes
to 0 as k →∞. Thus we can combine (4.10) with the continuity of fN in ξ,
and use that

fN(xk)→ fN(ξ)

as k →∞ because xk → ξ. It follows that there must exist K ∈ IN such that

|f(xk)− f(ξ)| ≤ 2ε+ |fN(xk)− fN(ξ)|︸ ︷︷ ︸
<ε

< 3ε

for all k ≥ K.
Remark 2.38 with M = 3 now tells us that the proof of Theorem 4.17

is complete. Thus the proof of Theorem 4.15 is also complete. We don’t
forget to record the property of sequences formulated by Theorem 4.17 in a
definition for functions that are not necessarily continuous. �

Definition 4.18. A sequence of functions fn : [a, b]→ IR is called uniformly
convergent on [a, b] with limit f : [a, b]→ IR if (4.9) holds, or equivalently12,
if

∀ε>0 ∃N∈IN ∀n≥N ∀x∈[a,b] : |fn(x)− f(x)| < ε.

Theorem 4.17 says that the limit of a uniformly convergent sequence of func-
tions fn inherits the continuity properties of fn. This is formulated a bit
sharper in the following exercise.

12We prefer with Thomas to write the definition with < ε.
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Exercise 4.19. Let the sequence of functions fn : [a, b]→ IR be uniformly conver-
gent on [a, b] with limit f : [a, b]→ IR, and let ξ ∈ [a, b]. Adapt the proof of Theorem
4.17 to prove that if the functions fn are all continuous in ξ, then so is f .

4.3 Exercises

Exercise 4.20. Prove that in Definition 4.1 it is sufficient to verify the condition
for monotone sequences xn → ξ.

Exercise 4.21. Let f : [0, 1] → [0, 1] be defined by f(x) =
√
x. Prove directly

from Definition 4.1 that f is continuous.
Hint: you may prefer to work with monotone sequences in Definition 4.1.

Exercise 4.22. Let f : IR → IR be defined by f(x) = x3. Prove directly from
Definition 4.1 that f is continuous.

Exercise 4.23. Same question for f defined by

f(x) =
x

1 + x2
, f(x) =

{
1 + x3 for x > 0
1− x2 for x ≤ 0

, f(x) =

{ √
1+x−1
x for x > 0

1
2 − x

3 for x ≤ 0
,

the last one requires a little calculus trick.

Exercise 4.24. In which points is the (Dirichlet) function f : IR→ IR defined by

f(x) =

{
1 for x 6∈ IQ
0 for x ∈ IQ

continuous?

Exercise 4.25. Let g : IR→ IR be a function with

|g(x)| ≤ 1
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for all x ∈ IR. Define f : IR→ IR by

f(x) = xg(x).

Prove directly from Definition 4.1 that f is continuous in x = 0.

Exercise 4.26. Let g : IR→ IR be a function with

|g(x)| ≤ 100 + x100

for all x ∈ IR. Define f : IR→ IR by

f(x) = xg(x).

Prove directly from Definition 4.1 that f is continuous in x = 0.

Exercise 4.27. Let g : IR→ IR be a function with

|g(x)| ≤ 1

x2

for all x ∈ IR with x 6= 0. Define f : IR→ IR by

f(x) = x3g(x).

Prove directly from Definition 4.1 that f is continuous in x = 0.

Exercise 4.28. Let A be a subset of IR. Use Definition 3.27 to show there are
sequences xn in A with xn 6= ξ and xn → ξ if and only if ξ is an accumulation point
of A.

Exercise 4.29. Let A be a subset of IR, let f : A→ IR and assume that ξ ∈ A is
an accumulation point of A. Explain why Remark 4.1 implies that f is continuous in
ξ if and only if

lim
x→ξ

f(x)

exists and is equal to f(ξ), which by assumption also exists13.

13Three statements.
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Exercise 4.30. Let A be a subset of IR, let f : A → IR and assume ξ ∈ A is not
an accumulation point of A. Why does Definition 4.1 imply f is continuous in ξ?

Exercise 4.31. Let I ⊂ IR be an nonempty open interval, let f : I → IR, and ξ in
I. Adapt Definition 4.1 to include a proper statement of what it means for

lim
x↓ξ

f(x) and lim
x↑ξ

f(x)

individually to exists.

Exercise 4.32. Let I ⊂ IR be an nonempty open interval, and let f : I → IR be
nonincreasing. Prove that

f(ξ+) := lim
x↓ξ

f(x) and f(ξ−) := lim
x↑ξ

f(x)

exist for every ξ in I, and that f(ξ−) ≤ f(ξ+).

Exercise 4.33. (continued) Prove that

{ξ ∈ I : f(ξ−) < f(ξ+)}

is finite or countable.
Hint: consider open subintervals (a, b) ⊂ I first.

Exercise 4.34. For x ∈ IR with x > 0 let

f(x) =
1

x2
+

1

x
+ x2 and let m = inf{f(x) : x > 0}.

a) Prove there exists a sequence xn > 0 with f(xn) → m as n → ∞ and show
that m ≤ 3.

b) Prove that m is a global positive minimum of f .
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Exercise 4.35. Let f : IR→ IR be defined by

f(x) =
(
(x+ 1)2 + 3

)4 (
(x+ 5)6 + 7

)8
.

Prove that f has a global positive minimum.
Hint: apply14 Theorem 4.3 with A = [−R,R]; specify a value of R > 0 for which

the minimum mR has mR < f(−5) ≤ f(x) for all x with |x| ≥ R.

Exercise 4.36. Let A be a subset of IR. Then A is called (sequentially) compact
if every sequence in A has a convergent subsequence with its limit also in A. Prove
that A is compact if and only if A is both bounded and closed.

Exercise 4.37. Let C be the Cantor set in Exercise 3.59 and let f : C → IR defined
by f(x) = x(1− x). Explain why f has a global maximum, then find its maximisers.

Exercise 4.38. Let F : IR→ IR be defined by

F (x) =
x

(1 + x)2
,

and define f : IR→ IR by fn(x) = F (nx). Show that

f(x) = lim
n→∞

fn(x)

exists for all x ∈ IR. Is the convergence uniform on IR? And on [0,∞)? And on [0, 1]?

Exercise 4.39. Same question as in Exercise 4.38, but with

F (x) =
|x|

1 + |x|
.

Exercise 4.40. Same question as in Exercise 4.38 and Exercise 4.39, but with

fn(x) = F
(x
n

)
.

14Don’t try to compute the minimiser.
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Exercise 4.41. For n ∈ IN define fn : IR→ IR by

fn(x) =
n2

x2 + n2
.

a) Let x ∈ IR. Prove that fn(x)→ 1 as n→∞.

b) Is the sequence fn uniformly convergent on [0, 1]?

Exercise 4.42. Let the sequence of functions fn : [0, 1]→ [0, 1] be defined by

fn(x) = xn

for all x ∈ [0, 1].

a) Let m > n and

xmn =
( n
m

) 1
m−n

.

Explain why15

d(fm, fn) ≥ fn(xmn)− fm(xmn).

b) Show that fn is not a Cauchy sequence in C([0, 1]). Hint: consider d(f2n, fn).

c) Verify that the pointwise limit function f exists but is not continuous in x = 1.

Exercise 4.43. Construct a nondecreasing continuous function f : [0, 1] → [0, 1]
with f(0) = 0, f(1) = 1 which is constant on every open interval in the disjoint union
that describes the set D in Exercise 3.60.

Hint: take the values on these intervals to be fractions with denominators equal
to a power of 2.

Exercise 4.44. Construct a nondecreasing function f : IR→ IR which is discontin-
uous in every q ∈ IQ but continuous in every ξ 6∈ IQ.

Hint: for every q ∈ IQ let

Hq(x) =

{
0 for x < q
1 for x ≥ q

15In fact the distance is equal to this difference: Exercise 10.21.
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and numerate IQ as a sequence qn to consider

∞∑
n=1

1

n2
Hqn(x).

Use Exercise 2.44.

Exercise 4.45. Suppose that fn : [0, 1] → [0,∞) is a sequence of continuous
functions nonincreasing in n with fn(x)→ 0 for every x ∈ [0, 1] as n→∞, i.e.

inf
n∈IN

fn(x) = 0. (4.11)

Prove that
max

0≤x≤1
fn(x)→ 0

as n→∞.
Hint: if not then there exists a sequence xn ∈ [0, 1] such that fn(xn) 6→ 0. Let x̄

be a limit point of this sequence and write

fN (x̄) = fN (x̄)− fN (xn)︸ ︷︷ ︸
use continuity of fN

+ fN (xn)− fn(xn)︸ ︷︷ ︸
use fn nonincreasing

+fn(xn)

to derive a contradiction with (4.11).

4.4 Summary

The definition of convergence of

a sequence in IR to a limit in IR

used to define−−−−−−−→ continuity of f : [a, b]→ IR

in a point x̄ ∈ [a, b]

bounded real sequences

have limit points

used to prove that−−−−−−−−−−→ f continuous in every x̄ ∈ [a, b]

has |f |
max

= maxa≤x≤b |f(x)| <∞
↓ used to prove

Cauchy’s criterion for convergence in IR

↓ used to define

(uniform) convergence in C([a, b])

Cauchy’s criterion also holds in C([a, b]) for convergence in the maximum norm,

but a bounded sequence fn in C([a, b]) may not have a limit point.

Counterexamples: [a, b] = [0, 1], fn(x) = nx
1+nx

, gn(x) = xn.

NB The sequence n is not bounded in IR; this implies Archimedes’ principle.
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5 Metric spaces and continuity

Recall that we wrote
d(x, y) = |x− y|

for the distance between two number x and y in IR, and

d(f, g) = max
a≤x≤b

|f(x)− g(x)| = |f − g|
max

= |f − g|∞

for the uniform distance between two functions f and g in C([a, b]). Referring
to Definition 3.7 and Theorem 3.9 we reformulate Theorem 4.15 and look
ahead with some remarks before we come to the topics of this chapter.

Theorem 5.1. Let fn be a sequence in C([a, b]) for which d(fn, fm)→ 0 as
m,n→∞. Then there exists f ∈ C([a, b]) such that d(fn, f)→ 0 as n→∞.

Remark 5.2. The space C([a, b]) is a lot like IR as far as multiplication,
addition and norms are concerned. A minor difference1 is that in general

|fg|
max
≤ |f |

max
|g|

max

does not hold with equality2. Because of the properties in Theorem 4.7 and
Theorem 4.15 we say that C([a, b]) is a complete3 normed algebra. Such
algebras are called Banach algebras4.

Remark 5.3. The space C([a, b]) is commonly used for the construction of
solutions of differential equations, via a transformation to so-called integral
equations5. Via Theorem 5.14 below these will be solved in Section 7.5.

Remark 5.4. We note that C([a, b]) is a natural function space on which to
consider the (linear) map

f →
∫ b

a

f(x) dx,

once this integral has been properly defined.

Remark 5.5. The Banach algebra C([a, b]) is contained in B([a, b]), the
Banach algebra of all bounded functions f : [a, b]→ IR, normed by

|f |∞ = sup
a≤x≤b

|f(x)|. (5.1)

Unfortunately most of the functions in B([a, b]) resist integration.
1A major difference: there is no Theorem 3.20 for C([a, b]), see Exercise 4.12.
2Whereas |xy| = |x| |y| holds for all x, y ∈ IR.
3The word “complete” will be explained in Definition 5.10.
4You may know the expression from Flowers for Algernon.
5The commonly used space in fact, but we’ll have second thoughts in Section 7.5.
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5.1 Complete metric spaces

Henceforth we shall call a map d which assigns to every pair of elements of
a set X a number in IR a metric if it has the following three properties:

d(x, x) = 0 for all x ∈ X; (5.2)

d(x, y) = d(y, x) > 0 for all x, y ∈ X with x 6= y; (5.3)

d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. (5.4)

The examples X = IR and X = C([a, b]) lead us to consider metric spaces6.

Definition 5.6. Let X be a nonempty set. A function

d : X ×X → IR

is called a metric if the properties (5.2),(5.3),(5.4) hold. The set X is then
called a metric space with metric d. The number d(x, y) is also called the
distance from x to y.

In particular X = IR and X = C([a, b]) are examples of metric spaces. Every
nonempty subset A of a metric space X is also a metric space, with its metric
inherited from the metric on X.

Remark 5.7. The completeness of B([a, b]) follows (much easier) along the
lines of the proof of Theorem 4.15. For f ∈ C([a, b]) the supremum norm in
(5.1) is just the maximum norm announced in (1.17) and defined in Defini-
tion 4.5.

Exercise 5.8. Think about other examples. Subsets of IR2 with the Pythagorean
distance7. Point sets with a metric taking only the values 0 and 1. The unit sphere in
IR3 with the length of the shortest path connecting two points. Another example of a
metric you have seen is the distance between nodes in a network or in a graph.

Have a look at Exercise 4.14 to extrapolate some terminology to the general
case. The metric d is called a strictly positive symmetric function, because
axiom8 (5.3) says that d(x, y) = d(y, x) > 0 for x 6= y. Axiom (5.4), the
triangle inequality, was already hinted at in Exercise 2.14, in the absence
of triangles. The first axiom (5.2) stands by itself in its assignment that
d(x, x) = 0 for all x ∈ X. Let’s play with the axioms before we go on.

6Forgetting about algebra for now.
7Illustrate the triangle inequality with a picture of a triangle in this case!
8An axiom is a property that we assume.
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Remark 5.9. The axioms (5.2,5.3,5.4) may be replaced by the axioms

d(x, y) = 0 ⇐⇒ x = y

and
d(x, y) = d(y, x) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ X. Nonnegativity of d(x, y) follows using symmetry and the
triangle inequality. See Exercise 5.70.

Many of the theorems we proved for IR have counterparts in general metric
spaces X, and also hold for X = C([a, b]) and X = C0(IR) in Exercise 5.13
below for instance. We simply replace absolute values |x − y| by distances
d(x, y) in the definitions, theorems and proofs. The Banach Contraction
Theorem is a nice example. The formulation and proof of Theorem 3.16 lead
to the statement and proof of essentially the same theorem, for which we
only have to adapt two basic definitions.

Definition 5.10. A sequence xn in a metric space X is a Cauchy sequence
if

∀ε>0 ∃N∈IN ∀m,n≥N : d(xn, xm) < ε,

and convergent if

∃x̄∈X ∀ε>0 ∃N∈IN ∀n≥N : d(xn, x̄) < ε.

The metric space X is called complete if every Cauchy sequence in X is
convergent9. If such a complete metric space X happened to be a normed
(vector) space and d(x, y) = |x − y| then X is called a Banach space. In
particular IR is a Banach space10.

Exercise 5.11. Explain again why IR is complete with d(x, y) = |x− y|, and that
so is every closed subset of IR. Then explain again why C([a, b]) is complete with the
metric defined by

d(f, g) = |f − g|
max
.

Exercise 5.12. Let X be a complete metric space. Prove that the intersection of
a sequence of dense11 open subsets of X is itself dense in X (Baire’s Theorem).

9With limit x̄ in X, because there’s nothing outside X here.
10The completeness assumption is in fact equivalent to the statement in Theorem 2.5.
11A set D ⊂ X is called dense in X if every x in X is a limit of a sequence xn in D.
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Exercise 5.13. Let f : IR→ IR be a function. We say that f vanishes at infinity
if

∀ε>0 ∃R>0 ∀x∈ IR : |x| ≥ R =⇒ |f(x)| < ε. (5.5)

Informally we write f(±∞) = 0. Now let C0(IR) be the set of all continuous functions
from IR to IR that vanish at infinity. In C0(IR) we have the obvious definitions of
addition and multiplication. Show that C0(IR) is a complete normed algebra12 with
the (maximum-)norm well-defined by

|f |
max

= max
x∈IR
|f(x)|.

5.2 The Banach Contraction Theorem

In view of Definition 5.10 it is now copy/paste from Theorem 3.16 with
A and IR both replaced by X to get the main result of this section. In
https://youtu.be/g9-z76Bcrr4 we actually cut the story short proving the
theorem for X = IR first, rewrite the proof without those absolute values,
and identify what we need of X and d.

Theorem 5.14. (Banach Contraction Theorem) Let X be a complete metric
space and let f : X → X be a contraction, i.e.

∃θ∈(0,1) ∀x,y∈X : d(f(x), f(y)) ≤ θ d(x, y).

Then f has a unique fixed point, i.e a solution x̄ ∈ X of f(x) = x. For every
x0 ∈ X, this x̄ is the limit of the sequence xn defined by xn = f(xn−1).

Proof. This is https://youtu.be/A9CTKR3qwJg. Differences xn − xm have
meaning nor part in the formulation of Theorem 5.14, so the proof of Theorem
3.16 cannot be copy-pasted as it is. Still, the proof remains largely the same,
and in fact the small changes make the proof more transparent.

Consider a sequence as defined in the theorem by xn = f(xn−1) and let
m > n. Before we bring in the arbitrary ε > 0 we observe that

d(x1, x2) ≤ θd(x0, x1), d(x2, x3) ≤ θd(x1, x2) ≤ θ2d(x0, x1),

d(x3, x4) ≤ θd(x2, x3) ≤ θ3d(x0, x1), d(x4, x4+1) ≤ θ4d(x0, x1),

and so on. Replacing 4 by n in the last inequality we have

d(xn, xn+1) ≤ θnd(x0, x1), (5.6)

12A bit less like IR since it does not contain a neutral element for multiplication.

90

https://youtu.be/g9-z76Bcrr4
https://youtu.be/A9CTKR3qwJg


which holds13 for all n ∈ IN. Now assume that x0 is not a fixed point of f .
By repeated use of the triangle inequality we then get14

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xm)

≤ d(xn, xn+1) + · · ·+ d(xm−1, xm)

≤ (θn + · · ·+ θm−1) d(x0, x1)

<
θn

1− θ
d(x0, x1) ≤ θN

1− θ
d(x0, x1)

for m > n ≥ N , with N waiting for ε > 0 to show up. Here it is.
Let ε > 0. Choose N so large that

θN

1− θ
d(x0, x1) < ε.

This is possible in view of Exercise 3.17. It follows that

d(xn, xm) < ε

for all m > n ≥ N . We have thus proved that xn is a Cauchy sequence.
Since X is complete the sequence xn is convergent15. Denote its limit by

x̄ and introduce xn as before in (3.11) by means of the triangle inequality.
This yields

d(x̄, f(x̄)) ≤ d(x̄, xn+1) + d(xn+1, f(x̄))

= d(x̄, xn+1) + d(f(xn), f(x̄))

≤ d(x̄, xn+1) + θd(xn, x̄) < (1 + θ)ε

for all n ≥ N , the N that comes with ε in the statement that xn → x̄. As
in the proof of Theorem 3.16 it follows that d(x̄, f(x̄)) = 0 whence x̄ = f(x̄).
Another solution x̃ of x = f(x) cannot exist, because we would then have

0 < d(x̄, x̃) = d(f(x̄), f(x̃)) ≤ θ d(x̄, x̃) < d(x̄, x̃),

a contradiction. This completes a clean proof without algebra. �

Theorem 5.14 is often applied to subsets of complete metric spaces. This
requires such a subset to be complete by itself. To characterise this property
a version of Definition 3.14 with IR replaced by X is needed.

13By induction if you insist.
14As in Exercise 3.18.
15The same conclusion trivially holds if x0 is a fixed point of f .
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Definition 5.15. A subset A of a metric space X is called closed in X if
the limit x̄ of a convergent sequence xn is in A whenever all xn are in A.

This terminology was already best explained in Section 3.6, a section which
can be copy-pasted here with IR replaced by X, with a small modification in
Remark 3.26: a subset

A of a metric space X is closed if by taking limits of sequences contained
in A you cannot get out of A. The reparation for subsets A of X flawing this
property was not yet formulated16.

Theorem 5.16. Let A be a subset of a complete metric space X, and let Ā
be the set of all limits of all convergent sequences17 xn with xn ∈ A. Then
Ā is the smallest closed subset of X which contains A, and Ā is called the
closure of A.

Exercise 5.17. Prove Theorem 5.16.
Hint: show that Ā is closed, and that there is no closed Ã 6= Ā with A ⊂ Ã ⊂ Ā.

Theorem 5.18. Let X be a complete metric space and A ⊂ X. Then A is
by itself a complete metric space if and only if A is closed.

Exercise 5.19. Prove Theorem 5.18.

In particular the closure of the so-called open ball

Br(x0) = {x ∈ X : d(x, x0) < r}

with center x0 ∈ X and radius r > 0 in IR is given by the closed ball

B̄r(x0) = {x ∈ X : d(x, x0) ≤ r}.

Here we like closed subsets of complete metric spaces over open subsets18,
because Theorem 5.14 applies to contractions of such closed sets. But there
are good reasons to prefer open balls19 over closed balls: https://youtu.

be/dtRw7Zq2kQU.

16Which you should compare to constructions of IR out of the rational numbers.
17Including sequences a, a, a, a, . . . with a ∈ A.
18Not defined yet, for lack of good reasons to do so.
19We like our subsets to be closed but our balls to be open.
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5.3 More of the same: continuity in metric spaces

Definition 4.1 used converging sequences to formulate the concept of conti-
nuity in a given point ξ ∈ A ⊂ IR for a function f : A→ IR. We copy-paste
it with the first and the second IR replaced by X and Y .

Definition 5.20. Let X, Y be a metric spaces, A ⊂ X nonempty, f : A→ Y
and ξ ∈ A. Then f is called continuous in ξ if f(xn) → f(ξ) for every
sequence xn in A with xn → ξ. If f is continuous in every ξ ∈ A then
f : A→ Y is called continuous.

Exercise 5.21. Let X,Y, Z be metric spaces, f : X → Y continuous in a ∈ X,
g : Y → Z continuous in f(a). Prove that g ◦ f is continuous in a. Conclude for
A = [0,∞) ⊂ IR, f : A → IR continuous, X a metric space, and ξ ∈ X that
F : X → IR defined by F (x) = f(d(x, ξ)) is continuous.

Remark 5.22. Let X be a metric space, and let f : X → IR be continuous
in every point of X. The proof of Theorem 4.4 can be copy-pasted with A
replaced by X, provided X has the property that every sequence xn in X has
a limit point, i.e. if20

∃x̄∈IR ∀ε>0 ∀N∈IN ∃n≥N : d(xn, x̄) < ε. (5.7)

Such metric spaces are called (sequentially) compact21. This leads to:

Theorem 5.23. Let X be a sequentially compact metric space, i.e. every
sequence in X has a convergent subsequence. If f : X → IR is continuous in
every point of X then f has a global maximum and a global minimum. The
real number

|f |
max

= max
x∈X
|f(x)| (5.8)

is thus well-defined and called the maximum norm of f .

Remark 5.24. In Theorem 5.14 we obtained f(x̄) = x̄ from d(xn, x)→ 0 and
the contraction property of f , which was a special stronger case of Lipschitz
continuity, see Definition 3.3. For maps between metric spaces the definition
is given below.

Definition 5.25. Let X and Y be metric spaces with metrics d
X

for X and
d
Y

for Y . A map f : X → Y is called Lipschitz continuous with Lipschitz
constant L > 0 if for all x, y ∈ X it holds that

d
Y

(f(x), f(y)) ≤ Ld
X

(x, y). (5.9)
20See the reformulation of the convergent subsequence property in Remark 3.23.
21See Exercise 4.36.

93



Examples22 are Y = X, with

d(f(x), f(y)) ≤ Ld(x, y),

and Y = IR, with
|f(x)− f(y)| ≤ Ld(x, y).

5.4 Normed spaces and Lipschitz functions

You can jump to Theorem 5.39 for the main result of this section.

Exercise 5.26. Let X be a vector space over IR with a norm, i.e. for every x in X
there is defined a real number |x|X ≥ 0 such that

|x|X = 0 ⇐⇒ x = 0; |λx|X = |λ| |x|X ; |x+ y|X ≤ |x|X + |y|X

for all x, y ∈ X and all λ ∈ IR. Suppose that for some sequence xn in X it holds that
Sn = x1 + · · ·+ xn is a convergent sequence with limit S ∈ X, and also that

∞∑
n=1

|xn|X <∞. (5.10)

Prove that

|S|X ≤
∞∑
n=1

|xn|X .

Exercise 5.27. (continued) Prove that X is complete as a metric space with the
norm defined by d(x, y) = |x− y|X if

∞∑
n=1

|xn|X <∞.

implies that the sequence
Sn = x1 + · · ·+ xn

is convergent. Also formulate and prove the converse of this stament.

22Not to bore you with the example in Definition 3.3.
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Exercise 5.28. Classification of finite-dimensional normed spaces23. Let X be a
normed (vector) space of finite dimension N , meaning that there are e1, . . . , eN in X
such that every x ∈ X is uniquely written as

x = ξ1e1 + · · ·+ ξNeN , with ξ1, . . . , ξN ∈ IR.

Then the linear map L : IRN → X defined by

L(ξ) = L(ξ1, . . . , ξN ) = ξ1e1 + · · ·+ ξNeN

is a bijection. Prove that the function f : IRN → [0,∞) defined by

f(ξ) = |L(ξ)|

is continuous.

Exercise 5.29. (continued) Prove there exist ξ and ξ in IRN with |ξ|
2

= |ξ|
2

= 1

such that 0 < m = f(ξ) ≤M = f(ξ) and

∀ξ∈IRN : |ξ|
2

= 1 =⇒ m ≤ f(ξ) ≤M.

Hint: apply Theorem 5.23.

Exercise 5.30. (continued) Show L is Lipschitz continuous with Lipschitz constant
M , and show its inverse L−1 is Lipschitz continuous with Lipschitz constant 1

m .

Exercise 5.31. (continued) Prove that every bounded sequence in the finite-
dimensional X under consideration in Exercise 5.29 has a convergent subsequence,
and explain why X is complete.

Exercise 5.32. Let X be a normed vector space, let f : X → IR be a linear
function, and let ξ ∈ X. Suppose there exist24 one ε > 0 and a δ > 0 such that

∀x∈X : |x− ξ| < δ =⇒ |f(x)− f(ξ)| < ε.

Prove that25

∀x∈X : |x| < δ =⇒ |f(x)| < ε. (5.11)

Hint: f(x) = f(x+ ξ − ξ) = f(x+ ξ)− f(ξ).

23You can jump to Chapter 29 from here if you like.
24Just one ε is needed here.
25That is: this statement for ξ also holds for ξ = 0, and vice versa in fact.
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Exercise 5.33. (continued) Let X be a normed vector space, let f : X → IR be a
linear function, and suppose that (5.11) holds for some ε > 0 and δ > 0. Let L > 0
be such that δL = ε. Prove that

∀x∈X : |x| < 1 =⇒ |f(x)| < L. (5.12)

Hint: f(δx) = δf(x).

Exercise 5.34. (continued) Let X be a normed vector space, let f : X → IR be a
linear function, and suppose that (5.12) holds for some L > 0. Prove that26

∀x∈X : |f(x)| ≤ L|x|, (5.13)

and that f is Lipschitz continuous with Lipschitz constant L.

Definition 5.35. Let X be a metric space and ξ ∈ X. Then Lipξ(X) is
by definition the set of all27 Lipschitz continuous functions f : X → IR with
f(ξ) = 0. We define the Lipschitz norm |f |

Lip
of f ∈ Lipξ(X) to be the

smallest L ≥ 0 such that

∀x,y∈X : |f(x)− f(y)| ≤ Ld(x, y).

Special case: X a normed space, ξ = 0, f : X → IR linear satisfying (5.13).

Exercise 5.36. Prove that the definitions

(f + g)(x) = f(x) + g(x), (λf)(x) = λf(x)

make Lipξ(X) a real vector space.

Exercise 5.37. Prove that the real vector space Lipξ(X) is a normed space with
the norm defined in Definition 5.35.

Exercise 5.38. Prove that the real normed space Lipξ(X) is complete.
Hint:

|fn(x)− fm(x)| = |(fn − fm)(x)− (fn − fm)(ξ)| ≤ |fn − fm|Lip d(x, ξ)

allows to define28 the pointwise limit of a Cauchy sequence fn in Lipξ(X).

26This also called the boundedness of f , not on X, but on (all) balls.
27We cannot speak of linear here.
28Just as (4.7) did.
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Theorem 5.39. Let X be a real normed space, and let X∗ be the set of all
linear Lipschitz continuous functions f : X → IR. Then X∗ is a closed linear
subspace of Lipξ(X) and thereby complete29. We write

|f | = sup
06=x∈X

|f(x)|
|x|

for the norm of f and call X∗ the dual space of X.

5.5 Outlook: topology

There’s more to be copy-pasted from Section 3.6 with IR replaced by X. We
refrase what we did with metric spaces in terms of open sets. This prepares
for the generalisation from metric spaces to topological spaces.

Definition 5.40. Let X be metric space with metric d. A subset O of X is
called open in X if

∀ξ∈O ∃r>0 : Br(ξ) = {x ∈ X : d(x, ξ) < r} ⊂ O.

The set Br(ξ) is called30 an open ball centered at ξ with radius r > 0.

Exercise 5.41. Prove that the set Br(ξ) in Definition 5.40 is open.

Exercise 5.42. Prove that arbitrary unions of open subsets of a metric space X are
open. Prove that the intersection of two open subsets of X is also open. Prove that
X is open in itself. Prove that the empty subset ∅ of X is open.

Remark 5.43. If we denote the collection of all open subsets of X by T ,
then Exercise 5.42 says that

∅ ∈ T , X ∈ T ,

A,B ∈ T =⇒ A ∩B ∈ T ,
∀i∈I : Ai ∈ T =⇒ ∪i∈IAi ∈ T .

A collection T of subsets of a given set X with these properties is called a
topology on X. Thus every metric on X defines a topology on X, consisting
of the open sets as defined in Definition 5.40.

29Which does not exclude X∗ only containing the zero function, but see Exercise 29.11.
30Whatever meaning these words may have.
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Theorem 5.44. Let X, Y be metric spaces and f : X → Y a map. Then f
is continuous in every point of X if and only if the inverse image

f−1(O) = {x ∈ X : f(x) ∈ O}

of O under f is open in X for every set O ⊂ Y that is open in Y .

Proof. Assume that f is continuous, i.e.

xn → ξ =⇒ f(xn)→ f(ξ)

for every ξ ∈ X and let O ⊂ Y be open in Y . To show that f−1(O) is
open take ξ ∈ X with f(ξ) ∈ O. Suppose there is no r > 0 such that
Br(ξ) ⊂ f−1(O). Then we can choose31 a sequence xn in X such that xn → ξ
while f(xn) 6∈ O. By definition of continuity f(xn)→ f(ξ) ∈ O.

Choose ε > 0 such that

Bε(f(ξ)) = {y ∈ Y : d
Y

(y, f(ξ)) < ε} ⊂ O

and apply the definition of f(xn) → f(ξ). Then there exists N ∈ IN such
that f(xn) ∈ Bε(f(ξ)) ⊂ O for all n ≥ N , a contradiction. Thus there does
exist r > 0 such that Br(ξ) ⊂ f−1(O). This holds for every ξ ∈ f−1(O). We
have thus proved that f−1(O) is open.

For the opposite implication, assume that f−1(O) is open in X for every
O open in Y , and let xn be a convergent sequence with limit ξ. We have to
prove that f(xn) → f(ξ). We follow our nose. Let ε > 0 and consider the
open ball Bε(f(ξ)). By assumption its pre-image f−1(Bε(f(ξ))) is open in
X and contains ξ. Therefore there exists r > 0, but let’s call it δ, such that

Bδ(ξ)) ⊂ f−1(Bε(f(ξ))).

This is equivalent to
f(Bδ(ξ) ⊂ Bε(f(ξ)),

and says that
d
X

(x, ξ) < δ =⇒ d
Y

(f(x), f(ξ)) < ε. (5.14)

To finish we should not forget the sequence xn we started with, and its limit
ξ. Apply the definition of convergence in the form

∃N∈IN ∀n≥N : d(xn, ξ) < δ.

Then d
Y

(f(xn), f(ξ)) < ε for all n ≥ N . This shows that f(xn)→ f(ξ) and
completes the proof. �

Remark 5.45. The reformulation of continuity in every point in terms of
open sets given in Theorem 5.44 involved the first ε-δ-statement (5.14) in
these lecture notes. Such statements are the subject of Chapter 8 first.

31The reasoning is similar to that in the proof of Theorem 3.28.
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5.6 Compactness with open coverings

Compactness via convergent subsequences can be reformulated in terms of
open sets too. We first establish the reformulation as a consequence and then
show that in turn it implies (sequential) compactness.

Definition 5.46. Let X be a metric space and A ⊂ X. A collection

{Oi : i ∈ I},

in which I is an index set and Oi is an open subset of X for every i ∈ I, is
called an open covering of A if

A ⊂ ∪i∈IOi.

Theorem 5.47. Let A ⊂ X be sequentially compact, i.e. every sequence xn
in A has a limit point in A. Then for every open covering {Oi : i ∈ I} of A
there exist i1, . . . , im ∈ I such that

A ⊂ Oi1 ∪ · · · ∪Oim ,

and {Oi1 , . . . , Oim} is called a finite subcovering.

Proof. We first assume that I = IN and

A ⊂ ∪i∈INOi.

If the statement were false then for every n ∈ IN there would be a pn ∈ A
with

pn 6∈ O1 ∪ · · · ∪On. (5.15)

Since A is sequentially compact the sequence pn has a limit point p in A,
and p must be contained in some Om. But Om is open so there exists an
open ball Bε(p) ⊂ Om. Then it must be that pn ∈ Bε(p) for some n ≥ m,
otherwise p is not a limit point. This contradicts (5.15) because then

Bε(p) ⊂ Om ⊂ O1 ∪ · · · ∪On.

So for general I we only have to show that there exists a sequence in such
that

A ⊂ ∪n∈IOin .

We now first assume that A is separable32, i.e. that there exists a sequence
pn in A such that every p in A is a limit point of this sequence. We claim33

that thereby
p ∈ B 1

m
(pn) ⊂ Oi

32A separable metric space which is complete is called a Polish space.
33Prove this claim.
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for some i ∈ I and some m,n ∈ IN. If so then the pairs (m,n) thus encoun-
tered by varying p ∈ A form a countable set J and

A ⊂ ∪(m,n)∈JB 1
m

(pn).

For each such (m,n) choose i = imn ∈ I such that B 1
m

(pn) ⊂ Oi as above.
Then

∪m,n∈INOimn

a countable open cover of A.
It now remains to show that A is separable. For subsets of separable

metric spaces X this is always true, but requires an argument we leave for
now. Instead we show that sequentially compact sets are totally bounded,
i.e. for every ε > 0 there are finitely many p1, . . . , pn in A such that

A ⊂ Bε(p1) ∪Bε(p2) ∪ · · · ∪Bε(pn).

Clearly this implies that A is separable.
So suppose A is sequentially compact but not totally bounded. Then

there exists ε > 0 for which no p1, . . . , pn as above exist. Choose p1 ∈ A and
inductively for n = 1, 2, . . . a point pn+1 ∈ A with

pn+1 6∈ Bε(p1) ∪Bε(p2) ∪ · · · ∪Bε(pn).

Then d(pi, pj) ≥ ε for all i 6= j, so the sequence pn can not have a convergent
subsequence. This completes the proof. �

Theorem 5.48. Let A ⊂ X have the property that every open covering of A
has a finite subcovering. Then A is sequentially compact.

Proof. Let an be a sequence in A and suppose it has no convergent sub-
sequence. Then for every p ∈ A there must be and εp > 0 and Np ∈ IN
such that an 6∈ Bεp(p) for all n > Np. Clearly {Bεp(p) : p ∈ A} is an open
covering of A, so there exists p1, p2, . . . , pm in A such that

A ⊂ Bεp1
(p1) ∪Bεp2

(p2) ∪ · · · ∪Bεpm (pm).

Thus A contains at most finitely elements of the sequence an, so at least
on element an of the sequence occurs infinitely many times in the sequence,
say for n = nk, with n1 < n2 < · · · . This makes ank a trivially convergent
subsequence, a contradiction that completes the proof. �
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5.7 Exercises about the plane

This course is about y = f(x) with x, y ∈ IR and C([a, b]) is a Banach space
consisting of some such f . We draw their graphs in the real plane IR2, also
a space.

Exercise 5.49. For x = (x1, x2) ∈ IR2 define |x|
max

= max(|x1, |x2|). Prove that
this defines a norm and thereby a metric. Show that the topology defined by this
metric is the same as the topology defined by the Euclidean distance.

Hint: roll in some balls first and draw them in the x1x2-plane.

Exercise 5.50. (continued) Same question for |x|
1

= |x1|+ |x2|.

Exercise 5.51. (continued) By definition the Euclidean distance d derives from the
norm defined by |x|

2
=
√
x2

1 + x2
2. Prove the triangle inequality34 for this norm and

give the definition of d(x, y) for x, y ∈ IR2 in terms of this norm.

Exercise 5.52. (continued) The Euclidean distance also derives from the standard
inner product defined by x · y = x1y1 + x2y2, so

d(x, y) =
√

(x− y) · (x− y).

Prove the parallelogram law for the parallelogram with vertices 0, x, y and x+ y. In
case you don’t know this law, find it. It relates the squares of all possible distances
between the four vertices to one another by one simple formula, which we call the
parallelogram law for x and y.

Exercise 5.53. An alternative way to say that O ∈ IR2 is open is to demand that
for every ξ ∈ O it holds that35

ξ ∈ K1 ∩K2 ∩K3 ⊂ O,

with K1,K2,K3 open half planes. An open half plane is a set of the form

K = {x ∈ IR2 : a1x1 + a2x2 < b}
34No pictures allowed in the proof.
35The number of halfspaces needed is 3 = 2 + 1, the dimension of IR2 plus 1.
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with a1, a2, b ∈ IR and a1, a2 not both equal to zero. Prove this statement.

Remark 5.54. We could start topology in IR2 with the observation that K
as above should be open in any reasonable approach and take it from there36.

Exercise 5.55. Prove that every such K is a convex set, meaning that with x, y ∈ K
also the closed segment37

[x, y] = {tx+ (1− t)y : 0 ≤ t ≤ 1} (5.16)

is in K, i.e. K is convex if the implication

x, y ∈ K =⇒ [x, y] ∈ K (5.17)

holds true.

Exercise 5.56. If K1 and K2 are convex then so is K1 ∩ K2. Why? Prove that
any intersection

∩i∈IKi

of convex sets Ki indexed by some index set I is convex.

Exercise 5.57. Let K be convex and nonempty. Then the function f0 : K → IR
defined by f0(x) = d(x, 0)2 = x ·x is nonnegative on K. Thus there exists a (so-called
minimizing) sequence xn ∈ K such that

f0(xn)→ I0 = inf
x∈K

f0(x)

as n→∞. Use the parallelogram law to show that xn is a Cauchy sequence.
Hint: t = 1

2 in (5.16) implies

xn + xm
2

∈ K, so
xn + xm

2
· xn + xm

2
≥ I0,

and you know what xn ·xn and xm ·xm do as m,n→∞. The parallelogram law then
tells you what (xn − xm) · (xn − xm) must do.

Exercise 5.58. (continued) Thus xn converges to a limit ξ0 ∈ IR2. Prove that
every minimizing sequence converges to ξ0.

36And then nobody will call non-balls balls anymore.
37With this notation [x, y] = [y, x].
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5.8 Exercises

Exercise 5.59. Let xn be a sequence in a metric space X. Prove that xn → x̄ ∈ X
if and only if every subsequence of xn has itself a subsequence that converges to x̄.

Hint: reason as in Exercise 4.20.

Exercise 5.60. Prove that every compact metric space is complete.

Exercise 5.61. Let X be a metric space which contains a sequence without limit
points. Can you construct a continuous function on X which is unbounded?

Hint: use Exercise 5.21 and the negation of (5.7).

Exercise 5.62. (Dini’s theorem) Suppose that X is a compact metric space, fn ∈
C(X) for n ∈ IN, f ∈ C(X), and fn(x)→ f(x) for every x ∈ X as n→∞. Assume
that fn(x) is a nonincreasing in n for every x ∈ X. Prove that fn → f in C(X), i.e.
fn → f uniformly on X .

Hint: Exercise 4.45.

Exercise 5.63. Let X and Y be metric spaces. Prove that f : X → Y is continuous
if and only if f−1(G) = {x ∈ X : f(x) ∈ G} is closed in X for every G closed in Y .

Exercise 5.64. Let X and Y be metric spaces. Prove that Lipschitz continuity of
f : X → Y implies pointwise continuity of f .

Exercise 5.65. Let X = C([0, 1]). Define F : X → IR by F (f) = f(0) + f(1)2.
Prove directly from Definition 4.1 and Definition 4.8 that F is continuous. Is it
Lipschitz continuous?

Exercise 5.66. Referring to Remark 5.2, prove that B([a, b]) is a complete metric
space with the metric defined by d(f, g) = |f − g|∞ .
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Exercise 5.67. For T > 0 and k ∈ IN let B
k
([a, b]) be the space of functions

f : [a, b]→ IR for which the statement38

∃M≥0 ∀x∈[a,b] |f(x)| ≤M |x|k (5.18)

holds true, and let |f |
k

be the smallest M ≥ 0 for which (5.18) holds. Prove that this
makes B

k
([a, b]) a complete metric space with d

k
defined by d

k
(f, g) = |f − g|

k
.

Exercise 5.68. Let X = C([0, 1]) and let g : IR→ IR be continuous. For f ∈ X
define

F (f) = g ◦ f, i.e. (F (f))(x) = g(f(x)) ∀x ∈ [0, 1].

Prove that F (f) ∈ X and that F : X → X is continuous. What do you have to
assume about g to ensure that F is Lipschitz continuous? Discuss the examples in
which g is defined39 by

g(y) = y2 and g(y) =
y

1 + y2
.

Exercise 5.69. Let X = C([0, 1]). Define F : X → X by

(F (f))(x) = 1 +
1

2
f
(x

2

)
.

Prove that F is a contraction. What is the contraction factor of F? What is the
unique fixed point of F?

Exercise 5.70. Suppose X is a set and d : X ×X → IR satisfies

d(x, y) = d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ X. Prove that d(x, y) ≥ 0 for all x, y ∈ X. If in addition

d(x, y) = 0 =⇒ x = y

for all x, y ∈ X, then d is a metric, and X is a metric space with metric d.

38With [a, b] = [−T, T ] this prepares for Exercise 7.57, note k = 0 is not of new interest.
39See Exercise 3.48.
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Exercise 5.71. Let X be a metric space with metric d. Prove that

d̃(x, y) =
d(x, y)

1 + d(x, y)

also defines a metric on X. Explain why this metric is bounded by 1.

Exercise 5.72. (continued) Prove that d and d̃ define the same collection of open
balls in X if we agree to call X itself an open ball too.

Exercise 5.73. (continued) Prove that d and d̃ give rise to the same continuous
functions f : X → IR.

Exercise 5.74. Suppose that a nonempty set X has two metrics d1 and d2 defined
on it. Prove that

d̄(x, y) =
1

2
d1(x, y) +

1

4
d2(x, y)

also defines a metric on X.

Exercise 5.75. Suppose that a nonempty set X has a sequence of metrics dn
bounded by 1 and indexed by n ∈ IN defined on it. Prove that

d∞(x, y) =

∞∑
n=1

dn(x, y)

2n

also defines a metric on X bounded by 1.

Exercise 5.76. (continued) What does it mean for a function f : X → IR to be
continuous with respect to d∞?
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The story so far:

”In the beginning the Universe was created. This has made a lot of people
very angry and been widely regarded as a bad move. Many races believe
that it was created by some sort of God, though the Jatravartid people of
Viltvodle VI believe that the entire Universe was in fact sneezed out of the
nose of a being called the Great Green Arkleseizure. The Jatravartids, who
live in perpetual fear of the time they call The Coming of The Great White
Handkerchief, are small blue creatures with more than fifty arms each, who
are therefore unique in being the only race in history to have invented the
aerosol deodorant before the wheel. However, the Great Green Arkleseizure
Theory is not widely accepted outside Viltvodle VI and so, the Universe being
the puzzling place it is, other explanations are constantly being sought.”
(Douglas Adams)

Part 1 was about what we learned from YBC7289 and Archimedes: every-
thing about limits and limit points of sequences, the Banach Contraction
Theorem (BCT), C([a, b]) as a complete metric space in which the BCT
thereby holds, its metric defined by d(f, g) = |f − g|

max
, the maximum norm

well-defined for every f ∈ C([a, b]) by

|f |
max

= max
a≤x≤b

|f(x)|,

and showing off with the statement that C([a, b]) is in fact a Banach algebra:
https://youtu.be/J_KdlZObeQI.

We continue with Part 2, revisit Archimedes and the pyramids, to first study
integrals of functions f : [a, b]→ IR, ignoring our beloved C([a, b]) as long as
we can. Back to square 1, with rectangles in fact.
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6 Integration of monotone functions

https://www.youtube.com/playlist?list=PLQgy2W8pIli9sGfgTURtHzNwItqyiI3Tz

The above playlist combines this and the next chapter, but here we slow down

the pace and consider monotone functions first. This chapter is meant to be
largely independent of what we’ve done1 since Archimedes and the pyramids
in Sections 1.2 and 1.3. Let a, b ∈ IR and let f : [a, b]→ IR be a nice function,
nice in a meaning to be made precise later. Consider the sets

A+ = {(x, y) ∈ IR2 : 0 < y < f(x), a < x < b}

and
A− = {(x, y) ∈ IR2 : f(x) < y < 0, a < x < b}.

If both these sets have a well-defined finite area, denoted by |A+| and |A−|,
then based on what you have seen in highschool you would expect that the
integral of f from a to b is given by∫ b

a

f(x) dx = |A+| − |A−|.

Exercise 6.1. Sketch the graph of the function f : [0, 1]→ IR defined by

f(x) = x(1− x)(x− 1

3
)

and indicate the two sets A− and A+.

Here we will not bother to define the area of general subsets of the plane, but
we opt for a definition of the integral only. The definition should not make
you uncomfortable in relation to what your intuition says that the area of
the sets A+ and A− should be.

6.1 Integrals of monomials

Have a look at (1.5) in Section 1.2 and the work you did in Exercise 1.17.
You probably convinced yourself that

Jp :=

∫ 1

0

xp dx =
1

p+ 1

1https://www.youtube.com/watch?v=2vcvh2K9wIk
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for every p ≥ 2. But it is also instructive to look at the easy cases p = 0 and
p = 1 first. Starting point for the definition of the integral is the consensus
that the area of the open square

S = {(x, y) ∈ IR2 : 0 < x < 1, 0 < y < 1}

is equal to 1, and that ∫ 1

0

x0 dx =

∫ 1

0

1 dx = |S| = 1.

So for p = 0 all is clear2.
Next we consider p = 1. Let the function f be defined by f(x) = x.

Again we have A− = ∅, but now the set A+ is an open triangle. The interior
of S\A+ is also an open triangle, twinned to A+ by reflection in the line
y = x. We therefore conclude that the area of A+ must be equal to half of
the area of S, i.e. ∫ 1

0

x dx = |A+| =
|S|
2

=
1

2

must be the outcome for any reasonable definition of the integral.
For p = 2, 3, 4, . . . there is no such symmetry argument and the example

f(x) = x2 requires a new approach. We look for a sensible meaning of

J2 =

∫ 1

0

x2 dx

that coincides with what we believe is the area of

A2 = {(x, y) ∈ IR2 : 0 < y < x2 < 1}.

The idea now is to evaluate y = x2 at values of x given by

0 =
0

n
,

1

n
,

2

n
, . . . ,

n

n
= 1,

These particular x-values give you points (x, y) in the unit square S.

Exercise 6.2. Choose n = 10. Look at the set A2 in S bounded by y = 0, x = 1
and y = x2. Make a sketch in which S is large (so that there’s not much outside of
S) to convince yourself that the area |A2| of A2 is less than the upper sum

1

10

(
1

100
+

4

100
+

9

100
+

16

100
+

25

100
+

36

100
+

49

100
+

64

100
+

81

100
+

100

100

)
,

2Don’t bother about 00 in x = 0 yet but note that we also agree that |S̄| = 1.
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but more than the lower sum

1

10

(
0

100
+

1

100
+

4

100
+

9

100
+

16

100
+

25

100
+

36

100
+

49

100
+

64

100
+

81

100

)
.

Hint: look at the cartoon3 preceding this chapter.

If this worked out, you will also convince yourself that

|A2| <
1

n3

n∑
k=1

k2 (6.1)

for every natural number n. Now recall from (Cn) in Section 1.2 that

n∑
k=1

k2 =
n3

3
+
n2

2
+
n

6
,

and enjoy the cubic version

https://twitter.com/i/status/1116738152935374853

from another perspective if you like. Together with (6.1) the sum of the first
n squares formula implies that

|A2| <
1

n3

n∑
k=1

k2 =
1

3
+

1

2n
+

1

6n2
<

1

3
+

2

3n
. (6.2)

Likewise you will conclude that

|A2| >
1

n3

n−1∑
k=0

k2 =
1

3
+

1

2n
+

1

6n2
− 1

n
=

1

3
− 1

2n
+

1

6n2
>

1

3
− 1

2n
. (6.3)

Thus the area |A2| should satisfy

1

3
− 1

2n
< |A2| <

1

3
+

2

3n
for all n ∈ IN. (6.4)

This squeezes the area in, and allows for no other conclusion than4

J2 = |A2| =
1

3
,

the number we found for the volume of the pyramid in Section 1.2.

3Every nonzero term in the sums is the area of a rectangle with width 1
10 in your sketch.

4Note the same reasoning applies to Ā2.
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Exercise 6.3. Convince yourself that for all p ∈ IN it must hold that

|Ap| =
1

p+ 1
.

Hint: use lower and upper sums, and Exercise 1.17.

Remark 6.4. For p = 1 an approach with lower and upper sums may look a
bit silly. But it does reproduce the right number for the area of the triangle
A1. Our new calculation for J2 = |A2| is identical to the calculation of the
volume of the pyramid in Section 1.2.

6.2 Integrals of monotone functions via finite sums

In the previous section we have hopefully convinced you that a proper defi-
nition of the integral leads to∫ 1

0

xp dx =
1

p+ 1
. (6.5)

Now let a, b ∈ IR with a < b. A definition of

J =

∫ b

a

f =

∫ b

a

f(x) dx (6.6)

will now be designed for a large class of functions f : [a, b] → IR so as to
describe the area |A| of the set

A = {(x, y) ∈ IR2 : 0 < y < f(x), a < x < b} (6.7)

if f has the property that f(x) ≥ 0 for all a < x < b. For a start we take f
to be nondecreasing and nonnegative, just like in (6.5).

Definition 6.5. Let a, b ∈ IR with a < b and f : [a, b] → IR. Then f is
called nonnegative if f(x) ≥ 0 for all x ∈ [a, b]; f is called nondecreasing if
the implication

x1 ≤ x2 =⇒ f(x1) ≤ f(x2)

holds for all x1, x2 ∈ [a, b].

Such nonnegative nondecreasing functions can be pretty wild5, but for the
indicated approach with lower and upper sums we will now show that there
are no problems in defining an integral.

5See Exercises 4.43 and 4.44.
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Definition 6.6. A partition P of [a, b] is a choice of real numbers x0, . . . , xN
with

a = x0 ≤ x1 ≤ · · · ≤ xN = b (N ≥ 2). (6.8)

Given such a partition P and a nondecreasing nonnegative f : [a, b]→ IR we
define the left endpoint sums6

L :=
N∑
k=1

f(xk−1)︸ ︷︷ ︸
mk

(xk − xk−1) (6.9)

= f(x0)(x1 − x0) + · · ·+ f(xN−1)(xN − xN−1).

Each nonzero term in (6.9) is the area of an open rectangle7

(xk−1, xk)× (0, f(xk−1)) = {(x, y) ∈ IR2 : 0 < y < f(xk−1), xk−1 < x < xk}

contained in A. This follows because f is nondecreasing, so that xk−1 is a
minimizer for f on [xk−1, xk], that is

mk = min
x∈Ik

f(x) = f(xk−1), where Ik = [xk−1, xk] (6.10)

for k = 1, . . . , N . These rectangles are mutually disjoint. Therefore the sum
of their areas must be a lower bound for the area of A. We say that the left
endpoint sum L is a Riemann lower sum for the integral (6.6) that we want
to define. In other words, the number J satisfies

L ≤ J

if J exists.
In the same fashion the closed rectangles8

[xk−1, xk]× [0, f(xk)] = {(x, y) ∈ IR2 : 0 ≤ y ≤ f(xk), xk−1 ≤ x ≤ xk},

with k running from 1 to N , cover A completely, because we recognize xk as
maximizer for f on Ik:

Mk = max
x∈Ik

f(x) = f(xk). (6.11)

We thus say that the right endpoint sum

R =
N∑
k=1

f(xk)︸ ︷︷ ︸
Mk

(xk − xk−1) (6.12)

6Make a sketch in which you see what these sums are.
7Possibly empty, if xk−1 = xk or f(xk−1) = 0.
8Possibly reducing to line segments or points with zero area.
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is an Riemann upper sum for the integral (6.6) that we want to define. In
particular,

J ≤ R

if J exists. We are ready to give a definition of integrability for nondecreasing
functions.

Definition 6.7. A nondecreasing9 function f : [a, b]→ IR is called Riemann
integrable if there is a unique number J such that

L ≤ J ≤ R (6.13)

for all possible choices of the partition P . This number J is then called the
integral of f over [a, b] and we write

J =

∫
[a,b]

f =

∫ b

a

f =

∫ b

a

f(x) dx.

In the above notation x is a dummy variable, which may be replaced by any
other symbol10.

But now observe that for equidistant partitions, i.e. partitions

x0 < x1 < · · · < xN with xk − xk−1 =
b− a
N

,

the corresponding (left endpoint) lower and (right endpoint) upper sums,
denoted by LN and RN , satisfy11

0 ≤ RN − LN =
N∑
k=1

(f(xk)− f(xk−1))
b− a
N

= (f(b)− f(a))
b− a
N

. (6.14)

But here N ∈ IN arbitrary! Archimedes thus tells us that there is at most
one number J that can reasonably qualify as the integral. It remains to find
it. Here it is.

Proposition 6.8. Let f : [a, b]→ IR be a nondecreasing function. Then

lim
n→∞

L2n = lim
n→∞

R2n

exist. If f is integrable then both limits are equal to the integral J =
∫ b
a
f .

9Not necessarily nonnegative.
10Preferably not 1, 2, a, b, d or f .
11We say that this finite sum is telescoping, see your answer to Exercise 2.44.
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Proof. Restricting to N = 2n we obtain equidistant partitions with the
property that

L1 ≤ L2 ≤ L4 ≤ L8 ≤ · · · ≤ R8 ≤ R4 ≤ R2 ≤ R1. (6.15)

You will prove this in Exercise 6.9 below. This by itself12 implies that

sup
n∈IN

L2n ≤ inf
n∈IN

R2n ,

but strict inequality is impossible in view of (6.14). Thus we must have

lim
n→∞

L2n = sup
n∈IN

L2n = inf
n∈IN

R2n = lim
n→∞

R2n

because of Theorem 2.28. If f is integrable, then J =
∫ b
a
f satisfies

L2n ≤ J ≤ R2n

and is therefore equal to both limits. �

Exercise 6.9. Prove (6.15). Hint: the equidistant partition with N = 2n+1 is a
refinement of the equidistant partition with N = 2n.

Exercise 6.10. Verify that for nonincreasing functions the story is exactly the same,
except for reversed roles of the left and right endpoint sums.

6.3 Non-equidistant partitions; common refinements

With Proposition 6.8 we have in fact established the existence of a unique
number J which candidates for being called the integral of f from a to
b. If (6.13) turns out to hold for all partitions, then it must be that13 f
is integrable. To show that (6.13) does indeed hold we need the following
theorem.

Theorem 6.11. Let f : [a, b] → IR be nondecreasing, let P be a partition
given by

a = x0 ≤ x1 ≤ · · · ≤ xN = b,

12In particular every such lower sum is less than or equal to every such upper sum.
13We did not specify f so we cannot compute J like we did for f(x) = xp with p ∈ IN.
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and let Q be another partition given by

a = y0 ≤ y1 ≤ · · · ≤ yM = b.

Define the upper sum14

S̄ =
N∑
k=1

f(xk)(xk − xk−1)

and the lower sum

S =
M∑
l=1

f(yl−1)(yl − yl−1).

Then S ≤ S̄.

For the proof of Theorem 6.11 we need one more definition.

Definition 6.12. For P and Q as in Theorem 6.11, the common refinement

a = z0 ≤ z1 ≤ · · · ≤ zK = b, (6.16)

is the partition that is obtained by simultaneously putting the numbers

x1 ≤ · · · ≤ xN−1 and y1 ≤ · · · ≤ yM−1

in increasing order. So K − 1 = M − 1 +N − 1 and every zi is either an xk
or a yl.

Proof of Theorem 6.11. Let

ml = min
[yl−1,yl]

f = f(ll−1), m̃i = min
[zi−1,zi]

f = f(zi−1),

M̃i = max
[zi−1,zi]

f = f(zi), Mk = max
[xk−1,xk]

f = f(xk).

Then

M∑
l=1

ml(yl−yl−1) ≤
K∑
i=1

m̃i(zi−zi−1) ≤
K∑
i=1

M̃l(zi−zi−1) ≤
N∑
k=1

Mk(xk−xk−1)

for the lower sum obtained from Q and the upper sum obtained from P . It
follows for every lower sum S and every upper sum S̄ that S ≤ S̄. �

14For future purposes we write S̄ and S for R and L now.
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Theorem 6.13. Let f : [a, b]→ IR be nondecreasing15. Then f is Riemann
integrable. In other words, there is a unique J ∈ IR such that

S ≤ J ≤ S̄

for every lower Riemann sum S and every upper Riemann sum S̄. This real
number J is by Definition 6.7 the integral of f from a to b, notation

J =

∫ b

a

f(x) dx.

Proof of Theorem 6.13. Let S and S̄ be lower and upper sums for some
partitions. By Theorem 6.11 we have that S ≤ S̄. So every upper sum is an
upper bound for the nonempty set

S
lower

=

{
N∑
k=1

f(xk−1)(xk − xk−1) : a = x0 ≤ x1 ≤ · · · ≤ xN = b

}
of all possible lower sums. Let J be the lowest upper bound of S

lower
. Then

S ≤ J for every S because J is an upper bound of S
lower

. Since S̄ is also an
upper bound of S

lower
it must then be that J ≤ S̄ because J is the lowest

upper bound of S
lower

. Thus S ≤ J ≤ S̄ for all S, S̄. No other number J̃ can
have this property in view of (6.14) and Archimedes’ principle. �

Exercise 6.14. Explain once more how Theorem 1.5 is used in the conclusion of
the proof of Theorem 6.13.

Remark 6.15. For monotone functions the integral is the unique number
squeezed in between all lower and all upper sums. In other words, monotone
functions are integrable. This fundamental result is a direct consequence of
Archimedes’ Theorem 1.5 and Theorem 6.11. It could have been stated and
proved in Section 1.3.

Exercise 6.16. Let f and g be nondecreasing functions defined on [a, b]. Then also
f + g is nondecreasing and therefore the functions f, g, f + g are integrable according
to Theorem 6.13. Prove that∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

15The statement for nondecreasing functions is similar.
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6.4 A limit theorem for monotone functions

This is https://youtu.be/5dZ54_e5AKk in the playlist.

What about integrals of sequences of monotone functions fn? The following
theorem says that

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx if f(x) = lim
n→∞

fn(x)

exists for every x ∈ [a, b].

Theorem 6.17. Let fn : [a, b]→ IR be a sequence of nondecreasing functions
indexed by n ∈ IN. Suppose that

f(x) = lim
n→∞

fn(x)

exists for every x ∈ [a, b]. Then the function f thus defined is nondecreasing
and the integrals

Jn =

∫ b

a

fn(x) dx

define a sequence Jn which converges to

J =

∫ b

a

f(x) dx

as n→∞, i.e.

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx. (6.17)

A similar (equivalent) statement holds for nonincreasing fn : [a, b]→ IR.

Proof of Theorem 6.17. The monotonicity of

f(x) = lim
n→∞

fn(x)

follows from Definition 6.5: we consider the sequence fn(x2) − fn(x1) ≥ 0
for arbitrary a ≤ x1 ≤ x2 ≤ b and apply Proposition 2.33 to conclude that
f(x2)− f(x1) ≥ 0.

As many times before, let ε > 0. Consider a lower sum L and an upper
sum R for the limit function f , with the partition P as in Definition 6.8
chosen such that

R− L < ε.
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This is possible because f is monotone and therefore Theorem 6.13 applies.
Denote the lower and upper sums for

∫ b
a
fn for that same partition by Ln and

Rn. Then we have

Ln ≤ Jn ≤ Rn and L ≤ J ≤ R.

It also holds that Ln → L and Rn → R. This holds because fn(xk)→ f(xk)
as n → ∞ for every k = 0, . . . , N . In particular it follows that there is an
N ∈ IN such that for all n ≥ N we have

L− ε < Ln ≤ Jn ≤ Rn < R + ε.

But we also have that

L− ε < L ≤ J ≤ R < R + ε.

Thus16

|Jn − J | < R− L+ 2ε < 3ε.

Since ε > 0 was arbitrary this completes the proof. �

6.5 Scaling and shifting; logarithm and exponential

Exercise 6.18. Let a, b, ξ, λ ∈ IR, a < b, λ > 0. Let f : [a, b]→ IR be a monotone
function. Show directly from Theorem 6.13 that∫ b

a
f(x) dx =

∫ b+ξ

a+ξ
f(x− ξ) dx and

∫ b

a
f(x) dx =

1

λ

∫ bλ

aλ
f
(x
λ

)
dx.

Exercise 6.19. For b > 0 and p ∈ IN the area of

{(x, y) ∈ IR2 : 0 ≤ y ≤ xp ≤ bp}

equals the quotient of bp+1 and p+ 1. In integral notation this means that∫ b

0
xp dx =

bp+1

p+ 1
.

Prove this statement from the known statement for b = 1 and relate it to scaling the
units on the axes.

16With a bit more care we get |Jn − J | < 2ε but so what?
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Exercise 6.20. Likewise, for 0 ≤ a < b and p ∈ IN, the area of

{(x, y) ∈ IR2 : a ≤ x ≤ b, 0 ≤ y ≤ xp}

is ∫ b

a
xp dx =

[
xp

p+ 1

]b
a

=
bp+1

p+ 1
− ap+1

p+ 1
.

Use Theorem 6.13 and whatever it takes to prove this formula.

Definition 6.21. For x > 0 we define lnx, the natural logarithm of x,
somewhat unnaturally, by

lnx =

∫ x

1

1

s
ds.

Exercise 6.22. Apply Exercise 6.18 to Definition 6.21 and rewrite the formula for
ln y as an integral from x to xy if x > 1 and y > 1. Conclude that

lnxy = lnx+ ln y.

Then prove this identity for all x, y ∈ IR+. Hint: show first that

lnx+ ln
1

x
= 0

for all x > 0. Explain the meaning of all these identities in terms of areas.

Exercise 6.23. We define the functions en : [0,∞)→ [1,∞) by

en(x) = 1 +

∫ x

0
en−1 and e0(x) = 1 for every x ≥ 0.

Then en(0) = 1 for every n ∈ IN. Use Exercise 6.19 and Exercise 6.16 to prove that
en(x) is a strictly increasing convergent sequence for every x > 0 and that

exp(x) := lim
n→∞

en(x) = 1 +

∫ x

0
exp

for every x ≥ 0. See also https://youtu.be/RVJ996OxrHE, this defines exp on the
positive real axis.

Hint: establish that en(x) is bounded from above for fixed17 x > 0.

17Of course we don’t want to keep this restriction to x ≥ 0, see Exercise 7.54.
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Exercise 6.24. (continued) Also show that18

exp(µx) = 1 + µ

∫ x

0
exp(µs) ds

for every µ > 0 and every x ≥ 0. Hint: combine Exercise 6.23 with Exercise 6.18.

6.6 Exercises

Exercise 6.25. It follows from Definition 6.21 that ln is a strictly increasing function
on IR+. Prove and use19

lnn ≥ 1

2
+

1

3
+

1

4︸ ︷︷ ︸
> 1

2

+
1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸
> 1

2

+ · · ·+ 1

n
=

n∑
k=2

1

k

to show20 that lnx→∞ as x→∞. What can you conclude for x→ 0?

Exercise 6.26. Use the definition of the integral and Definition 6.21 to show that

ln 2 =

∫ 1

0

1

1 + x
dx.

Exercise 6.27. Let g : [0, 1]→ IR be defined by

g(x) =
1

1 + x
.

Let

f(x) =

{
g(x) for 0 ≤ x < 1

0 for x = 1
and fn(x) =

1− x2n

1 + x
.

Combine Exercise 6.26 and Theorem 6.17 with [a, b] = [0, 1] to prove21 that(
1

1
− 1

2

)
+

(
1

3
− 1

4

)
+

(
1

5
− 1

6

)
+

(
1

7
− 1

8

)
+ · · · = ln 2.

18This is for Exercise 7.30 and further.
19See also Exercise 2.44 and further.
20Give a definition first, in the spirit of Exercise 2.56.
21So 1− 1

2 + 1
3 −

1
4 + · · · = ln 2.
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Hint: for all x with 0 ≤ x < 1 it follows from Theorem 1.9 that22

g(x) =
1

1 + x
= 1− x+ x2 − x3 + x4 − x5 + x6 − x7︸ ︷︷ ︸

f4(x)

+ · · · = lim
n→∞

fn(x).

Don’t watch https://youtu.be/D5Lc8PO6sp0 yet.

Exercise 6.28. Let fn : [a, b] → IR be a sequence of functions with fn(x) nonde-

creasing in n and x. Then Jn =
∫ b
a fn is a nondecreasing sequence. Suppose that Jn

is bounded. Prove that
f(x) = lim

n→∞
fn(x)

exists for every x ∈ [a, b) and is nondecreasing in x, and that∫ x

a
f → J = lim

n→∞
Jn as x→ b.

Exercise 6.29. (continued) If Jn is not bounded then a definition as in Exercise
2.56 applies to Jn. Formulate and prove a statement about∫ x

a
f for x→∞.

Exercise 6.30. Consider in IR2 the points

P1 =

(
1√
2
, 0

)
, P2 =

(
0,

1√
2

)
and P3 = (λ, λ) ,

where λ > 0 is chosen such that d(Pi, Pj) = 1 for all i, j ∈ {1, 2, 3} with i 6= j.
Then P1, P2, P3 are the vertices of an equilateral triangle with all edges of unit length.
Denote its area by V2. Determine its area using the base times height formula with
prefactor 1

2 .
Hint: you have to solve a quadratic equation for λ.

22Plot some graphs to see what’s going on.
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Exercise 6.31. In IR3 the points(
1√
2
, 0, 0

)
,

(
0,

1√
2
, 0

)
and

(
0, 0,

1√
2

)
are also the vertices of an equilateral triangle with all edges of unit length. Choose
a fourth point with all coordinates positive and identical to one another to construct
a tretrahedron with all edges of unit length. Determine its volume V3 using the base
times height rule with prefactor 1

3 .

Exercise 6.32. Then take the four points(
1√
2
, 0, 0, 0

)
,

(
0,

1√
2
, 0, 0

)
,

(
0, 0,

1√
2
, 0

)
and

(
0, 0, 0,

1√
2

)
in IR4 and a fifth point with all coordinates positive and identical to one another to
construct a so-called simplex with all edges of unit length. Determine its 4-dimensional
volume V4. What’s the prefactor in the base times height rule? And so on. What’s
the formula for general n ∈ IN?

Hint: V1 = 1, express Vn in Vn−1.

Exercise 6.33. What about nonincreasing functions

fn : [0,∞)→ [0,∞)

with the property that fn(x) is a converging sequence for every x ∈ [0,∞) with limit
f(x)? Consider23

Jn(x) =

∫ x

0
fn

and see what statements you would like to make and can prove about∫ ∞
0

fn and

∫ ∞
0

f.

23We may prefer to write Fn(x) =
∫ x

0
fn instead.
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7 Integration of bounded functions?

https://www.youtube.com/playlist?list=PLQgy2W8pIli9sGfgTURtHzNwItqyiI3Tz

Let a, b ∈ IR with a < b. We have seen that monotone functions f : [a, b]→ IR
are integrable. If f is nondecreasing then its range1

Rf = {f(x) : a ≤ f(x) ≤ b}, (7.1)

is contained in the interval [f(a), f(b)]. A function f is called bounded if its
range Rf is a bounded set. Clearly every nondecreasing function f : [a, b]→
IR has this property. Monotone functions defined on bounded closed intervals
are thus bounded. In this chapter we consider bounded but not necessarily
monotone functions defined on intervals [a, b] and ask the question: can we
integrate them2?

7.1 Bounded integrable functions

This is https://youtu.be/EhCo23A57J4 in the playlist. Without a mono-
tonicity assumption, the left and right endpoint sums (6.9) and (6.12) are
no longer bounds for an integral that we would like to define. For some par-
titions we may have R < L, while L < R for other partitions. In fact the
maxima Mk and minima mk used in these Riemann sums need not even exist.
Instead we shall use, for k = 1, . . . , N , the real numbers mk,Mk defined by

mk = inf{f(x) : x ∈ Ik}
Mk = sup{f(x) : x ∈ Ik}

in which Ik = [xk−1, xk]. (7.2)

These numbers exist because3 the range of f restricted to Ik is a bounded
nonempty set contained in Rf . From Theorem 4.4 we do know for continuous
f : [a, b]→ IR that mk and Mk are actually minima and maxima, but we will
postpone the study of integrals of continuous functions for now.

Definition 7.1. Let a, b ∈ IR with a < b and let f : [a, b] → IR be a
bounded function, i.e. a function with bounded range. The function f is
called Riemann integrable if there exists a unique number J ∈ IR such that

S =
N∑
k=1

mk(xk − xk−1) ≤ J ≤
N∑
k=1

Mk(xk − xk−1) = S̄

1We have used this notation before in Section 2.4 and Theorem 7.5.
2We already put them in a space, B([a, b]), see Section 5.3.
3See again Section 2.4.
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for all partitions (6.8) of [a, b], where the numbers mk,Mk are defined as in
(7.2). The number J is called the integral of f over [a, b]. We write

J =

∫ b

a

f(x) dx.

The following criterion characterises the bounded integrable functions.

Theorem 7.2. A bounded function f : [a, b] → IR is integrable if and only
if for every ε > 0 there exists a partition P with S̄ − S < ε. If so then in
particular J =

∫ b
a
f is contained in [S, S̄], an interval of length less than ε.

Proof. We copy the proof of Theorem 6.11, with min replaced by inf and
max replaced by sup. That is we use (7.2) for the intervals of the partitions
P , Q, and their common refinement R. It follows in exactly the same fashion
that

SP ≤ SR ≤ S̄R ≤ S̄Q.

�

Exercise 7.3. Take some to time reflect on this simple and effective “if and only
if” criterion for the integrability of bounded functions.

Exercise 7.4. Prove that the function f defined by

f(x) =

{
1 for x ∈ IQ
0 for x 6∈ IQ

is not integrable on [0, 1].

Exercise 7.4 shows that not every bounded function f : [a, b] → IR can be
integrated. So much for B([a, b]) as a space to consider as a domain for

f

∫ b
a−→
∫ b

a

f ∈ IR.

Too bad. In Chapter 8 we will show that every f ∈ C([a, b]) is integrable, but
for now we are happy with the statement in the following theorem. It has the
integrability of Lipschitz continuous functions as an obvious consequence4.

4And also the integrability of F ◦ f with F Lipschitz continuous and f monotone.
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Theorem 7.5. Suppose the bounded function f : [a, b] → IR is integrable,
and that F : Rf → IR is a Lipschitz continuous function defined on the
(bounded) range

Rf = {f(x) : a ≤ x ≤ b}
of f . Then the composition F ◦ f : [a, b]→ IR is also bounded and integrable
on [a, b]. ∫ b

a
(f(x) dx exists =⇒

∫ b
a
F (f(x)) dx exists

In particular every Lipschitz continuous F : [a, b]→ IR is integrable.

Proof of Theorem 7.5. The function

f ∗ := F ◦ f

is bounded because F is Lipschitz continuous and f is bounded. Let M∗
k and

m∗k be the suprema and infima of f ∗ on the intervals Ik of a partition P , and
let L be the Lipschitz constant of F . It should be clear from5

|F (y)− F (ỹ)| ≤ L|y − ỹ| for all y, ỹ ∈ Rf ,

that then also the estimate

M∗
k −m∗k ≤ L(Mk −mk) (7.3)

holds. You are asked to prove this claim in Exercise 7.6 below.
Now let ε > 0 and let P be a partition for which

0 ≤ S̄ − S =
N∑
k=1

(Mk −mk)(xk − xk−1) < ε,

with mk,Mk defined in (7.2). This P is provided by Theorem 7.2 because
we assumed that f is integrable on [a, b]. We examine how P performs for
f ∗. As a consequence of (7.3) we have for the Riemann sums S∗ and S̄∗ of
F ◦ f = f ∗ that

0 ≤ S̄∗−S∗ =
N∑
k=1

(M∗
k −m∗k)(xk−xk−1) ≤ L

N∑
k=1

(Mk−mk)(xk−xk−1) < Lε.

Since ε > 0 was arbitrary, Theorem 7.2 and an L-trick6 complete the proof.
The special case that f(x) = x and the integrability of monotone functions
imply that Lipschitz continuous functions F : [a, b]→ IR are integrable. �

5See (3.7) in Definition 3.3.
6See (2.18).
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Exercise 7.6. Prove (7.3). It suffices to consider the case that N = 1 and show for

m = inf
a≤x≤b

f(x), m∗ = inf
a≤x≤b

F (f(x)),

M = sup
a≤x≤b

f(x), M∗ = sup
a≤x≤b

F (f(x))

that
M∗ −m∗ ≤ L(M −m).

Harold’s hint: show first that

sup
x∈I

F (f(x))− inf
x∈I

F (f(x)) = sup
x,x̃∈I

(F (f(x))− F (f(x̃))).

7.2 Variations and elementary properties

Here we collect some elementary properties of the integral without proof.

Exercise 7.7. Let the bounded function f : [a, b]→ IR be integrable. Prove that

|
∫ b

a
f | ≤ (b− a) |f |∞ ,

in which the norm is the supremum norm defined in (5.1).

Exercise 7.8. Let f : [a, b] → IR be bounded and c ∈ (a, b). Prove that f is
integrable over [a, b] if and only if f integrable over both [a, c] and [c, b]. If so, it holds
that ∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

Definition 7.9. Let f : [a, b]→ IR be bounded and integrable. Then7

∫ a

b

f(x) dx := −
∫ b

a

f(x) dx.

7Consistent with the intuition that dx in
∫ b
a
f(x) dx is negative if a > b.
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Exercise 7.10. Prove for all a, b, c ∈ IR that∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx

if all integrals exist8.

Exercise 7.11. A bounded integrable function f : [a, b]→ IR can be modified in a
point x0 ∈ [a, b] by introducing the function g : [a, b]→ IR defined by g(x0) = c0 and
g(x) = f(x) for all x ∈ [a, b] with x 6= x0. Prove that g : [a, b]→ IR is integrable and∫ b
a f(x) dx =

∫ b
a g(x) dx, no matter what the number c0 ∈ IR actually is.

Exercise 7.12. Is the function f defined by

f(x) =

{
1 if 1

x ∈ IN
0 if not

integrable on [0, 1]?

7.3 The fundamental limit theorem

This is https://youtu.be/8FQad90pDGs in the playlist. We already saw one
theorem of the type

if fn → f then

∫ b

a

fn →
∫ b

a

f, (7.4)

namely Theorem 6.17 in which all fn were monotone. Here is another and
perhaps more important such theorem. More important because it can be
interpreted as the continuity statement of the map that sends integrable
functions to real numbers by taking their integrals.

Theorem 7.13. Let fn : [a, b] → IR be a sequence of bounded integrable
functions indexed by n ∈ IN. Suppose that fn converges uniformly on [a, b] to
some function f : [a, b]→ IR. Then f is also (bounded and) integrable, and∫ b

a

fn(x) dx→
∫ b

a

f(x) dx as n→∞.

8As integrals of bounded functions of course.
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Proof of Theorem 7.13. In view of Exercise 6.18 it suffices to give the
proof of the statements in the theorem for the special case that [a, b] = [0, 1].
We first apply Definition 4.18 with ε = 1 to conclude that the limit function
f is bounded. Next, let ε > 0 and take N ∈ IN such that for all n ≥ N and
all x ∈ [0, 1] it holds that

|fn(x)− f(x)| < ε. (7.5)

This is possible since fn is uniformly convergent on [0, 1].
We then apply Theorem 7.2 to obtain a partition P with lower and upper

sums SN and S̄N for
∫ 1

0
fN such that

S̄N − SN < ε.

Let us examine how P does for the limit function f .
Consider the suprema M

(N)
k and infima m

(N)
k used for fN on the intervals

Ik of the partition in the definition of S̄N and SN . Then

m
(N)
k ≤ fN(x) ≤M

(N)
k for all x ∈ Ik.

Combined with (7.5) this yields

m
(N)
k − ε ≤ f(x) ≤M

(N)
k + ε for all x ∈ Ik.

It follows for the suprema Mk and infima mk of f on Ik that

Mk −mk ≤ (M
(N)
k + ε)− (m

(N)
k − ε).

Adding up we then find that

S̄ − S ≤ S̄N − SN + 2ε < 3ε.

Since ε > 0 was arbitrary Theorem 7.2 and a 3-trick9 prove that J =
∫ 1

0
f

exists. This is the first statement in the theorem, and in particular

J ∈ [S, S̄],

an interval of length less than 3ε.
Let us also examine how P does for the functions fn. For n ≥ N we have

from (7.5) that10 |Sn − S| ≤ ε and |S̄n − S̄| ≤ ε. Therefore Jn =
∫ 1

0
fn has

the property that
S − ε ≤ Sn ≤ Jn ≤ S̄n ≤ S̄ + ε.

9See (2.18).
10Is it clear why?
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Thus
Jn ∈ [S − ε, S̄ + ε], while also J ∈ [S, S̄].

But then it follows that

|Jn − J | ≤ ε+ S̄ − S < 4ε for all n ≥ N.

Since ε > 0 was arbitrary a 4-trick11 completes the proof that Jn → J as
n→∞, which is the second statement in the theorem. �

7.4 Integrals are continuous linear functionals

The title of this section is explained by the convention of calling maps from
function spaces to IR functionals12, https://youtu.be/xFBOkv0Be_k sums
up what we have and need to continue with integral equations in the next
section.

Theorem 7.14. Let

RI([a, b]) = {f : [a, b]→ IR : f is bounded and integrable} (7.6)

be the space of bounded integrable functions on [a, b]. Then RI([a, b]) is a
complete metric space with respect to the metric defined by

d(f, g) = sup
a≤x≤b

|f(x)− g(x)| (7.7)

for all f, g ∈ RI([a, b]).

Proof of Theorem 7.14. First we reformulate Exercise 5.7 as a separate
result in Theorem 7.16 below. Recall that in Section 5.3 we introduced the
metric space

B([a, b]) = {f : [a, b]→ IR : Rf is bounded}. (7.8)

of bounded functions on [a, b]. The range Rf of f : [a, b] → IR was already
defined in Section 2.4.

Definition 7.15. Let B([a, b]) be the space of all bounded functions from
[a, b] to IR defined in (7.8) . The metric in B([a, b]) is defined by

d(f, g) = sup
a≤x≤b

|f(x)− g(x)|

for all f, g ∈ B([a, b]), just as13 in (7.7).
11Not another footnote.
12So functionals are functions of functions.
13Check that this indeed defines a metric.
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Theorem 7.16. The space B([a, b]) is a complete metric space14.

Proof of Theorem 7.16. We only have to show that B([a, b]) is complete15.
We note that for ε > 0 and16 f, g ∈ B([a, b])

d(f, g) ≤ ε ⇐⇒ ∀x∈[a,b] : |f(x)− g(x)| ≤ ε (7.9)

holds by the definition of supremum17.
Now let fn be a Cauchy sequence in B([a, b]). This means that

∀ε>0 ∃N∈IN ∀m,n≥N ∀x∈[a,b] : |fn(x)− fm(x)| < ε.

Just like in the proof of Theorem 4.15 it then follows that

f(x) = lim
m→∞

fm(x)

exists for every x ∈ [a, b], and that

∀ε>0 ∃N∈IN ∀n≥N ∀x∈[a,b] : |fn(x)− f(x)| ≤ ε.

In other words
∀ε>0 ∃N∈IN ∀n≥N : d(fn, f) ≤ ε.

This statement implies on the one hand that f ∈ B([a, b]), and on the other
hand that fn → f in B([a, b]). This completes the proof of Theorem 7.16. �

We now complete the proof of Theorem 7.14. Recall that by (7.9) convergence
in B([a, b]) is equivalent to uniform convergence. The first part of Theorem
7.13 says that the space RI([a, b]) is a closed subset18 of the complete metric
space B([a, b]). Theorem 5.18 then implies that RI([a, b]) is complete and so
then is the proof of Theorem 7.14. �

Theorem 7.17. The map or functional φ : RI([a, b])→ IR defined by

φ(f) =

∫ b

a

f, (7.10)

is continuous.

14A Banach algebra in fact, see Remark 5.2; [a, b] may be replaced by any set A 6= ∅.
15Note that its metric “extends” the metric defined in the smaller metric space RI([a, b]).
16In fact only f − g ∈ B([a, b]) is needed to define d(f, g).
17Note again that it does not matter whether we write ≤ ε or < ε in ∀ε>0-statements.
18See Definition 5.15.
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Proof of Theorem 7.17. By the definition of continuity19 this is now just
a reformulation of the second part of Theorem 7.13. �

We finish with a theorem that says that the integral is in fact a linear Lip-
schitz continuous functional. The exercises below the theorem ask you to
supply the proofs of the separate statements in the theorem.

Theorem 7.18. If f, g ∈ RI([a, b]) and λ ∈ IR then also f + g ∈ RI([a, b])
and λf ∈ RI([a, b]). Moreover,∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx;

∫ b

a

λf(x) dx = λ

∫ b

a

f(x) dx.

In other words, RI([a, b]) is a vector space, and the map φ defined by (7.10)
is linear. Moreover, the function |f | defined by |f |(x) = |f(x)| is also in
RI([a, b]), and ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx. (7.11)

Thus the functional defined by (7.10) in Theorem 7.17 satisfies

|φ(f)− φ(g)| ≤ (b− a) d(f, g)

for all f, g ∈ RI([a, b]) and is thereby Lipschitz continuous.

Remark 7.19. Summing up, the space RI([a, b]) is a complete normed vector
space20, and the map

φ : RI([a, b])→ IR

defined by

φ(f) =

∫ b

a

f

is linear and Lipschitz continuous21 with Lipschitz constant L = b− a.

Exercise 7.20. Prove the statements about f + g in Theorem 7.18.
Hint: reason directly from Definition 7.1.

19See Definition 5.20.
20Complete normed vector spaces are called Banach spaces.
21So

∫ b
a

is in the dual of RI([a, b]).
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Exercise 7.21. Easy: prove the statements about λf in Theorem 7.18.

Exercise 7.22. Give a proof that f ∈ RI([a, b]) implies |f | ∈ RI([a, b]) and prove
(7.11) directly from Definition 7.1.

Exercise 7.23. Prove the Lipschitz continuity of φ. Hint: use Exercise 7.7.

7.5 Integral equations and weighted norms

https://www.youtube.com/playlist?list=PLQgy2W8pIli9fO_Zc8A-TEN9RknR2ZMmq

Exercise 6.23 provided us with a function22 f : [0,∞)→ IR satisfying

f(x) = 1 +

∫ x

0

f = 1 +

∫ x

0

f(s) ds (7.12)

for every x > 0. The playlist starts with https://youtu.be/LabyCbWhnuc

and this integral equation for exp. Now let [a, b] be a closed bounded interval
with

0 ∈ [a, b],

and consider (7.12) as an integral equation for f ∈ RI([a, b]). Thus (7.12)
must hold for all x ∈ [a, b].

Exercise 7.24. An exercise for your calculus course. Assume that f is continuously
differentiable on [a, b] and satisfies (7.12) for all x ∈ [a, b]. Prove that f ′(x) = f(x).

The goal of this section is to establish that integral equations such as
(7.12) have (unique) solutions in RI([a, b]). In fact we will consider more
general integral equations23. For a given f0 ∈ IR and F : IR → IR consider
the problem of finding a function f : [a, b]→ IR such that

f(x) = f0 +

∫ x

0

F (f(s)) ds for all x ∈ [a, b]. (7.13)

We will solve this integral equation under the assumption that F : IR→ IR
is Lipschitz continuous, with Lipschitz constant L.

22For good reasons denoted by exp, restriction to x ≥ 0 for the sake of presentation.
23Designed to solve f ′(x) = F (f(x)) with “initial” condition f(0) = f0, Remark 7.29.
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Theorem 7.25. Let f0 ∈ IR and let F : IR → IR be Lipschitz continuous
with Lipschitz constant L. Define

Φ(f)(x) = f0 +

∫ x

0

F (f(s)) ds for x ∈ [a, b] (7.14)

and f ∈ RI([a, b]). Then (7.14) defines a Lipschitz continuous map

Φ : RI([a, b])→ RI([a, b])

with Lipschitz constant less or equal than Lmax(|a|, |b|).

Proof. The right hand side of (7.14) is well-defined for every x ∈ [a, b] and
every f ∈ RI([a, b]) thanks to Theorem 7.5. Every f ∈ RI([a, b]) is mapped
by Φ to a function Φ(f) : [a, b]→ IR defined by (7.14). How well-behaved is
this function Φ(f)? For a ≤ y ≤ x ≤ b we have24

|Φ(f)(x)− Φ(f)(y)| =
∣∣∣∣∫ x

y

F (f(s)) ds

∣∣∣∣ ≤ sup
a≤s≤b

|F (f(s))|︸ ︷︷ ︸
=|F◦f |∞<∞

(x− y).

Thus Φ(f) is Lipschitz continuous and thereby in RI([a, b]), according to (the
special case in) Theorem 7.5. It follows that Φ : RI([a, b])→ RI([a, b]).

Next we consider the difference Φ(f1)−Φ(f2) for f1, f2 ∈ RI([a, b]). This
difference is defined by

(Φ(f1)− Φ(f2)) (x) =

∫ x

0

(F (f1(s))− F (f2(s))) ds for x ∈ [a, b].

Here the value of Φ(f1) − Φ(f2) in x is denoted (Φ(f1)− Φ(f2)) (x), with
brackets around Φ(f1)−Φ(f2). We estimate this value next. Taking absolute
values we have25

|((Φ(f1)− Φ(f2)) (x)| =
∣∣∣∣∫ x

0

F (f1(s))− F (f2(s)) ds

∣∣∣∣
≤
∣∣∣∣∫ x

0

|F (f1(s))− F (f2(s))| ds
∣∣∣∣ ≤ ∣∣∣∣∫ x

0

L |f1(s)− f2(s)| ds
∣∣∣∣

= L

∣∣∣∣∫ x

0

|f1(s)− f2(s)| ds
∣∣∣∣ ≤ L sup

a≤x≤b
|f1(s)− f2(s)|︸ ︷︷ ︸
d(f1,f2)

|x|

24Recall (5.1).
25Using the inequality in (7.11).
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for every x ∈ [a, b]. But |x| ≤ max(|a|, |b|) so taking the supremum we get

d(Φ(f1),Φ(f2)) ≤ Lmax(|a|, |b|) d(f1, f2) for all f1, f2 ∈ RI([a, b]).

This completes the proof. �

Theorem 7.26. Let F : IR → IR be a Lipschitz continuous function with
Lipschitz constant L, let a ≤ 0 ≤ b with a < b and let f0 ∈ IR. Assume that
Lmax(|a|, |b|) < 1. Then there exists a unique f ∈ RI([a, b]) such that

f(x) = f0 +

∫ x

0

F (f(s)) ds (7.15)

for all x ∈ [a, b].

Proof. Note that in https://youtu.be/WansNjzVFRw this theorem is es-
tablished with f replaced by x, x by t, and [a, b] by [−T, T ]. By Theorem
7.25 the Banach Contraction Theorem applies to f = Φ(f) in RI([a, b]). �

Remark 7.27. So we solve integral equations in RI([a, b]), a closed subspace
of B([a, b]). Recall from (5.1) that the supremum norm26 in the vector space
B([a, b]) was defined by

|f |∞ = sup{|f(x)| : x ∈ [a, b]}.

In Exercise 5.7 you showed that this norm27 makes B([a, b]) complete.

Exercise 7.28. For all λ ∈ IR and for all f, g ∈ B([a, b]), with f not equal to the
zero element in B([a, b]), the following norm axioms28 hold:

|f |∞ > 0, |λf |∞ = |λ| |f |∞ , |f + g|∞ ≤ |f |∞ + |g|∞ . (7.16)

The zero element in B([a, b]) is the function defined by f(x) = 0 for all x ∈ [a, b]).
Explain that f ∈ B([a, b]) is not equal to the zero element in B([a, b]) if and only if

∃x∈[a,b] : f(x) 6= 0.

26The use of the subscript ∞ is related to the limit of
(∫ b

a
|f |p

) 1
p

as p→∞ for nice f .
27Exercise 5.67 introduced variants that we will use starting from Exercise 7.56.
28These axioms may have been mentioned in Linear Algebra, see also Exercise 5.26.
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Remark 7.29. It turns out that Theorem 10.10 implies the unique solution
f of the integral equation (7.15) is also the unique solution of the differential
equation

f ′(x) = F (f(x)) with initial condition f(0) = f0.

This is important in the theory of differential equations. The exercises below
get rid of the restrictions on the interval on which the solution is constructed,
but fall out of the scope of what we can do in a first course.

Exercise 7.30. For µ > 0 let Bµ([0,∞)) be the space of functions f : [0,∞)→ IR
for which the weighted norm

|f |µ = sup
x≥0

|f(x)|
exp(µx)

is finite. Show that dµ(f, g) = |f − g|µ defines a metric dµ on Bµ([0,∞)).

Exercise 7.31. (continued) Show that this metric makes Bµ([0,∞)) a complete
metric space, and that

RIµ([0,∞)) = {f ∈ Bµ([0,∞)) : f is integrable over every [0, T ]}

is a closed subspace.

Exercise 7.32. Consider the integral equation

f(x) = f0 +

∫ x

0
F (f(s)) ds = f0 +

∫ x

0
F ◦ f︸ ︷︷ ︸

Φ(f)(x)

, (7.17)

in which F : IR → IR is a Lipschitz continuous with Lipschitz constant L > 0 and
f0 ∈ IR is given. Use Exercise 6.23 to show that

|Φ(f)(x)− Φ(g)(x)| ≤ L
∫ x

0
|f(s)− g(s)| ds

=
L

µ
exp(µx) |f − g|µ︸ ︷︷ ︸

dµ(f,g)
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for all f, g ∈ RIµ([0,∞)) and conclude that for the metric dµ we have

dµ(Φ(f),Φ(g)) ≤ L

µ
dµ(f, g).

Exercise 7.33. (continued) Then prove that there exists a µ > 0 such that (7.17)
has a unique solution in RIµ([0,∞)) for every f0 ∈ IR.

Hint: use the Banach Contraction Theorem.

Exercise 7.34. (continued) Show that the integral equation (7.17) has a unique
integrable solution f : IR→ IR, that is, f is integrable over every interval [a, b] ⊂ IR,
and (7.17) holds for all x ∈ IR.

Hint: put x = −ξ to handle negative x.

Exercise 7.35. (concluded) We write f(x; f0) to indicate the dependence of the
solution on f0. We also write

S(x)(f0) = f(x; f0). (7.18)

This defines a family of functions S(x) : IR→ IR. Prove that29

S(x1 + x2) = S(x2) ◦ S(x1) = S(x1) ◦ S(x2)

for every x1, x2 ∈ IR.
Hint: derive an integral equation for g defined by g(s) = f(s+ x1) from

f(x1 + x2) = f0 +

∫ x1

0
F (f(s)) ds+

∫ x1+x2

x1

F (f(s)) ds.

Exercise 7.36. Consider the integral equation

f(x) =

∫ x

0

∫ t

0
F (f(s)) ds dt

29You may have guessed that this will imply that exp(x1 + x2) = exp(x1) exp(x2).
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for x ∈ [0, T ], T > 0. Assume that F : IR→ IR is Lipschitz continuous with Lipschitz
constant L > 0. Prove that this integral equation has a unique solution in RI([0, T ])
if LT 2 < 2.

Hint: reason as for (7.15).

Exercise 7.37. Let f be the solution in Exercise 7.36. Use your calculus skills to
find the differential equation that is satisfied by the solution f . What can you say
about f(0) and f ′(0)? Write the integral equation for solving the differential equation
that you found with initial data f(0) = 1 and f ′(0) = 2.

Exercise 7.38. Prove that the integral equation in Exercise 7.36 has a unique
solution in RI([0, T ]) for every T > 0.

Hint: reason as in Exercise 7.32.

Exercise 7.39. Prove that the integral equation in Exercise 7.36 has a unique
solution in RI([−T, T ]) for every T > 0.

7.6 Exercises

Exercise 7.40. Show that30

f, g ∈ RI([a, b]) =⇒ fg ∈ RI([a, b]).

Hint: take a partition refining partitions chosen for f and g via31

sup
I
fg − inf

I
fg = sup

x,y∈I
|f(x)g(x)− f(y)g(y)|

and

f(x)g(x)− f(y)g(y) = (f(x)− f(y))g(x) + f(y)(g(x)− g(y)).

30This implies RI([a, b]) is a Banach algebra, see Remark 5.2.
31https://youtu.be/pdE6tVig_FY
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Exercise 7.41. Let p > 1 and q > 1 be as in Exercise 1.27, i.e.

1

p
+

1

q
= 1, (7.19)

and let a > 0 and b > 0 be real numbers. Use the integrals∫ a

0
xp−1 dx and

∫ b

0
yq−1 dy

and their interpretation as areas to explain why it must be that

ab ≤ ap

p
+
bq

q
(Young’s ineqality). (7.20)

For amusement: give a direct proof using only algebra.

Exercise 7.42. Let p > 1 and q > 1 be as in Exercise 7.41, and let a1, . . . , an ≥ 0,
b1, . . . , bn ≥ 0 be real numbers, n ∈ IN. Prove that

n∑
k=1

akbk ≤

(
n∑
k=1

apk

) 1
p
(

n∑
k=1

bqk

) 1
q

(Hölder’s inequality).

Hint: use Exercise 7.41, it is sufficient to prove the inequality for the case that

n∑
k=1

apk =

n∑
k=1

bqk = 1.

Exercise 7.43. (continued) Prove Hölders inequality

|
∫ b

a
f(x)g(x) dx| ≤

(∫ b

a
|f(x)|p dx

) 1
p
(∫ b

a
|g(x)|q dx

) 1
q

for such p and q and f, g ∈ RI([a, b]).
Hint: Exercise 7.40 and the definition of integrability via finite sums.

Exercise 7.44. Let f : [−1, 1]→ IR be a bounded integrable function. Assume that
f is odd, i.e. f(x) = −f(−x) for all x ∈ [−1, 1]. Prove that

∫ 1
−1 f = 0.
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Exercise 7.45. Let f : [−1, 1]→ IR be a bounded integrable function. Assume that
f is even, i.e. f(x) = f(−x) for all x ∈ [−1, 1]. Prove that

∫ 1
−1 f = 2

∫ 1
0 f .

Exercise 7.46. Exhibit a function f : [a, b]→ IR not in RI([a, b]) for which |f | is.

Exercise 7.47. Use (7.16) to show the zero element in B([a, b]) has norm zero.

Exercise 7.48. Prove |f + g|∞ ≤ |f |∞ + |g|∞ for f, g ∈ B([a, b]).

Exercise 7.49. For f ∈ RI([0, 1]) define the function Φ(f) : [0, 1]→ IR by32

Φ(f)(x) =

∫ x

0
(1 + f(s)) ds

for all x ∈ [0, 1]. Show that this defines a Lipschitz continuous map33

Φ : RI([0, 1])→ RI([0, 1]).

Is34 Φ a contraction?

Exercise 7.50. Same questions as in Exercise 7.49 for Φ defined by

Φ(f)(x) =

∫ x

0

1

1 + f(s)
ds,

but restricted to RI+([0, 1]) = {f ∈ RI([0, 1]) : f(x) ≥ 0 for all x ∈ [0, 1]}. Why
does Φ have a fixed point?

Hint35: consider RI+([0, T ]) with T < 1.

Exercise 7.51. Let g : IR→ [0, 1] defined by

g(x) =
1

1 + x2
.

32More on this integral equation for exp in Section 7.7, maybe skip what follows here.
33For a nonlinear variant see Exercise 7.50 and further.
34The exercises after Remark 7.29 deal with the disappointing answer.
35Don’t use the exercises after Remark 7.29.
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a) Show that g is Lipschitz continuous with Lipschitz constant L = 1.

Hint: factorise g(x)− g(y) and use

−1

2
≤ x

1 + x2
≤ 1

2
.

b) Prove that the integral equation

f(x) =

∫ x

0

1

(1 + s)(1 + f(s)2)
ds for all x ∈ [0, 1]

has a unique solution f in RI([0, 1]).

Exercise 7.52. Consider the integral equation

f(x) =

∫ x

0

1

1 + f(s)
ds.

Show that it has solution defined for all nonnegative x ∈ IR. Can you find a formula
for f(x)? Examine what goes wrong for x < 0.

Exercise 7.53. Consider the integral equation

f(x) = f0 +

∫ x

0

f(s)

1 + f(s)2
ds.

Show for every f0 ∈ IR that it has solution defined for all x ∈ IR.

7.7 Exercises on the integral equation for exp

This section continues from Exercise 7.49. So it’s back to linear integral
equations, for which we can do explicit calculations. The novelty is a trick36

that is similar to what followed after Remark 7.29. It uses Definition 7.57
below rather than Exercise 7.31.

36See https://youtu.be/H2nOB_SPEm8 and further in the playlist.
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Exercise 7.54. As in Exercise 6.23 define en(x) for all x ∈ IR by

en(x) = 1 +

∫ x

0
en−1(s) ds

for every n ∈ IN, starting from e0(x) = 1. Determine e1(x), e2(x), e3(x), e4(x). Is
there any reason to restrict the values of x as we increase n?

Exercise 7.55. Let T > 0. Show that

Φ : RI([−T, T ])→ RI([−T, T ])

defined by

Φ(f)(x) = 1 +

∫ x

0
f(s) ds (7.21)

is Lipschitz continuous. For which T is Φ a contraction37?
Hint: estimate

(Φ(f1)− Φ(f2))(x) =

∫ x

0
(f1(s)− f2(s)) ds.

Exercise 7.56. Write (7.21) as

Φ0(f) = f̃ , f̃(x) = 1 +

∫ x

0
f(s) ds,

and introduce g and g̃ by setting

f(x) = 1 + g(x) and f̃(x) = 1 + g̃(x).

Which map Φ1 is defined by Φ1(g) = g̃? Explain why solving Φ0(f) = f is equivalent38

to solving Φ1(g) = g.

Definition 7.57. Let T > 0 and n ∈ IN. Then RIn([−T, T ]) is the space of
Riemann integrable functions f for which39

∃M≥0 ∀x∈[−T,T ] |f(x)| ≤M |x|n. (7.22)

As in Exercise 5.18 the smallest such M is the norm |f |n of f in RIn([−T, T ]).
37Only for such T we can solve Φ(f) = f in RI([−T, T ]) using Theorem 5.14.
38Below we introduce spaces which then allow larger T when invoking Theorem 5.14.
39This is perhaps simpler than what we did in Exercise 7.30.
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Exercise 7.58. Why does the metric defined by dn(f, g) = |f−g|n make RIn([−T, T ])
a complete metric space?

Exercise 7.59. Take n = 1 in Definition 7.57. Show that Φ1 defined in Exercise
7.59 is also a map from RI1([−T, T ]) to RI1([−T, T ]).

Hint: use

|
∫ x

0
(f(s)) ds| ≤ |

∫ x

0
|f |

1
|s| ds|.

Exercise 7.60. (continued) For which T is Φ1 a contraction on RI1([−T, T ])? How
does your answer compare to that in Exercise 7.55?

Hint: note the 1
2 in

|
∫ x

0
(f1(s)− f2(s)) ds| ≤ |

∫ x

0
|f1 − f2|1 s ds| = |f1 − f2|1

1

2
|x|2︸ ︷︷ ︸

≤T
2
|x|

.

Exercise 7.61. Referring to Exercise 7.59 and Exercise 7.54 we now choose to set

f(x) = 1 + x︸ ︷︷ ︸
e1(x)

+g(x) = f(x) and f̃(x) = e1(x) + g̃(x).

Which map Φ2 is defined by Φ2(g) = g̃?
Hint: don’t look at Exercise 7.63 yet.

Exercise 7.62. (continued) Take n = 2 in Definition 7.57. Show that Φ2 is also a
map from RI2([−T, T ]) to itself. For which T is Φ2 a contraction on RI2([−T, T ])?
Compare your answer to your answers in Exercises 7.55 and 7.60.

Exercise 7.63. (continued) What flew for e1(x) in Exercise 7.61 also flies for e2(x),
with Φ3 defined by

g(x) = f(x)− e2(x), g̃(x) = f̃(x)− e2(x), Φ3(g) = g̃,
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and so on. Use the maps Φn defined by

Φn(g)(x) =
xn

n!
+

∫ x

0
g

to convince yourself that the integral equation

f(x) = 1 +

∫ x

0
f(s) ds for all x ∈ IR (7.23)

has a unique solution defined on the whole of IR. This solution is called exp.

Exercise 7.64. For given a,A ∈ IR show that the integral equation

g(x) = A+

∫ x

a
g(s) ds for all x ∈ IR

has a unique solution defined on the whole of IR by transforming it into (7.23).

Exercise 7.65. (continued) Then take A = exp(a) and substitute x = a + b to
show that

exp(a+ b) = exp(a) exp(b) (7.24)

for all a, b ∈ IR.

Exercise 7.66. People write
ex = exp(x).

Why would that be justified?

7.8 Exercises about and with sin and cos

Watch https://youtu.be/rfoNjVg7qZ0.

Exercise 7.67. Let c0 : IR→ IR be defined by c0(x) = 1 for all x ∈ IR. Define the
functions sn, cn+1 : IR→ IR by

sn(x) =

∫ x

0
cn−1, cn+1(x) = 1−

∫ x

0
sn,

for every odd n ∈ IN. Determine s1, c2, s3, c4, s5, c6. Write a formula with double
integrals for sn in terms of sn−2 and for cn+1 in terms of cn−1.
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Exercise 7.68. Let T > 0. Show that

Ψ : RI([−T, T ])→ RI([−T, T ])

defined by

Ψ(f)(x) = x−
∫ x

0

∫ t

0
f(s) ds dt (7.25)

is Lipschitz continuous. For which T is Ψ a contraction? If you like you can now jump
to Remark 7.71, and skip the game beginning with RI1([−T, T ]) directly below.

Exercise 7.69. Write f̃ = Ψ1(f) = Ψ(f) and introduce g, g̃,Ψ3 as in Exercise
7.56, but now with f(x) = x + g(x), f̃(x) = x + g̃(x). Which RIn([−T, T ]) would
you take for Ψ3? And which Ψ5 in the next step? Convince yourself that the integral
equation

f(x) = x−
∫ x

0

∫ t

0
f(s) ds dt︸ ︷︷ ︸

Ψ1(f)(x)

(7.26)

has a unique solution defined for all x ∈ IR. It’s called sin. Note that Ψ1 is contractive
on RI1([−T, T ]) if T 2 < 6. On RI0([−T, T ]) it’s only contractive if T 2 < 2.

Exercise 7.70. Play the same game as before to define cos as the unique solution
of

g(x) = 1−
∫ x

0

∫ t

0
g(s) ds dt︸ ︷︷ ︸

Φ0(g)(x)

(7.27)

defined for all x ∈ IR.
Hint: start with RI0([−T, T ]) and Φ0 contractive on RI0([−T, T ]) if T 2 < 2.

Remark 7.71. If we restrict the maps Φ and Ψ defined by

Ψ(f)(x) = x−
∫ x

0

∫ t

0

f(s) ds dt and Φ(g)(x) = 1−
∫ x

0

∫ t

0

f(g) ds dt

to RI([0, 1]) then both Φ and Ψ are contractive with contraction factor 1
2
, and

provide us with fixed points f = sin and g = cos. Clearly sin extends as an
odd function and cos as an even function to −[1, 1], and for x ∈ [−1, 1] we
have that

cosx = 1−
∫ x

0

sin and sinx =

∫ x

0

cos (7.28)
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holds. To prove that sin and cos are the periodic functions with the properties
that you know, it suffices below to show that

cosx = sinx

has a unique solution x = p, and that the picture with the two graphs of cos
and sin is symmetric in the line x = p.

Exercise 7.72. Prove (7.28).
Hint for the first one: put f = sin in (7.26) and rewrite it as

sin(y) =

∫ y

0
(1−

∫ t

0
f(s) ds︸ ︷︷ ︸

g(t)

) dt

to define g and integrate from y = 0 to y = x.

Exercise 7.73. Use Φ and Ψ in Remark 7.71 defined on RI([0, 1]) and assume that

c2 ≤ g ≤ c0 and s3 ≤ f ≤ s1.

Show that
c0 ≥ c4 ≥ Φ(g) ≥ c2 and s1 ≥ s5 ≥ Ψ(f) ≥ s3,

and explain why

1− x2

2
≤ cosx ≤ 1 and x− x3

6
≤ sinx ≤ x if 0 ≤ x ≤ 1.

Exercise 7.74. Use Exercise 7.73 to show that

1 + x(1− x

2
− x2

6︸ ︷︷ ︸
>0

) ≤ cosx+ sinx ≤ 1 + x if 0 ≤ x ≤ 1.

and then (7.28) to conclude that F defined by

F (x) = sinx− cosx = −1 +

∫ x

0
(cos + sin)

satisfies
x− y < F (x)− F (y) < 2(x− y) if 0 ≤ y < x ≤ 1,

and has F (0) = −1. Reason as in Exercise 2.62 to prove what we announced in
Remark 7.71: in (0, 1) the equation cosx = sinx has a unique solution x = p.
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Exercise 7.75. From Remark 7.71 and Exercise 7.74 we have f = sin and g = cos
defined as strictly monotone functions on [0, 1], with f(0) = 0, g(0) = 1, and p ∈ (0, 1)
defining q = f(p) = g(p) ∈ (0, 1). Verify for f = sin and g = cos that

f(x) = f(p) +

∫ x

p
g and g(x) = g(p)−

∫ x

p
f for all x ∈ [0, 1].

Explain why the graphs of cos and sin are each others’ mirror images in x = p. Then
use even and odd extensions and symmetry arguments to complete the picture you
know for all x ∈ IR for the eventually globally defined solutions of (7.28).

Exercise 7.76. Thus, considered as a system of integral equations for the functions
cos and sin, (7.28) has a unique global solution. That is, the unique solution of

g(x) = 1−
∫ x

0
f and f(x) =

∫ x

0
g for all x ∈ IR

is (f, g) = (sin, cos). For a,A,B ∈ IR, A,B not both zero, set y = x+ a and define
functions φ and ψ by

f(x) = Aφ(y)−Bψ(y) and g(x) = Bφ(y) +Aψ(y)

to derive

ψ(y) = α−
∫ y

a
φ and φ(y) = β +

∫ y

a
ψ for all y ∈ IR, (7.29)

with α, β depending on A and B. Find the expressions for α and β.

Exercise 7.77. (continued) Explain why for every α, β ∈ IR the system (7.29) has
a unique solution (φ, ψ) defined on the whole of IR, and why

φ(y) = α sin(y − a) + β cos(y − a),

ψ(y) = α cos(y − a)− β sin(y − a)

for all y ∈ IR.

Exercise 7.78. (continued) Then put α = cos a, β = sin a, y = a+ b to conclude
that

sin(a+ b) = cos a sin b+ sin a cos b,

cos(a+ b) = cos a cos b− sin a sin b

for all a and b in IR, whence also cos2 + sin2 = 1.
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Exercise 7.79. We can do better than just saying that cosx = sinx has a unique
solution p ∈ (0, 1). Compute the unique solution x = p2 of the quadratic equation

1− x2

2
= x

in (0, 1), and show that

x− x3

6
= 1− x2

2
+
x4

24

has a unique solution x = p4 in (0, 1). Explain why

cos p2 > sin p2 and cos p4 < sin p4, and therefore p2 < p < p4.

Hint: use Exercise 2.62 and

P4(x) = x+
x2

2︸ ︷︷ ︸
P2(x)

−x
3

6
− x4

24
=

∫ x

0
(1 + s− s2

2
− s3

6
) ds

= x+

∫ x

0
s(1− s

2
− s2

6︸ ︷︷ ︸
>0

)) ds.

Note that x = p2 is the solution of P2(x) = 1.

Exercise 7.80. Show that
sn(x) = cn+1(x)

has a unique solution x = pn+1 in (0, 1) for every odd n ∈ IN, and explain why p is
the unique number with

p2 < p6 < p10 ≤ · · · < p < · · · < p12 < p8 < p4.

Hint: use Exercise 2.62 again, and

P6(x) = P4(x) +
x5

5!
+
x6

6!
=

∫ x

0
(1 + s− s2

2
− s3

6
+
s4

4!
+
s5

5!
) ds,

P8(x) =

∫ x

0
(1 + s− s2

2
− s3

6
+
s4

4!
+
s5

5!
− s6

6!
− s7

7!︸ ︷︷ ︸
≥0

) ds, and so on.
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Exercise 7.81. You may like to verify that

1 ≥︸︷︷︸
if x2≤12

1− x2

2!
+
x4

4!︸ ︷︷ ︸
c4(x)

≥︸︷︷︸
if x2≤56

1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!︸ ︷︷ ︸
c8(x)

≥︸︷︷︸
if x2≤132

· · ·

· · · ≥︸︷︷︸
if x2≤90

1− x2

2!
+
x4

4!
− x6

6!︸ ︷︷ ︸
c6(x)

≥︸︷︷︸
if x2≤30

1− x2

2!︸ ︷︷ ︸
c2(x)

≥︸︷︷︸
if x2≤2

0,

x ≥︸︷︷︸
if 0≤x≤

√
20

x− x3

3!
+
x5

5!︸ ︷︷ ︸
s5(x)

≥︸︷︷︸
if 0≤x≤

√
72

x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!︸ ︷︷ ︸
s9(x)

≥︸︷︷︸
if 0≤x≤

√
156

· · ·

· · · ≥︸︷︷︸
if 0≤x≤

√
110

x− x3

3!
+
x5

5!
− x7

7!︸ ︷︷ ︸
s7(x)

≥︸︷︷︸
if 0≤x≤

√
42

x− x3

3!︸ ︷︷ ︸
s3(x)

≥︸︷︷︸
if 0≤x≤

√
6

0,

and likewise for x ≤ 0. The intervals on which the inequalities hold are consistent with
the bounds on T in the contraction arguments for (7.27) and (7.26) in RIn([−T, T ]).

Exercise 7.82. Let f : [0, 1]→ [−1, 1] be given by

f(x) =

{
0 for x = 0

sin 1
x for x 6= 0

.

Recall that we write, for a partition 0 ≤ x0 ≤ x1 ≤ · · · ≤ xN = 1,

Ik = [xk−1, xk], mk = inf
Ik
f, Mk = sup

Ik

f,

S =
N∑
k=1

Mk (xk − xk−1), S =
N∑
k=1

mk (xk − xk−1).

a) Let ε > 0 and a ∈ (0, 1]. Prove the existence of such a partition with x0 = a
for which S − S < ε.

b) Prove that f is Riemann integrable on [0, 1].

Hint: choose x0 = 0 < x1 = a < ε.
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Exercise 7.83. Let f : IR→ IR be given by

f(x) =

{
0 for x = 0

cos 1
x for x 6= 0

.

Prove that f is Riemann integrable on [0, 1].

Exercise 7.84. Referring to Definition 7.57 show that f : [0, 1]→ IR defined by

f(x) =

{
x sin 1

x if x 6= 0
0 if x = 0

is in RI1([0, 1]).

Exercise 7.85. Sketch y = x and y = cosx in the x, y-plane with 0 ≤ x, y ≤ 1.

a) Use cos : [0, cos 1]→ [0, cos 1] to Prove that x = cosx has a unique solution.

b) Prove that the integral equation

f(x) =

∫ x

0
cos f(s) ds for all x ∈ [0, 1]

has a unique solution in RI([0, 1]).

7.9 Exercises on improper integrals and convolutions

This section prepares for a full treatment of Fourier integrals in Section 28.4
and further, without the use of Lebesgue integration theory. The new parts
in red started with some questions from Daniele40 about certain integral
equations. You may like to give Exercise 6.33 another try before you read
on. Let I = (a, b) ⊂ IR be an open nonempty interval, possibly unbounded,
so

−∞ ≤ a < b ≤ ∞,
and suppose that f : (a, b) → IR is integrable on every closed bounded

interval [α, β] ⊂ (a, b). Then we define the improper integral
∫ b
a
f by∫ b

a

f =

∫ b

a

f(x) dx = lim
α↓a

lim
β↑b

∫ β

α

f(x) dx = lim
β↑b

lim
α↓a

∫ β

α

f(x) dx (7.30)

40https://twitter.com/AvitabileD
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if the double limits exist. It’s not hard to show that if one of the double
limits exists then so does the other and the limit values coincide. In the case
that (a, b) is a bounded interval and f : (a, b)→ IR is bounded the existence
of the improper integral is equivalent to the proper integral of f : [a, b]→ IR
with any choice of value for f(a) and f(b), and the values of the integrals
coincide.

Exercise 7.86. Show that ∫ ∞
−∞

f =

∫ 0

−∞
f +

∫ ∞
0

f

if both integrals on the right exist, and verify that∫ 0

−∞
f(x) dx =

∫ ∞
0

f(−x) dx.

Discuss why41 ∫ ∞
−∞

sinx

x
dx = 2

∫ ∞
0

sinx

x
dx

makes sense and why the integral in (7.31) below exists. Hint: show that it is equal
to the limit S of the sequence defined by

Sn =

∫ nπ

0

sinx

x
dx,

and that

S =
∞∑
n=0

(−1)n
∫ (n+1)π

nπ

| sinx|
x

dx.

The integral ∫ ∞
0

sinx

x
dx (7.31)

will return42. You just noticed that we may not have a direct way to compute
the limits in (7.30). For nonnegative functions things are usually simpler.

Theorem 7.87. Suppose that f and g are functions from IR to IR, integrable
on every bounded interval, with |f(x)| ≤ g(x) for all x ∈ IR.

If

∫ ∞
−∞

g exists then

∫ ∞
−∞

f exists.

41Use what you know about sin, see Remark 7.71 and further.
42See Section 28.1 in Chapter 28.
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Exercise 7.88. Prove Theorem 7.87 and use it with

g(x) = max(1,
1

x2
)

to conclude that ∫ ∞
−∞

sin2 x

x2
dx

exists.

Exercise 7.89. Let f : IR→ IR and suppose that∫ ∞
−∞
|f | =

∫ ∞
−∞
|f(x)| dx

exists, and let g : IR→ IR be a bounded function which is integrable on every bounded
interval. Use Exercise 7.40 to prove that∫ ∞

−∞
fg =

∫ ∞
−∞

f(x)g(x) dx

exists, and that

|
∫ ∞
−∞

f(x)g(x) dx| ≤ sup
x∈IR
|g(x)|︸ ︷︷ ︸
|g|∞

∫ ∞
−∞
|f(x)| dx

Exercise 7.90. Let f and g be as in Exercise 7.89. For every x ∈ IR we define
F (x) by

F (x) =

∫ ∞
−∞

f(x− y)g(y) dy.

Explain why this integral is defined and prove that F : IR → IR is bounded. We say
that F = f ∗ g is the convolution of f and g. These convolutions will come back in
Section 28.8, see (28.49). Prove that f ∗ g = g ∗ f .

Exercise 7.91. (continued) Assume that f is continuous. Is F = f ∗g continuous?
Say in 0? To get started take x ∈ IR with |x| ≤ 1. Then let R > 1 and split the
integral in

F (x)− F (0) = (f ∗ g)(x)− (f ∗ g)(0) =

∫ ∞
−∞

(f(x− y)− f(−y)) g(y) dy
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as ∫ ∞
−∞

=

∫ −R
−∞

+

∫ R

−R
+

∫ ∞
R

to first show that

|
∫ ∞
R

(f(x− y)− f(−y)) g(y) dy| ≤ |g|∞

(∫ ∞
R
|f(x− y)| dy +

∫ ∞
R
|f(−y)| dy

)

≤ |g|∞

(∫ 1−R

−∞
|f(y)| dy +

∫ −R
−∞
|f(y)| dy

)
≤ 2 |g|∞

∫ 1−R

−∞
|f(y)| dy < ε

3
,

provided R is sufficiently large. Hint: use that∫ ∞
−∞
|f(x)| dx <∞

and show that R > 1 can be chosen to have also

|
∫ −R
−∞

(f(x− y)− f(−y)) g(y) dy| < ε

3
.

Exercise 7.92. (continued) For such a fixed R use the uniform continuity of f on
[−R− 1, R+ 1] to show that there exists δ > 0 such that

|
∫ R

−R
(f(x− y)− f(−y)) g(y) dy| < ε

3

for all x ∈ IR with |x| < δ, and hence

|F (x)− F (0)| = |(f ∗ g)(x)− (f ∗ g)(0)| < ε.

Then write down and prove a theorem that says that f ∗g is continuous specifying the
minimal assumptions used above. Note the special case that g(x) = cos(ax) and have
a look at Theorem 28.21. Prove that the continuity of F is uniform on IR if f has the
additional property that f(x) → 0 if |x| → ∞. Hint: show first that f is uniformly
continuous on IR.

Exercise 7.93. (continued) Give an additional condition on g that ensures that also
F (x)→ 0 if |x| → ∞.

152



Also of interest: measure theory in IR2
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8 Epsilons and deltas

https://www.youtube.com/playlist?list=PLQgy2W8pIli8e9Hm34hqKFtil6pZg4I6z

Most of this chapter may be postponed till after the chapters on differentiation.

Theorem 8.1 below is used in the proof of Theorem 10.10. Theorem 8.6, which says

that every f ∈ C([a, b]) is integrable, merely simplifies the formulation of Theorem

10.12. The main other result in this chapter is Theorem 8.13, which formulates a

condition that deals with the counterexamples in Section 4.4. We conclude this

chapter with Theorem 8.15 which generalises Theorem 8.6 to the integrability of

continuous functions from [a, b] to a Banach space X.

In Definition 4.1 of Chapter 4 we called a function f : A → IR, A ⊂ IR,
continuous in ξ ∈ A if

f(xn)→ f(ξ)

for every sequence xn in A with xn → ξ. Definition 5.20 in Chapter 5 copied
Definition 4.1 for A ⊂ X, f : A → Y , and X, Y abstract metric spaces.
Theorem 8.1 below explains the title of this chapter and formulates the other
natural characterisation of continuity1. We only state it for X = A ⊂ IR and
Y = IR.

Theorem 8.1. Let A ⊂ IR be nonempty, let f : A → IR be a function and
let ξ ∈ A. Then f is continuous in ξ if and only if

∀ε>0 ∃δ>0 ∀x∈A : |x− ξ|︸ ︷︷ ︸
d(x,ξ)

< δ =⇒ |f(x)− f(ξ)|︸ ︷︷ ︸
d(f(x),f(ξ))

< ε. (8.1)

Proof of Theorem 8.1. To prove (8.1) from the statement in Definition
4.1 we argue by contraposition. Let ξ ∈ A and suppose that (8.1) does not
hold. Then

∃ε>0 ∀δ>0 ∃x∈A : |x− ξ| < δ and |f(x)− f(ξ)| ≥ ε. (8.2)

For every n ∈ IN we use (8.2) with δ = 1
n
. Denote the corresponding x

by xn. This defines a sequence xn with |xn − ξ| < 1
n

whence xn → ξ as
n → ∞. But |f(xn) − f(ξ)| ≥ ε prevents f(xn) → f(ξ) as n → ∞. This is
in contradiction with the continuity statement quoted in the first sentence of

1Actually the proof of Theorem 5.44 already contained this statement, namely

∀ε>0 ∃δ>0 : d
X

(x, ξ) < δ =⇒ d
Y

(f(x), f(ξ)) < ε.
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this chapter. We therefore conclude that (8.1) does indeed follow from the
statement in Definition 4.1.

Conversely, assume that (8.1) holds. We have to show that f(xn)→ f(ξ)
if xn is a sequence in A with xn → ξ as n → ∞. So let ε > 0. Then (8.1)
provides a δ > 0 such that |f(xn) − f(ξ)| < ε if |xn − ξ| < δ. So we apply
the definition of xn → ξ with ε replaced by δ. This gives an N such that for
all n ≥ N it holds that |xn − ξ| < δ and thereby |f(xn) − f(ξ)| < ε. This
completes the proof of Theorem 8.1. �

8.1 Uniform continuity and integrability

The first video https://youtu.be/PagygvVNsP8 in the epsilon-delta playlist
states the first theorem in these notes that really requires epsilons and deltas.
The other essential epsilon-delta statement2 in analyis is discussed in https:

//youtu.be/SmwYBRxNgyI.

Exercise 8.2. Let f : IR→ IR, ξ ∈ IR, η = f(ξ). For values ε > 0 and δ > 0 draw
the lines x = ξ − δ, x = ξ + δ, y = η − ε, y = η + ε, and explain geometrically what
the implication in (8.1) says.

Exercise 8.3. Let ξ = 2, f(x) = 2x + 1, f : IR→ IR. Verify (8.1) by computing
δ > 0 in terms of ε > 0. Same question for f(x) = x2.

Exercise 8.4. Let A = [0, 1] and f : A → IR be defined by f(x) = x2. Verify
(8.1) for every ξ ∈ A. Is it possible to choose δ > 0 depending on ε > 0 only? Same
question for A = IR.

Exercise 8.5. Same question for A = (0, 1) and f(x) = 1
x . Hint: suppose there is

an ε > 0 for which δ > 0 can be chosen independent of ξ ∈ A. Can f be unbounded?

In the above exercises we saw that sometimes δ depending on ε can be chosen
independent of ξ for all ε, and sometimes it cannot. Such independence of

2See Definition 10.1.
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δ on ξ is needed to prove a theorem that we have postponed so far, namely
that every continuous function f : [a, b]→ IR is integrable, i.e.

C([a, b]) ⊂ RI([a, b]). (8.3)

Theorem 8.6. Let f ∈ C([a, b]). Then f is integrable on [a, b].

To prove this theorem we recall that Theorem 7.2 decides on the integrability
of bounded functions f : [a, b]→ IR. Given ε > 0 we have to show that

0 ≤ S̄ − S =
N∑
k=1

(Mk −mk)(xk − xk−1) < ε (8.4)

for at least one partition P of [a, b]. If this holds then the function is inte-
grable. If not, then the function f is not integrable. Now observe that for
each k the supremum Mk is actually the global maximum of f on [xk−1, xk].
Likewise mk is the global minimum of f on [xk−1, xk]. The following definition
establishes that given ε > 0 we can get Mk−mk < ε for all k simultaneously
by choosing a partition with xk − xk−1 < δ for all k, δ > 0 depending on ε.

Definition 8.7. Let A ⊂ IR be nonempty. A function f : A → IR is called
uniformly continuous on A if

∀ε>0 ∃δ>0 ∀x,ξ∈A : |x− ξ|︸ ︷︷ ︸
d(x,ξ)

< δ =⇒ |f(x)− f(ξ)|︸ ︷︷ ︸
d(f(x),f(ξ))

< ε.

The choice for x and ξ in the notation is to help you compare carefully
the statement in Definition 8.7 to the statement in Theorem 8.1, as well as
to the statement in Definition 8.12. The continuity statement in Theorem
8.1 is clearly implied by the uniform continuity statement in Definition 8.7.
According to Theorem 8.10 below, both statements are equivalent if A is
[a, b] or any other closed bounded nonempty set in IR.

Remark 8.8. The statement that f is continuous in every ξ ∈ A rewrites3

as the non-uniform statement that

∀ε>0 ∀ξ∈A ∃δ>0 ∀x∈A︸ ︷︷ ︸
pointwise

: |x− ξ| < δ =⇒ |f(x)− f(ξ)| < ε,

and differs by one ∀ξ∈A-∃δ>0 swap from the uniform statement refrased from
Definition 8.7 as

∀ε>0 ∃δ>0 ∀ξ∈A ∀x∈A︸ ︷︷ ︸
uniform

: |x− ξ| < δ =⇒ |f(x)− f(ξ)| < ε.

3No difference between ∀ε>0 ∀ξ∈A and ∀ξ∈A ∀ε>0.
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Exercise 8.9. Let A = IR and f : IR→ IR. For values ξ ∈ IR, ε > 0 and δ > 0 the
lines x = ξ− δ, x = ξ + δ, y = f(ξ)− ε, y = f(ξ) + ε, bound a rectangle centered in
(ξ, f(ξ)), which we can now slide along the graph y = f(x). Explain4 geometrically
what the implication in Definition 8.7 says, and compare to Exercise 8.2.

Theorem 8.10. Let f ∈ C([a, b]). Then f is uniformly continuous on [a, b].

Proof of Theorem 8.10. As in the proof of Theorem 8.1 we argue by
contradiction. So suppose that f is not uniformly continuous. Then the
contraposition of the statement in Definition 8.10 holds, i.e.

∃ε>0 ∀δ>0 ∃x,ξ∈[a,b] : |x− ξ| < δ and |f(x)− f(ξ)| ≥ ε.

Again this provides us with an ε > 0 and the possibility to choose δ > 0 as
we like. We choose δ = 1

n
, with n ∈ IN arbitrary, and conclude there exist

sequences xn, ξn ∈ [a, b] for which it holds that

|xn − ξn| <
1

n
and |f(xn)− f(ξn)| ≥ ε. (8.5)

Both sequences are bounded. As in the proof of Theorem 4.4 it is
the Bolzano-Weierstrass Theorem5 that gives the existence of a convergent
subsequence xnk with limit x̄ ∈ [a, b]. The continuity of f then yields
f(xnk)→ f(x̄) as k →∞. But

|xnk − ξnk | <
1

nk
≤ 1

k

implies that also ξnk → x̄, so also f(ξnk)→ f(x̄) and therefore

f(xnk)− f(ξnk)→ 0.

This happily contradicts (8.5) and completes the proof of Theorem 8.10. �

Proof of Theorem 8.6. Assume f ∈ C([a, b]). By Theorem 8.10 the
function f is uniformly continuous. By now we are done with cosmetics, so
let ε > 0 and apply Definition 8.7. Then |f(x) − f(ξ)| < ε if |x − ξ| < δ,
δ > 0 provided by the definition. Choose an equidistant6 partition with

b− a
N

< δ,

4This nice explanation of uniform continuity I got from Thomas Rot.
5Theorem 3.20.
6Or any other partition with xk − xk−1 < δ for all k = 1, . . . , N .
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it follows for Mk and mk in (8.4) that Mk − mk < ε for all k = 1, . . . , N .
This is because mk and Mk as defined in (7.2) are realised7 as values of f in
Ik, and Ik has length smaller than δ. But then it follows that

0 ≤ S̄ − S =
N∑
k=1

(Mk −mk)︸ ︷︷ ︸
<ε

(xk − xk−1) < ε

N∑
k=1

(xk − xk−1) = ε(b− a).

Once again Theorem 7.2 completes a proof because ε > 0 was arbitrary8. �

8.2 The adjective uniform

It is instructive to have another look at the use of the adjective uniform9.
Definition 4.18 said that the sequence fn(x) converges to f(x) as n→∞ with
a choice of N ∈ IN depending on ε > 0 but independent of x. This is why we
speak of uniform convergence. We copy10 the statement for fn, f : A → IR
and take

∀ε>0 ∃N∈IN ∀n≥N ∀x∈A︸︷︷︸
uniform

: |fn(x)− f(x)| < ε (8.6)

as the definition of fn → f uniformly on A. Uniform convergence is stronger
than pointwise convergence, which only says that

∀x∈A︸︷︷︸
pointwise

∀ε>0 ∃N∈IN ∀n≥N : |fn(x)− f(x)| < ε, (8.7)

and allows N to depend on both ε > 0 and x ∈ A. Of course this can only
weaken the statement made in (8.6) which has N depending on ε > 0 only.

Remark 8.11. The uniform convergence statement (8.8) and the non-uniform
pointwise convergence statement (8.9) differ by just one ∀-∃ swap if we write
them as11

∀ε>0 ∃N∈IN ∀x∈A︸ ︷︷ ︸
uniform

∀n≥N : |fn(x)− f(x)| < ε, (8.8)

and12

∀ε>0 ∀x∈A ∃N∈IN︸ ︷︷ ︸
pointwise

∀n≥N : |fn(x)− f(x)| < ε. (8.9)

Indeed, ∀x∈A and ∃N∈IN occur in different order in (8.8) and (8.9).

7Theorem 4.4 provides us with min- and maximizers.
8Should we mention the (b− a)-trick? Apply Definition 8.7 with ε

b−a .
9https://youtu.be/zQCCUp6cCh0

10Here A could be any non-empty set!
11Compare (8.6) and (8.8): there is no difference between ∀n≥N ∀x∈A and ∀x∈A ∀n≥N .
12Compare (8.7) and (8.9): also no difference between ∀ε>0 ∀x∈A and ∀x∈A ∀ε>0.
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You should compare Remark 8.11 to Remark 8.8. Recalling (7.9) we
emphasise again13 that the stronger uniform statement (8.6) is equivalent to

∀ε>0 ∃N∈IN ∀n≥N : d(fn, f) = sup
x∈A
|fn(x)− f(x)| ≤ ε︸ ︷︷ ︸

⇐⇒ ∀x∈A : |fn(x)−f(x)| ≤ ε

. (8.10)

As indicated in (8.10), this is just (8.6) with < ε replaced by ≤ ε. After all,
the metric in B(A) was chosen so as to make convergence of a sequence fn
in B(A) equivalent14 to uniform convergence on A.

8.3 Uniform convergence and equicontinuity

In https://youtu.be/pV1LDaEYv7Q I discuss Theorem 8.13 below as a con-
vergent subsequence theorem for C([a, b]). We recall that we introduced the
space C([a, b]) of continuous functions in Definition 4.5 and subsequently
proved in Section 4.2 that it is a complete metric space with its metric de-
fined in terms of the maximum norm. In Remark 5.2 we compared C([a, b])
to IR, and observed that the Bolzano-Weierstrass Theorem does not hold in
C([0, 1]). A nice counter example is fn(x) = xn in Exercise 4.12. The se-
quence fn is bounded in C([0, 1]) but does not have a uniformly convergent
subsequence.

We now re-adress this issue and formulate a condition on sequences in
C([a, b]) that allows to prove that a bounded sequence satisfying this con-
dition has a uniformly convergent subsequence. So let fn be a sequence of
functions defined on [a, b] or any other nonempty subset A of IR. Then we
can speak of continuity of fn which is uniform is ξ, but also15 of continuity
which is simultaneously uniform is ξ and n.

The following definition allows to formulate a Bolzano-Weierstrass type
of statement in C([a, b]).

Definition 8.12. Let fn : A → IR be a sequence of functions. Then fn is
called uniformly equicontinuous on A if

∀ε>0 ∃δ>0 ∀n∈IN ∀x,ξ∈A︸ ︷︷ ︸
uniformly equi-

: |x− ξ|︸ ︷︷ ︸
d(x,ξ)

< δ =⇒ |fn(x)− fn(ξ)|︸ ︷︷ ︸
d(fn(x),fn(ξ))

< ε.

Theorem 8.13. (Arzelà-Ascoli) Let fn : [a, b]→ IR be a bounded sequence of
uniformly equicontinuous functions. Then fn has a convergent subsequence
in C([a, b]) with limit f ∈ C([a, b]).

13Recall Exercise 1.6, and note the similar statement for ∃δ>0 · · · < δ.
14Note again that only fn − f ∈ B(A) is needed to have d(fn, f) well defined.
15We won’t consider pointwise equicontinuity.
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Proof of Theorem 8.13. For (notational) convenience (only) we replace
[a, b] by [0, 1]. A natural first step is try to define the limit function f . The
sequence fn(0) is bounded in IR and therefore has a convergent subsequence
fnk(0) by the Bolzano-Weierstrass Theorem 3.20. Denote the limit by f(0).
By the same argument the subsequence fnk of the sequence fn contains a
further subsequence which converges in x = 1 as well. Denote the limit by
f(1). Along a further subsequence the values of fn in x = 1

2
converge. The

limit defines f(1
2
).

Repeating the argument we define the values of our desired limit function
f in 1

4
, 3

4
, 1

8
, 3

8
, 5

8
, 7

8
and so on. Now let us denote the indices16 of all these

subsequences by

n11 n12 n13 n14 n15 . . . for the subsequence convergent in 0,

n21 n22 n23 n24 n25 . . . for the subsequence convergent also in 1,

n31 n32 n33 n34 n35 . . . for the subsequence convergent also in
1

2
,

n41 n42 n43 n44 n45 . . . for the subsequence convergent also in
1

4
,

n51 n52 n53 n54 n55 . . . for the subsequence convergent also in
3

4
,

und so weiter. Each of these sequences is a subsequence of the previous
sequence, and has the diagonal subsequence nkk as a further subsequence.

It follows that the sequence Fk defined by Fk = fnkk is a subsequence of
fn with the property that

Fk(a) = fnkk(a)→ f(a)

for every

a ∈ D = {0, 1, 1

2
,
1

4
,
3

4
,
1

8
,
3

8
,
5

8
,
7

8
, . . . },

with the function f : D → IR defined in the subsequence arguments above.
In particular every Fk(a) is a Cauchy sequence in IR, which is all we need

to conclude the proof. In view of the completeness17 of C([0, 1]) it suffices
to show that the sequence Fk is a uniform Cauchy sequence. To do so we
use that as a subsequence of fn the sequence Fk is also equicontinuous. So
let ε > 0 and apply Definition 8.12. Adapting the notation to the present
context it says that

∃δ>0 ∀x,a∈A ∀k∈IN : |x− a| < δ =⇒ |Fk(x)− Fk(a)| < ε.

16Have a look at the proof of Theorem 1.4.
17See Theorem 4.15.
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We now choose l ∈ IN with

1

2l
< δ

and estimate the difference of Fk(x) and Fm(x) for arbitrary x ∈ [0, 1] by

|Fk(x)− Fm(x)| ≤ |Fk(x)− Fk(a)|︸ ︷︷ ︸
<ε

+|Fk(a)− Fm(a)|+ |Fm(a)− Fm(x)|︸ ︷︷ ︸
<ε

,

in which for every x ∈ [0, 1] a number

a ∈ Dl = {0, 1

2l
,

2

2l
,

3

2l
, . . . , 1}

with

|x− a| < 1

2l
< δ is chosen to ensure |Fk(x)− Fk(a)| < ε.

We then choose N ∈ IN such that |Fk(a)− Fm(a)| < ε for all k,m ≥ N , and
for all a ∈ Dl. This is possible because every Fk(a) is a Cauchy sequence and
Dl is a finite set. It follows that

|Fk(x)− Fm(x)| < 3ε

for all k,m ≥ N . Since N is independent of x and ε > 0 was arbitrary, a
usual 3-trick establishes that Fk has the property (4.7) stated in the proof of
Theorem 4.15, namely that it is a uniform Cauchy sequence. Theorem 4.15,
which stated the completeness of C([a, b]), then completes the proof. �

8.4 More on continuity and integration

Recall that Theorem 1.4 was preceded by a “proof” in which we argued by
contradiction to conclude that A = IR would have the property that, given
any ε > 0, we can cover A with a countable union of say closed intervals, i.e.

A ⊂ ∪n∈IN[an, bn],

such that ∑
n∈IN

(bn − an) < ε.

This conclusion is in fact the very definition of what it means for a subset
A of IR to have zero length, i.e. zero 1-dimensional (Lebesgue) measure.
Without proof we state a fundamental theorem.
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Theorem 8.14. Let f : [a, b]→ IR be a bounded function. Denote the set of
points in which f is not continuous by A. Then f ∈ RI([a, b]) if and only if
A is set of measure zero.

For functions f : [a, b]→ IR we were able to avoid continuity issues for many
of our integrational purposes by using the ordering of the real numbers. For
X-valued functions continuity is more important.

Theorem 8.15. Let X be a complete metric vector space and f : [a, b]→ X
be a continuous function. Denote the norm in X by the usual bars, i.e. |x|
is the norm of x ∈ X. Then there exists a unique J ∈ X such that for every
ε > 0 a δ > 0 exists such that, for every partition P as in (6.8) and every
choice of intermediate points ξk with

a = x0 ≤ ξ1 ≤ x1 ≤ ξ2 · · · ≤ ξN ≤ xN = b,

it holds that

S =
N∑
k=1

f(ξk)(xk − xk−1)

satisfies
|S − J | < ε

provided
max

k=1,...,N
(xk − xk−1) < δ.

We write

J =

∫ b

a

f

and we have

|J | ≤
∫ b

a

|f(x)| dx.

In particular the statements above apply to the case that X = IC.

Exercise 8.16. Not so easy. Give a proof of Theorem 8.15 for the case that X = IR
which does not rely on lower and upper sums. Hint: try a proof for the statement
with only right endpoint sums for equidistant partitions as in the proof of Theorem
6.8 first. If all goes well you find the same18 J as well as a proof for f : [a, b] → X
continuous. Then think about such sums for other partitions and other choices of the
points in the intervals of the partition.

18Why?
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The playlist

https://www.youtube.com/playlist?list=PLQgy2W8pIli9jyuYN76HM3YdXjwBZrx8L

ends with https://youtu.be/A5yDujcQyYQ that you could watch in the con-
text of Theorem 8.15.

Exercise 8.17. Not so difficult and useful in Section 28.2 and further: explain why
the conclusions in Theorem 8.15 holds for all Riemann integrable real valued functions.
Hint: use upper and lower sums to control the sums with the intermediate points. Then
prove that the conclusions also holds for IRn-valued functions if the components are
Riemann integrable.

8.5 A global monotone inverse function theorem

The material in this section does not fit in with our overall philosophy that
we discuss theory for y = f(x) with x, y ∈ IR that generalises to a context
in which x ∈ X and y ∈ Y . The result to remember from this section is
that a continuous strictly monotone real valued function f defined on some
interval I has a range J = f(I) which is itself an interval, and that there
exists a unique continuous strictly monotone real valued function g defined
on J with range I such that

y = f(x) ⇐⇒ x = g(y) (8.11)

for all x ∈ I and y ∈ J . Thus (8.11) defines a bijection between I and
J . Formulated in Theorem 8.20 for open intervals I and J only, the proof
relies crucially on Theorem 8.19 below, which has the simple19 but important
statement in Theorem 8.18 as a special case.

Theorem 8.18. Let a, b ∈ IR with a < b, and let f : [a, b] → IR be continu-
ous. If f(a)f(b) < 0 then f has a zero in (a, b), i.e. there exists x0 ∈ (a, b)
such that f(x0) = 0.

Theorem 8.18 can be restated as the intermediate value theorem:

Theorem 8.19. Let I be an open interval in IR and f : I → IR a continuous
function. For a, b ∈ I with a < b let

f([a, b]) = {f(x) : a ≤ x ≤ b}
19By now obvious?
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be the image of [a, b] under f . Then

f(a) < f(b) =⇒ [f(a), f(b)] ⊂ f([a, b]),

and
f(a) > f(b) =⇒ [f(b), f(a)] ⊂ f([a, b]).

Proof. To prove this statement assume first that f(a) < c < f(b). Then

ξ = sup{x ∈ [a, b] : f(x) < c}

exists as the supremum of a bounded set which contains a. Can it be that
f(ξ) < c? If so then ξ < b because f(b) > c. Choose ε > 0 with ε < c− f(ξ)
and apply the ε-δ statement of continuity in (8.1). Then

f(x)− f(ξ) ≤ |f(x)− f(ξ)| < ε < c− f(ξ)

for all x ∈ I with |x − ξ| < δ. But then f(x) < c for all such x, which
contradicts that ξ is an upper bound.

Can it be that f(ξ) > c? Choose ε > 0 with ε < f(ξ) − c and apply
(8.1). Then f(ξ) − f(x) ≤ |f(x) − f(ξ)| < ε < f(ξ) − c for all x ∈ I with
|x − ξ| < δ. But then f(x) > c for all such x. This makes ξ − δ an upper
bound and contradicts that ξ is the lowest upper bound. Thereby the proof
for f(a) < f(b) is complete. For f(a) > f(b) the proof is of course similar.
�

Theorem 8.20. Let I be an open interval in IR and f : I → IR a continuous
function with the property that

∀a,b∈ I a < b =⇒ f(a) < f(b),

i.e. f is strictly increasing on I. Then

J = f(I) = {f(x) : x ∈ I}

is also an open interval and the equation f(x) = y defines x as g(y) for every
y ∈ J , with the function g : J → IR continuous, strictly increasing i.e.

∀c,d∈ J c < d =⇒ g(c) < g(d),

and
I = g(J) = {g(y) : y ∈ J}.
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Proof. By definition f(x) = y has a solution in I for every y ∈ f(I). The
strict monotonicity of f makes that solution unique and thereby settles the
existence of g : J → IR with the same strict monotonicity property. We next
show that J is an open interval.

Let c, d ∈ J with c < d. Then c = f(a) and d = f(b) for some a
and b in I, and [c, d] ⊂ J by Theorem 8.19. Thus J is an interval. Also,
if y0 ∈ J then y0 = f(x0), x0 ∈ I and [x0 − δ0, x0 + δ0] ⊂ I for some
δ0 > 0. Thus [f(x0 − δ0), f(x0 + δ0)] ⊂ J so y0 is an interior point because
f(x0 − δ0) < f(x0) < f(x0 + δ0). We conclude that J is an open interval.

It remains to prove the continuity of g, so let y0 = f(x0) and ε > 0. It is
no limitation to choose ε < δ0, δ0 as just above. Then

(f(x0 − ε), f(x0 + ε)) ⊂ [f(x0 − δ0), f(x0 + δ0)] ⊂ J

and we can choose δ > 0 such that

f(x0−δ0) < f(x0 − ε)︸ ︷︷ ︸
↓g

x0−ε

< y0−δ < f(x0) = y0︸ ︷︷ ︸
↓g

x0=g(y0 )

< y0+δ < f(x0 + ε)︸ ︷︷ ︸
↓g

x0+ε

< f(x0+δ0),

whence
g((y0 − δ, y0 + δ)) ⊂ (g(y0)− ε, g(y0) + ε).

This completes the proof. �
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8.6 Exercises

https://www.youtube.com/playlist?list=PLQgy2W8pIli9_T5budfPhqXqhnSVel_KM

NB I update the course notes regularly. The agreement before the course
started was NOT to update the file in Canvas. But I suggest you use http:

//www.few.vu.nl/~jhulshof/2020new.pdf at all times now.
The above playlist discusses some easy examples in which you have to

use epsilon-delta arguments. In the exercises below you can of course also
use Definition 4.1 and Theorem 4.7. In particular products and sums of
continuous functions defined on the same subset of IR or any other metric
space are continuous. But it’s instructive to do the epsilon-delta proofs. And
are the same statements true about uniformly continuous functions? What
about 1

f
if f is such a continuous or uniformly continuous function?

Do have a look at Theorem 5.44 and Remark 5.45 by the way.

Exercise 8.21. Let f(x) = 2x + 1. Prove directly from the definition that f is
uniformly continuous on IR.

Exercise 8.22. Let f(x) = x2 and A = (0, 1). Prove directly from the definition
that f is uniformly continuous on A. Is f uniformly continuous on IR?

Exercise 8.23. Let f(x) = 1
x and A = (1,∞). Prove that f is uniformly continuous

on A. Is f uniformly continuous on (0, 1)?

Exercise 8.24. Let f : A → IR be Lipschitz continous. Prove that f is uniformly
continuous.

Iris asked Sophia about how to do uniform and Lipschitz continuity in the
exercises below. Well, you can make use of the properties of the functions
exp, cos, sin established in Sections 7.7 and 7.8. In particular you can write
exp(x) − exp(a), cos(x) − cos(a), sin(x) − sin(a) as integrals that you can
estimate in terms of the maximum of the absolute value of the integrand
on the integration interval times the length |x − a| of that interval. But
actually these special functions are examples of the power series p(x) treated
in Chapter 9.
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If I move Chapter 9 to before the present chapter20 you can estimate
differences p(x)− p(a) by factoring out (x− a), first for monomials, e.g.

x7 − a7 = (x6 + ax5 + a2x4 + a3x3 + a4x2 + a5x+ a6)(x− a),

whence
|x7 − a7| ≤ 7r6 |x− a| for all x, a ∈ [−r, r],

Lipschitz continuity of x → x7 on [−r, r] with Lipschitz constant 7r6. Thus
Theorem 9.3 is easily extended with the statement that

|p(x)− p(a)| ≤
∞∑
n=1

n|αn|rn−1 |x− a| for all x, a ∈ [−r, r], 0 < r < R.

Likewise for the Laurent series in Remark 9.9.

Exercise 8.25. Let f : (0, 1]→ IR be defined by

f(x) = sin
1

x
.

Show that f is continuous but not uniformly continuous.

Exercise 8.26. Is the function exp : IR→ IR+ defined as the unique integrable so-
lution f = exp of (7.23) uniformly continuous? Show that exp is Lipschitz continuous
with Lipschitz constant 1 on (−∞, 0].

Exercise 8.27. Recall (7.28) and cos2 + sin2 = 1. Prove that cos and sin are
Lipschitz continuous with Lipschitz constant 1.

Exercise 8.28. Show that the function f : IR→ IR given by

f(x) =

{
x sin 1

x if x 6= 0
0 if x = 0

is continuous. Is it uniformly continuous? Is it Lipschitz continuous?

20As I already did in the ordering of the YouTube playlists.
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Exercise 8.29. Is the function f : IR→ IR defined by21

f(x) =

{
sinx
x if x > 0

exp(x) if x ≤ 0

continuous? Is it uniformly continuous? Is it Lipschitz continuous?

Exercise 8.30. Is the function f : IR→ IR defined by

f(x) =

{
sinx cos 1

x if x < 0
exp(x)− 1 if x ≥ 0

continuous? Is it uniformly continuous? Is it Lipschitz continuous?

Exercise 8.31. See https://youtu.be/xGLEFpSuMqY. Let f : [0, 1] → IR be
defined by f(x) =

√
x. For n ∈ IN we define fn : [0, 1]→ IR by

fn(xj) = f(xj) for xj =
j

n
, j = 0, 1, 2, . . . , n,

and by fn being linear on every interval Ij = [ j−1
n , jn ].

a) Explain why the functions fn are all Lipschitz continuous.

b) What is the Lipschitz constant of f2? Hint: make a sketch of the graph of f2.

c) Why is f uniformly continuous? Is f Lipschitz continuous?

d) Show that fn → f uniformly on [0, 1].

e) For ε > 0 let δ > 0 be given by the definition of uniform continuity of f , i.e.

∀x,y∈[0,1] : |x− y| < δ =⇒ |f(x)− f(y)| < ε.

Let n ∈ IN satisfy n > 1
δ . Prove that

|fn(x)− f(x)| < 2ε

for all x ∈ [0, 1]. Hint: given x ∈ [0, 1] use the inequality

|fn(x)− f(x)| ≤ |fn(x)− f(xj)|+ |f(xj)− f(x)|

and choose j such that x ∈ Ij .

21See above Exercise 8.25 Iris: sin x
x = 1− 1

2x
2 + · · · is a power series just as exp(x).
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Exercise 8.32. Let A ⊂ IR and let f : A → IR be uniformly continuous. Suppose
that xn is a Cauchy sequence in A. Prove that f(xn) is also a Cauchy sequence.

Exercise 8.33. Let a, b ∈ IR with a < b, and let f : (a, b) → IR be uniformly
continuous. Then there exists a unique f̄ ∈ C([a, b]) such that f(x) = f̄(x) for all
x ∈ (a, b). Hint: use Exercise 8.32 to define f̄(a) and f̄(b).

Exercise 8.34. Recall that Theorem 7.13 says that RI([a, b]) is a complete metric
vector space. Why is C([a, b]) a closed linear subspace of RI([a, b])?

Exercise 8.35. Examine the function f defined by

f(x) =
x

1 + x
.

What is the largest open interval I containing 0 to which you can apply Theorem
8.20? Specify J and compute g(y). What is J if I = (0,∞)?

Exercise 8.36. Formulate Theorem 8.20 for strictly decreasing functions.

Exercise 8.37. Let f : [a, b] → IR be a bounded integrable function, assume that
Rf = {f(x) : a ≤ x ≤ b} ⊂ [c, d] and let F : [c, d] → IR be continuous. Prove
that F ◦ f is integrable on [a, b]. Hint: approximate F uniformly with a sequence of
Lipschitz continuous functions and then use both Theorem 7.5 and Theorem 7.13.

Exercise 8.38. (continued, an alternative) For ε > 0 choose δ > 0 according
to the definition of uniform continuity of F and then a partition for which the lower
and upper sums for

∫ b
a f with mk(xk − xk−1) and Mk(xk − xk−1) differ by at most

δ2. Then distinguish between the bad k for which Mk −mk ≥ δ and the good k for
which Mk − mk < δ. Estimate the sum of xk − xk−1 over the bad k in terms of
what you then know. Use the boundedness of f to get a final estimate for the sum of
(Mk −mk)(xk − xk−1) over all k. Then complete the proof22.

22Harold drew my attention to this proof due to Rudin, it relies on Theorem 7.2 only.
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Exercise 8.39. Let fn : [−1, 1]→ IR be a bounded sequence of integrable functions,
and let F : IR→ IR be continuous. Suppose that

fn(x) =

∫ x

0
F (fn(s)) ds

holds for all x ∈ [−1, 1] and all n ∈ IN. Prove that fn has a uniformly convergent
subsequence. Hint: Theorem 8.13. NB. The right hand side exists in view of Exercise
8.37.

Exercise 8.40. Let Fn : IR→ IR be a a sequence of continuous functions which is
bounded in the sense that there exists M > 0 such that |Fn(y)| ≤ M for all n ∈ IN
and all y ∈ IR. Suppose that fn : [−1, 1] → IR is a sequence of integrable functions
such that

fn(x) =

∫ x

0
Fn(fn(s)) ds

holds for all x ∈ [−1, 1] and all n ∈ IN. Prove that fn has a uniformly convergent
subsequence. Hint: Theorem 8.13.

Exercise 8.41. (continued) Suppose that Fn → F uniformly on [−M,M ] and let
f be a limit function of a uniformly convergent subsequence as in Exercise 8.40. Prove
that

f(x) =

∫ x

0
F (f(s)) ds

holds for all x ∈ [−1, 1]. Hint: first show that |fn(x)| ≤M |x| and then use

|Fn(fn(s))− F (f(s))| ≤ |Fn(fn(s))− Fn(f(s))|+ |Fn(f(s))− F (f(s))|

to apply Theorem 7.13.

Exercise 8.42. (continued) Let Fn and F be as in Exercise 8.41. Assume that every
Fn : IR → IR is Lipschitz continuous, without further assumptions on the Lipschitz
constants Ln. Prove that the integral equation

f(x) =

∫ x

0
F (f(s)) ds

has an integrable solution f : [−1, 1] → IR. Hint: in Exercise 7.34 you showed the
integral equation has a unique solution f : IR→ IR in the class of integrable functions
if F : IR→ IR is Lipschitz continuous, not an assumption on F here.
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Exercise 8.43. (continued) Assume that a bounded sequence of Lipschitz continu-
ous functions Fn : IR→ IR has the property that Fn → F uniformly on every bounded
interval. Prove that the integral equation

f(x) =

∫ x

0
F (f(s)) ds

has a solution f : IR→ IR.

Exercise 8.44. (continued) Let F : IR → IR be a bounded continuous function.
Prove that the integral equation

f(x) =

∫ x

0
F (f(s)) ds

has a solution f : IR→ IR. Hint: show that there exists a sequence Fn as in Exercise
8.43.
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9 Differential calculus for power series

https://www.youtube.com/playlist?list=PLQgy2W8pIli_IRJbP205fsUsBTIx1vNEk

If you came here from Section 1.5 and skipped the epsilons: don’t worry.
You most likely will be familiar with the formula

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

x→a

f(x)− f(a)

x− a
, (9.1)

which you may have taken for granted and ignored. Good. It’s just the usual
default definition of the derivative f ′(a) of a real valued function f of a real
variable x in a point x = a on the real line.

In case the limit of the difference quotient in (9.1) exists it is called the
differential quotient of f in x = a. Such differential quotients are sometimes
formally denoted as fractions with ‘numerator’ df and ‘denominator’ dx, just
like difference quotients are denoted as1

f(x+ ∆x)− f(x)

∆x
=

∆f

∆x

with ∆x = h 6= 0. Notations to be handled with care or simply avoided
perhaps, just like them limits. But do note that for the simplest examples
to consider first, monomials such as

f42(x) = x42

for instance, the difference quotient is naturally defined for x = a as well.
Indeed, for x 6= a it holds that

x42 − a42

x− a
= x41 + · · · · · · +︸ ︷︷ ︸

Exercise 1.12!

a41,

but the right hand side is clearly equal to 42a41 for x = a. Whatever the
value of a, it must2 thus follow that f42 is differentiable in a, with

f ′42(a) = 42a41.

In what follows we will do better3 to avoid limits of difference quotients
altogether and think of differentiation as a method to best4 approximate a
given (nonlinear) function f by a linear one, i.e. to write

f(x) ≈ f(a) + A(x− a) = Ax+B,

1Used to convince you to write df = f ′(x)dx.
2Parafrasing Jaap Murre: who in his right mind would need a limit concept here?
3Meaning: let us see how far we can get without them epsilons.
4In some appropriate sense.
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and choose A and B to make

Ra(x) = f(x)− Ax−B

as small as possible near x = a.
Since the obvious5 choice for B is

B = f(a)− Aa,

it remains to identify the best number A to choose in

f(x) = f(a) + A(x− a) +Ra(x). (9.2)

Thus we look for the unique value of A for which the remainder term Ra(x)
has a suitably formulated smallness property that fails for A.

9.1 Linear approximations of monomials

Consider a difference quotient for the function f7 defined by f7(x) = x7. A
little algebra6 in Chapter 1 told you that

x7 − a7

x− a
= x6 + ax5 + a2x4 + a3x3 + a4x2 + a5x+ a6,

which you rewrote as7

x7 = a7 + (x6 + ax5 + a2x4 + a3x3 + a4x2 + a5x+ a6)(x− a) = (9.3)

a7 + 7a6 (x− a)︸ ︷︷ ︸
Ax+B

+ (x5 + 2ax4 + 3a2x3 + 4a3x2 + 5a4x+ 6a5) (x− a)2︸ ︷︷ ︸
remainder term

.

The particular choice
A = 7a6, B = −6a7 (9.4)

followed from putting x = a in the 7 terms of the8 prefactor in the second
term on the right hand side of (9.3). Of course you already “knew” that
f ′

7
(x) = 7x6 so you recognise 7a6 as f ′

7
(a) computed via (9.1).

The first two terms can be seen as the best approximation of the form

Ax+B = 7a6x− 6a7

5Why? Takes x = a to convince to yourself.
6Long division for instance.
7See Exercise 1.18.
8Typographically large....
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to f7(x) = x7 when x is close to a. This is because the above values of A and
B appear as the only choice9 which makes the resulting remainder term10

contain a factor (x− a)2.
Moreover, the prefactor in the remainder term under (9.3) is easily esti-

mated if we assume that x and a are contained in a fixed interval [−r, r]. For
example, if

|x| ≤ r and |a| ≤ r,

this prefactor is estimated by

(1 + 2 + 3 + 4 + 5 + 6) r5 =
7× 6

2
r5.

You will not be surprised that (9.3) and its splitting in a linear term and
such a remainder term generalise to general n ∈ IN.

Theorem 9.1. For n ∈ IN and x, a ∈ IR let Ran(x) be defined by

xn = an + nan−1(x− a) +Ran(x),

and let r > 0. Then

|Ran(x)| ≤ n(n− 1)

2
rn−2︸ ︷︷ ︸

r-dependent constant

(x− a)2

for all x, a ∈ [−r, r].

Exercise 9.2. You may guess a nice expression for Ran(x) from (9.3). Guess right,
prove what you guessed for all n ∈ IN, and then prove Theorem 9.1.

9.2 Linear approximations of polynomials

Let α0, α1, α2, . . . be a sequence of real coefficients. Then for the polynomials

pk(x) =
k∑

n=0

αnx
n = α0 + α1x+ α2x

2 + · · ·+ αkx
k

9Of course both A and B depend on a.
10A polynomial in x with coefficients depending on the choice of a,A,B.
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of degree k ≥ 2 the story is quite the same as in Section 9.1. Simply multiply
both sides of the equality and inequality in Theorem 9.1 by αn and take the
sum over n. With some care for n = 0, 1, 2 it follows that

pk(x) = pk(a) +
k∑

n=1

nαna
n−1 (x− a)︸ ︷︷ ︸

linear approximation

+
k∑

n=2

αnRan(x)︸ ︷︷ ︸
remainder term

, (9.5)

in which for all x, a ∈ [−r, r] the remainder term satisfies

|
k∑

n=2

αnRan(x)︸ ︷︷ ︸
remainder term

| ≤
k∑

n=2

|αn|
n(n− 1)

2
rn−2

︸ ︷︷ ︸
r-dependent constant

(x− a)2. (9.6)

As before

pk(a) +
k∑

n=1

nαna
n−1

︸ ︷︷ ︸
p′k(a)

(x− a)

is the best linear approximation of pk(x) near x = a, in which we recognise
the value of derivative of pk in a as the coefficient of (x− a).

9.3 Power series: the fundamental theorem

The step from polynomials to power series like

p(x) = 1 + 2x+ 3x2 + · · · (9.7)

is a small step for the text editor if we use the illuminating dots notation.
Recall from calculus that every power series

p(x) =
∞∑
n=0

αnx
n = α0 + α1x+ α2x

2 + · · ·

has a critical radius R. For x ∈ IR with |x| < R the power series is absolutely
convergent, for |x| > R the individual terms are an unbounded sequence and
therefore there is no way to give meaning to the sum. The behaviour for
|x| = R may be complicated but is for later worries.

Theorem 9.3. Every power series

p(x) =
∞∑
n=0

αnx
n
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with αn ∈ IR for n ∈ IN0 has a radius of convergence R ∈ [0,∞] such that
the series is absolutely convergent for all x ∈ IR with |x| < R. For such x it
holds that

p′(x) =
∞∑
n=1

nαnx
n−1 =

∞∑
n=0

(n+ 1)αn+1x
n,

in which p′ is the derivative of p on {x ∈ IR : |x| < R} in the usual sense of
limits of difference quotients, namely

p′(a) = lim
x→a

p(x)− p(a)

x− a
for every a with |a| < R. The power series for p′(x) is also absolutely con-
vergent for all x ∈ IR with |x| < R, and the convergence of both series is
uniform on every {x ∈ IR : |x| ≤ r} with 0 < r < R. For x ∈ IR with
|x| > R the terms in both series for p′(x) and p(x) are unbounded in n and
none of the two series converge.

Proof. We continue from (9.6). If for some r > 0 it holds that

Cr :=
∞∑
n=2

|αn|
n(n− 1)

2
rn−2 <∞, (9.8)

we can let k → ∞ in (9.5). Indeed, it then follows from Exercises 3.73 and
3.75 that the sums

∞∑
n=0

αnx
n,

∞∑
n=1

αna
n,

∞∑
n=1

nαna
n−1

exist for all x, a ∈ [−r, r] because

1 ≤ n ≤ n(n− 1)

2

for n ≥ 2, and so does the sum

Ra(x) =
∞∑
n=2

αnRan(x).

Thus (9.8) allows to take the limit k →∞ in (9.5) and (9.6) to obtain11

p(x) =
∞∑
n=0

αnx
n = p(a) +

∞∑
n=1

nαna
n−1

︸ ︷︷ ︸
A

(x− a) +Ra(x) (9.9)

11The convergence is in fact uniform on [−r, r], why?
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with
|Ra(x)| ≤ Cr(x− a)2 (9.10)

for all x, a ∈ [−r, r]. As before we observe that

A =
∞∑
n=1

nαna
n−1 (9.11)

is the only value of A for which

p(x) = p(a) + A(x− a) +Ra(x)

holds in combination with an estimate of the form (9.10) and a constant
which depends only on r. The difference quotient in (9.1) with f replaced
by p then evaluates as

p(x)− p(a)

x− a
= A+

Ra(x)

x− a
,

and (9.10) suffices to conclude from (9.8,9.9) that

lim
x→a

p(x)− p(a)

x− a
= A (9.12)

as given by (9.11).
To conclude we note that the r-values for which (9.8) holds form an

interval

{r ≥ 0 :
∞∑
n=1

n2|αn|rn <∞}

which contains r = 0. The only possibilities for this interval are

{0}, [0, R), [0, R], [0,∞),

with R > 0 in the second and third case, and R = ∞ and R = 0 in the
extreme fourth and first case. This completes the proof of Theorem 9.3,
except for the statement about |x| > R, which follows from Exercise 9.4. �

Exercise 9.4. Suppose R <∞ and let x0 ∈ IR with |x0| > R. Assume the terms in
p(x0) form a bounded sequence indexed by n. Derive a contradiction by showing that
both p(x) and p′(x) are then absolutely convergent for every x ∈ IR with |x| < |x0|.
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Exercise 9.5. Show that R is characterised by saying that anx
n is an unbounded

sequence if |x| > R and a sequence converging to 0 if |x| < R.

Remark 9.6. The limit statement (9.12) is equivalent to saying that

lim
x→a

Ra(x)

x− a
= 0. (9.13)

This means that for every ε > 0 there exists δ > 0 such that

|Ra(x)| < ε|x− a| if |x− a| < δ, (9.14)

a statement much weaker than the statement in (9.10). It will be used in
Chapter 10 to define differentiability of functions not given by power series.

Exercise 9.7. The intervals

Ik := {r ≥ 0 :

∞∑
n=1

nk|αn|rn exists}

don’t change much if we vary k ∈ IN. It is clear that

I1 ⊃ I2 ⊃ I3 ⊃ · · · ,

but you should prove the existence of R ∈ [0,∞] such that for every k ∈ IN either
Ik = [0, R) or Ik = [0, R]. Give examples of R = 0, R = 1 and R =∞.

9.4 Taylor series for power series

We substitute x = x0 + h in

p(x) =
∞∑
n=0

αnx
n. (9.15)

Changing the order of summation12 we find

p(x0 + h) =
∞∑
n=0

αn(x0 + h)n =
∞∑
n=0

αn

n∑
k=0

(
n

k

)
xn−k0 hk

=
∞∑
n=0

n∑
k=0

αn
n(n− 1) . . . (n− k + 1)

k!
xn−k0 hk

12This section relies on Section 3.9 but we will not expand on this here.

178



=
∞∑
k=0

∞∑
n=k

αn
n(n− 1) . . . (n− k + 1)

k!
xn−k0 hk

=
∞∑
k=0

1

k!

∞∑
n=k

αnn(n− 1) . . . (n− k + 1)xn−k0︸ ︷︷ ︸
p(k)(x0)

hk

=
∞∑
k=0

p(k)(x0)

k!
hk,

i.e.

p(x) = p(x0 + h) =
∞∑
n=0

p(n)(x0)

n!
hn =

∞∑
n=0

p(n)(x0)

n!
(x− x0)n. (9.16)

In this form the power series is called a Taylor series. Do note the special
case x0 = 0 and h = x,

p(x) =
∞∑
n=0

αnx
n =

∞∑
n=0

p(n)(0)

n!
xn,

which is called a Maclaurin series.

Exercise 9.8. Let R be the radius of convergence of the power series P (x). Show
that (9.16) holds for all x0 and h in IR with |x0|+ |h| < R, as the sum of an absolutely
convergent series. Hint: recall the concept of unconditional convergence, see Section
3.9.

Remark 9.9. Everything we did for the differentiation of power series in
(9.17) also works for (Laurent series)

L(x) =
∞∑

n=−∞

αnx
n = · · ·+ α−2

x2
+
α−1

x
+ α0 + αx+ α2x

2 + · · · ,

with |x| not too large for the positive exponents and |x| not too small for the
negative exponents. Start with e.g.

1

x7
=

1

a7
− 7

a8
(x− a) +Ra(x).

Figure Ra(x) out and you’re in business: https: // youtu. be/ _3TSrRd8ils 13.

13Forgot to put this one in Playlist 5.
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9.5 Integral calculus for power series

Consider

p(x) =
∞∑
n=1

αnx
n. (9.17)

In Exercise 6.20 we saw that∫ b

a

xn dx =

[
xn

n+ 1

]b
a

=
bn+1

n+ 1
− an+1

n+ 1
(9.18)

for 0 ≤ a < b. Via Theorem 6.13 and Definition 7.9 this restriction on a and
b disappears:

Exercise 9.10. Verify that (9.18) holds for all n ∈ IN and any a, b ∈ IR.

Theorem 7.18 then implies for

pk(x) =
k∑

n=1

αnx
n = α0 + α1x+ α2x

2 + · · ·+ αkx
k, (9.19)

the partial polynomial sums of (9.17), that∫ b

a

pk(x) dx = Pk+1(b)− Pk+1(a), (9.20)

with Pk+1 defined by

Pk+1(x) = α0x+
α1

2
x2 +

α2

3
x3 + · · · ·+ αk

k + 1
xk+1. (9.21)

You recognise pk(x) as the derivative of Pk+1(x) the way you computed it in
highschool, and Pk+1(x) as a primitive function for pk(x).

Now assume for some r > 0 that

∞∑
n=1

|αn|rn <∞. (9.22)

Then

|pk(x)− p(x)| = |
∞∑

n=k+1

αnx
n| ≤

∞∑
n=k+1

|αnxn| ≤
∞∑

n=k+1

|αn|rn,
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provided [a, b] ⊂ [−r, r]. It follows that pk → p in C([a, b]) and thus by
Theorem 7.13 that ∫ b

a

pk(x) dx→
∫ b

a

p(x) dx (9.23)

as k → ∞. Combining (9.21) and (9.23) we arrive at the statements in the
following theorem14 for integration variable x ∈ [a, b] ⊂ (−R,R).

Theorem 9.11. If αn is a sequence of real coefficients indexed by n ∈ IN0,
then there exists a maximal R ∈ [0,∞] such

p(x) =
∞∑
n=0

αnx
n = α0 + α1x+ α2x

2 + · · · (9.24)

exists for all x ∈ IR with |x| < R. For those values

P (x) = α0x+
α1

2
x2 +

α2

3
x3 + · · · =

∞∑
n=0

αn
n+ 1

xn+1 =
∞∑
n=1

αn−1

n
xn (9.25)

also exists. Moreover ∫ b

a

p(x) dx = P (b)− P (a)

whenever [a, b] ⊂ (−R,R).

Exercise 9.12. Finish the proof of Theorem 7.13. Hint: consider the set of values
r > 0 for which (9.22) holds. It is either empty, the whole of IR+, or an interval of
the form (0, R) or (0, R] with R ∈ IR+.

9.6 Power series solutions of differential equations

We can solve linear ordinary differential equations (ODEs) for power series
(9.15), for instance

p′(x) = p(x), (9.26)

with boundary condition p(0) = 1. Let us try to find a solution of the form

p(x) = α0 + α1x+ α2x
2 + α3x

3 + · · · ,
14This is really Theorem 9.3 if you think about it.
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which may make sense for |x| < R, R hopefully positive. Provided |x| < R
it follows from Theorem 9.3 that

p′(x) = α1 + 2α2x+ 3α3x
2 + 4α4x

3 + · · · ,

and so

p′(x)− p(x) = (α1 − α0) + (2α2 − α1)x+ (3α3 − α2)x2 + (4α4 − α3)x3 + · · · .

This can only be zero for all x ∈ IR if

0 = α1 − α0 = 2α2 − α1 = 3α3 − α2 = 4α4 − α3 = · · · ,

and from α0 = p(0) = 1 it then follows that

α1 = 1, α2 =
1

2
, α3 =

1

2

1

3
, α4 =

1

2

1

3

1

4
, · · · , αn =

1

n!
,

so we encounter the exp you knew from Exercise 6.23 and Section 7.7, if you
did not come here directly from the end of Section 1.5. Ask yourself what is
really needed for the following theorem.

Theorem 9.13. Let r > 0. The only possible power series that can satisfy
p′(x) = p(x) for all x ∈ IR with |x| < r, and have p(0) = 1, is

p(x) = exp(x) :=
∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+

x5

120
+

x6

720
+ · · · .

In fact this power series converges for all x ∈ IR, and therefore satisfies
p′(x) = p(x) for all x ∈ IR, as well as p(0) = 1.

Exercise 9.14. Prove that exp(x) has R = ∞ and you have solved your first
differential equation15. Hint: show for N ∈ IN that

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+ · · ·+ xN

N !
+RN (x),

in which

RN (x) =
xN

N !

(
x

N + 1
+

x2

(N + 1)(N + 2)
+ · · ·

)
is estimated by

|RN (x)| ≤ |x|
N

N !

(
|x|

N + 1
+

(
|x|

N + 1

)2

+

(
|x|

N + 1

)3

+ · · ·

)
=
|x|N

N !

|x|
N + 1− |x|

if N + 1 > |x|.

15No other functions can satisfy f(0) = 1 and f ′(x) = f(x), why is not clear yet.
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Definition 9.15. Let a ∈ IR. We say that f(x) → 0 as x → ∞ for a
function f : [a,∞)→ IR if

∀ε>0 ∃ξ∈IR ∀x∈IR x > ξ =⇒ |f(x)| < ε.

.

Exercise 9.16. Show for every fixed n ∈ IN that

xn

exp(x)
→ 0 as x→∞.

This is the standard limit that says that exp(x) beats every power of x as x→∞.

Exercise 9.17. Write down the power series solution of the differential equation

(1 + x)f ′α(x) = αfα(x) with fα(0) = 1

and show that its radius of convergence is 1, unless α ∈ IN0. Hint: what you get
should be consistent with what you know for α ∈ IN0, that is, you should discover
that

(1 + x)α = 1 + αx+ α(α− 1)
x2

2
+ α(α− 1)(α− 2)

x2

2× 3
+ · · · , (9.27)

Exercise 9.18. (continued) Explain why this holds for all x with |x| < 1 if the
series does not terminate, which it only does if α ∈ IN0. Write the first terms of the
series out for α = 1

2 ,−
1
2 ,−1, also for x replaced by −x.

Exercise 9.19. Use (9.27) with α = 1
2 to improve the Babylonian trick

√
2 =

√
r2 + 2− r2 = r

√
1 +

2− r2

r2
= r

(
1 +

1

2

2− r2

r2
+ · · ·

)
in Section 1.1. Take r = 3

2 .
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Theorem 9.20. Let r > 0. The only possible power series that can satisfy
p′′(x)+p(x) = 0 for all x ∈ IR with |x| < r, and have p(0) = 0 and p′(0) = 1,
is

p(x) = sinx = x− x3

6
+

x5

120
− x7

5040
+ · · · .

In fact this power series converges for all x ∈ IR, so it satisfies{
p′′(x) + p(x) = 0 for all x ∈ IR;
p(0) = 0 and p′(0) = 1 in x = 0.

Exercise 9.21. Write p(x) using the sum notation and prove Theorem 9.20. Let
cosx = p′(x). What is the derivative16 of cos?

Exercise 9.22. Use power series to compute the limits for x→ 0 of

exp(x)− 1

sinx
;

1− cosx3

(x− sinx)2
;

exp(x2)− cosx

sinx2
;

√
1− x− 1

sinx
.

Exercise 9.23. Let

p(x) =

∞∑
n=0

αnx
n and q(x) =

∞∑
n=0

βnx
n

be two power series. Theorem 9.3 gives R for p(x) and S for q(x). Show that

s(x) = p(x)q(x) = α0β0 + (α1β0 + α0β1)x+ (α2β0 + α1β1 + α0β2)x2 + · · ·

is also a power series, with radius of convergence at least the minimum of R and S.
Hint: use Section 3.9.

16Do compare Theorem 9.20 to what we found in Section 7.8.
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10 Differentiability via linear approximation

In this chapter we formulate the linearisation approach to differentiation,
first for a real valued function f defined on1 a domain Df in IR around a
point x0 in the interior of Df . Writing

x = x0 + h

the considerations below concern h = x − x0 sufficiently small. The main
difference with Chapter 9 is that the functions under consideration are not
specified by algebraic formulas.

The presentation in

https://www.youtube.com/playlist?list=PLQgy2W8pIli-mMFVTcMcKO5Zy2uJU193Y

combines the algebraic and the general approach: in that playlist I first do
differentiation of monomials and power series in x = a and then the general
approach in x = 0 only, assuming f : IR→ IR for the latter.

In https://youtu.be/SmwYBRxNgyI I then first explain why we cannot
restrict to remainder terms which are quadratic, such as for instance the
remainder term in Theorem 9.1. Thus it’s analysis again in this chapter.
The smallness statement for the remainder term next may very well be the
first essential example of an epsilon-delta statement2. To compare to (8.1)
let ξ be a fixed interior point of Df , f : Df → IR, A ∈ IR, and write

f(x) = f(ξ) + A(x− ξ) +R(x, ξ)

for all x ∈ Df . If the ε− δ statement

∀ε>0 ∃δ>0 : |x− ξ| < δ =⇒ |R(x, ξ)| < ε |x− ξ|

holds, then the function f is called differentiable in ξ with derivative f ′(ξ) =
A. Recall that the continuity statement (8.1) for f in ξ is

∀ε>0 ∃δ>0 : |x− ξ| < δ =⇒ |f(x)− f(ξ)| < ε

In what follows the point in which we consider differentiability is called
x0 and x is written as x = x0 + h, the most common notation perhaps. This
notation was used in Section 9.4, whereas the first part of Chapter 9 was
with x and x0 = a. The proofs in Chapter 11 are perhaps most transparent
with x0 = 0, h = x, and also f(0) = 0.

1We kick the habit of writing A for Df that started in Definition 3.3.
2Except perhaps for https://youtu.be/NvVFG53Wq7Q, uniform continuity!
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Definition 10.1. Let x0 be an interior point of Df , let f : Df → IR and let
A0 ∈ IR. Then for some δ0 > 0 the equality

f(x0 + h) = f(x0) + A0h+R0(h) (10.1)

defines a remainder term R0(h) for all h ∈ IR with |h| < δ0. It may happen
that for every ε > 0 a δ > 0 can be chosen such that

|R0(h)| < ε|h| if 0 < |h| < δ. (10.2)

If so then the function f is called differentiable in x0, and we say that R0(h)
is “small o of h” for h going to zero3. Notation:

R0(h) = o(|h|) for h→ 0.

Theorem 10.2. Let x0 be an interior point of Df , f : Df → IR, and suppose
that f is differentiable in x0. Then there is only one A0 ∈ IR for which the
statement in Definition 10.1 holds, and f ′(x0) = A0 is called the derivative
of f in x0.

Proof. Suppose there is another A0 that does the job, say B0 instead of A0

in (10.1), with remainder term S(h), also satisfying S(h) = o(|h|), just like
R(h). Subtraction then gives

(A0 −B0)h = S(h)−R(h) = o(|h|).

Divide by h and take the limit h→ 0 to conclude that A0 = B0. �

Exercise 10.3. Give the ε-δ argument that shows A0−B0 = 0 in the above proof.

Exercise 10.4. Going back to Definition 10.1, let g0 ∈ IR and define the function
g : Df → IR by

g(x0) = g0 and g(x) =
f(x)− f(x0)

x− x0

for all x ∈ Df , x 6= x0. Prove that f is differentiable in x0 if and only if it is possible
to choose g0 such that g is continuous in x0.

3Not to be confused with big O of h.
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10.1 Critical points and the mean value theorem

This is https://youtu.be/rmnsPnwVmhs. A critical point4 of a differentiable
function f : O → IR is by definition a point ξ ∈ O where f ′(ξ) = 0. This
statement makes sense for O ⊂ X open and X any real normed space. The
following theorem is formulated for the case that O = (a, b) ⊂ IR = X and
f : (a, b)→ IR differentiable, but generalises to f : O → IR.

Theorem 10.5. Let f : (a, b) → IR and assume that ξ ∈ (a, b) is such that
f(x) ≤ f(ξ) for all x ∈ (a, b). Then f ′(ξ) = 0 provided f is differentiable in
ξ.

Exercise 10.6. Prove Theorem 10.5. Hint: argue by contradiction.

Theorem 10.7. The mean value theorem: if f ∈ C([a, b]) is differentiable
on (a, b) then for at least one ξ in (a, b) it holds that

f(b)− f(a)

b− a
= f ′(ξ).

Remember this theorem as stating that the difference quotient on the left is
equal to a differential quotient in some point ξ strictly between a and b.

Proof. In the special case that f(a) = f(b) the point ξ appears as maximizer
or minimizer of f on [a, b]. Such a maximizer and minimizer must exist in
[a, b] in view of Theorem 4.4.

If that maximizer ξ lies in (a, b) then f ′(ξ) = 0 in view of Theorem 10.5,
which is exactly what Theorem 10.7 asserts in the case that f(a) = f(b).
The same conclusion holds if the minimizer lies in (a, b). One of these two
possibilities must occur because otherwise the minimizer and maximizer can
only be a or b, forcing the globale maximum and global minimum of f to
both be equal to f(a) = f(b), and thereby and f(x) = f(a) = f(b) for all
x ∈ [a, b].

This contradicts the assumption that maximizers and minimizers do not
occur in (a, b) and thus completes the proof in case f(a) = f(b), which is
also called Rolle’s Theorem5. You will complete the proof of Theorem 10.7
in Exercise 10.8 by reduction of the general case to this special case. �

4Also: a stationary point.
5Read about Rolle and his theorem in wikipidia.
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Exercise 10.8. Reduce the general case in Theorem 10.7 to the special case f(a) =
f(b) and prove Theorem 10.7. Hint: subtract a multiple of x to get equal function
values in x = a and x = b.

10.2 The fundamental theorem of calculus

You may like to watch the last 5 videos of the epsilon-delta playlist

https://www.youtube.com/playlist?list=PLQgy2W8pIli8e9Hm34hqKFtil6pZg4I6z

from https://youtu.be/y54etUS4HZI to https://youtu.be/3_Jub7iFnxc

for the full story completed here. Recall the example

ln(x) =

∫ x

1

1

s
ds

in Exercise 6.21, an integral that makes sense and defines ln(x) for every real
x with x > 0. A trickier example you may enjoy to examine is the function
from Exercise 4.44.

Exercise 10.9. Let f be the bounded nondecreasing function in Exercise 4.44 which
is discontinuous in every point of IQ, and define F : IR→ IR by

F (x) =

∫ x

0
f.

In which points is F differentiable? In which points is F continuous?

Theorem 10.10. Let a, b ∈ IR with a < b. Define for f ∈ RI([a, b]) the
function F ∈ C([a, b]) by

F (x) =

∫ x

a

f(s) ds (10.3)

Then F is Lipschitz continuous on [a, b] with Lipschitz constant |f |∞ , and
differentiable in every x0 ∈ [a, b] where f is continuous, with derivative
F ′(x0) = f(x0).

Note that x0 is also allowed to be one of the boundary points, for which case
the obvious one-sided statement6 that F is differentiable was not given yet.

6Formulate this statement for x0 = a and x0 = b.
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Proof. Lipschitz continuity is immediate from Exercise 7.7. Next we write

F (x) = F (x0) +

∫ x

x0

f(s) ds = F (x0) +

∫ x

x0

f(x0) ds+

∫ x

x0

(f(s)− f(x0)) ds.

With h = x− x0 it follows that

F (x) = F (x0) + f(x0)h+R0(h),

in which

R0(h) =

∫ x0+h

x0

(f(s)− f(x0)) ds.

To conclude that F is differentiable in x0 with F ′(x0) = f(x0) we need
to show that R0(h) = o(|h|) as h → 0. Since the integral in the right hand
side above is over an interval of length h, continuity of f in x0 suffices to
conclude that F is differentiable in x0. Indeed, from

∀ε>0 ∃δ>0 ∀s∈[a,b] : 0 < |s− x0| < δ =⇒ |f(s)− f(x0)| < ε,

we have

|R0(h)| ≤ |
∫ x0+h

x0

|f(s)− f(x0)| ds| < ε|h| if 0 < |h| ≤ δ (10.4)

and x = x0 + h ∈ [a, b]. This completes the proof. �

Definition 10.11. If F : [a, b]→ IR is differentiable in every x ∈ [a, b], then
f(x) = F ′(x) defines a function f : [a, b] → IR called the derivative of the
function F , and F is called a primitive function7 of f .

Once we know Theorem 8.6, Theorem 10.10 says that every continuous func-
tion f : [a, b]→ IR has a primitive on [a, b]. For this particular primitive we
have that8 ∫ b

a

f(x) dx = F (b)− F (a), (10.5)

because F (a) = 0. If we add a constant to F the equality in (10.5) does
not change. But does (10.5) hold for every primitive of F of f? To put
it differently, is every primitive of f of the form (10.3), up to an additive
constant? Theorem 10.7 provides the positive answer. It is not possible for a
function to have a zero derivative in every point of an interval without being
constant.

7Or anti-derivative.
8Have a look at Exercise 6.20 again.
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Theorem 10.12. The fundamental theorem of integral calculus: for every
f ∈ C([a, b]) ∩ RI([a, b]) = C([a, b]) it holds that9∫ b

a

f(x) dx = F (b)− F (a),

in which F is any primitive of f . Such a primitive exists in view of (10.3).
If G is any other primitive than the primitive defined by (10.3), then F −G
is constant on [a, b].

Proof. Apply the Mean Value Theorem 10.7 to F −G. �

Exercise 10.13. Let F : IR → IR be continuous, let T > 0 and suppose that
f : [0, T ]→ IR is bounded. Prove that

f(t) =

∫ t

0
F (f(s)) ds for all t ∈ [0, T ]

if and only if

f(0) = 0 and f ′(t) = F (f(t)) for all t ∈ [0, T ].

NB. The first statement requires the assumption that F ◦ f ∈ RI([0, T ], the second
statement requires the assumption that f is differentiable in every t ∈ [0, T ].

Definition 10.14. The set of functions F as in Theorem 10.12 is denoted
by C1([a, b]). The equivalence

F ∈ C1([a, b]) ⇐⇒ F ′ ∈ C([a, b])

characterises this function space. In a similar fashion we define C2([a, b]) by

F ∈ C2([a, b]) ⇐⇒ F ′ ∈ C1([a, b])

and so on for C3([a, b]), C4([a, b]), . . . , and thus any Ck([a, b]) with k ∈ IN.

Exercise 10.15. Prove that C1([a, b]) is complete with the metric that comes
from the norm defined by |F | = max(|F |

max
, |F ′|

max
). Which norm10 makes C2([a, b])

complete? And Ck([a, b]) with k ∈ IN? The intersection of all Ck([a, b]) is denoted
by C∞([a, b]). What goes wrong when you try to define a norm on C∞([a, b])?

9Ignore the red part if you know Theorem 8.6.
10We can replace [a, b] by any interval I but then we lose the maximum norm.
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10.3 A word on notation for later

The formula in Theorem 10.12 is often written as∫
[a,b]

dF = F (x)|b
a

with dF = F ′(x)dx = f(x)dx, (10.6)

and
F (x)|b

a
= [F (x)]

b

a
= F (b)− F (a).

This formal notation with the d of F will be also used in vector calculus with
expressions like dF = f(x, y)dx+ g(x, y)dy and products of terms f(x, y)dx
en g(x, y)dy. The expression f(x)dx is called a 1-form, F = F (x) is called
a 0-form, and thus a 1-form can be the d of a 0-form. The d of a 1-form in
turn will be a 2-form, and u(x, y)dxdy is an example of a two form11, and so
on.

The algebra with forms will be defined later to mimic natural operations
in multivariate integral calculus, and will be based on the formal rules12

dxdy + dydx = 0, ddx = 0, and a Leibniz type rule, see Chapter 27 and
further. We already note that in Theorem 10.12 the expression on the left
can be seen as ∫ b

a

acting on f(x)dx,

and the expression in the right as

|b
a

acting on F (x),

an interaction between “integrals” and differential forms.

10.4 Exercises

Exercise 10.16. Recall that cos and sin are integrable functions satisfying (7.28)
and cos2 + sin2 = 1. Use Theorem 10.10 to prove that cos and sin are differentiable,
and that sin′ = cos, cos′ = − sin.

Exercise 10.17. Let f : IR→ IR be given by

f(x) =

{
0 for x = 0

x2 sin 1
x for x 6= 0

11Usually witten as u(x, y)dx ∧ dy.
12Recall from Definition 7.9 that we think of dx and thus also dy as having a sign.
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Prove that f is differentiable in x = 0. That is: guess the linear approximation of
f(x) near x = 0 and verify the ε-δ statement for the remainder term. Specify δ > 0
for given ε > 0.

Exercise 10.18. Let f : IR→ IR be given by

f(x) =

{
0 for x = 0

x(1 +
√
|x| sin 1

x) for x 6= 0

Prove that f is differentiable in x = 0.
HInt: first guess the linear approximation of f(x) near x = 0.

Exercise 10.19. Let f : IR→ IR be given by

f(x) =

{
0 for x = 0

x(42 + |x|
1
41 sin 1

x43 ) for x 6= 0

Prove that f is differentiable in x = 0.

Exercise 10.20. Let f : IR→ IR be given by

f(x) =

{
1 for x = 1

2
2x+ (2x− 1)2 cos x

2x−1 for x 6= 1
2

Prove that f is differentiable in x = 1
2 .

Hint: what would the value of f ′(1
2) be?

Exercise 10.21. In Exercise 4.42 prove equality in Part (a).

Exercise 10.22. If g : IR → IR is continuous in x = 0 with g(0) = 0, then
f : IR→ IR defined by f(x) = xg(x) is differentiable in x = 0 with f ′(0) = 0. Show
this directly from the definition of differentiability.

Exercise 10.23. Show there exists f : IR → IR discontinuous in every x 6= 0 but
differentiable in x = 0.
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11 The rules for differentiation

In this chapter we formulate and prove the rules of differentiation that you
have been using in calculus. In Chapter 13 these differentiation rules trans-
form into the rules for integration, by means of Theorem 10.12 above, the
fundamental theorem of calculus.

11.1 The sum and product rules

This is https://youtu.be/kOxUBrTVpZg, where I restrict to x0 = 0 and
f(x) = ax + R(x). For real valued functions f and g of the same variable
x we have the sum and product rules We formulate them for real valued
functions of a real variable first1.

Theorem 11.1. Let x0 be an interior point of Df ∩ Dg, f : Df → IR and
g : Dg → IR differentiable in x0. Then f + g and fg are also differentiable
in x0 with the sum rule

(f + g)′(x0) = f ′(x0) + g′(x0)

and the Leibniz product rule

(fg)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0).

Proof. Both proofs are straightforward. Writing expansions with x − x0

instead of h, and the remainder term as R0(x), we expand f(x) as

f(x) = f(x0) + A0(x− x0) +R0(x). (11.1)

Here
A0 = f ′(x0)

if
R0(x) = o(|x− x0|) as x→ x0,

i.e. if

∀ε>0 ∃δ>0 ∀x∈Df 0 < |x− x0| < δ =⇒ |R0(x)| < ε|x− x0|. (11.2)

Note that we still write R0 for the remainder term, but now choose to see it
as a function of x. For g this becomes2

g(x) = g(x0) + B0︸︷︷︸
g′(x0)

(x− x0) + S0(x), S0(x) = o(|x− x0|). (11.3)

1Again the results generalise.
2We use the alphabetic shift convention.
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Adding (11.1) to (11.3) gives

(f + g)(x) = f(x) + g(x) =

f(x0) + g(x0) + A0(x− x0) +B0(x− x0) +R0(x) + S0(x) =

(f + g)(x0) + (A0 +B0)︸ ︷︷ ︸
(f+g)′(x0)

(x− x0) +R0(x) + S0(x)︸ ︷︷ ︸
remainder term

for all x ∈ Df ∩Dg. The remainder term clearly has the same properties as
the individual remainder terms R0(x) and S0(x), warranting the conclusion
that f + g is differentiable in x0 if f and g are, with

(f + g)′(x0) = A0 +B0 = f ′(x0) + g′(x0). (11.4)

Carefully note that the argument sees no difference between Df ∩ Dg ⊂ IR
and Df ∩Dg ⊂ X.

Next consider the product function fg defined by

(fg)(x) = f(x)g(x)

for all x ∈ Df ∩Dg and multiply (11.1) and (11.3) to get

(fg)(x) = f(x)g(x) = (f(x0)+A0(x−x0)+R0(x))(g(x0)+B0(x−x0)+S0(x))

= f(x0)g(x0) + A0(x− x0)g(x0) + f(x0)B0(x− x0)︸ ︷︷ ︸
(fg)′(x0)(x−x0)?

+T0(x). (11.5)

The remainder term T0(x) consists of the 6 other combinations of the 3
terms in (11.1) and (11.3). To conclude that fg is differentiable in x0 you
must check that each of these 6 terms is o(|x− x0|) as x→ x0. Once it has
been shown that

T0(x) = o(|x− x0|) as x→ x0 (11.6)

we read off from (11.5) that

(fg)′(x0) = g(x0)A0 + f(x0)B0 = g(x0)f ′(x0) + f(x0)g′(x0). (11.7)

So do Exercise 11.2 below to complete the proof. �

Exercise 11.2. Prove that (11.6) holds. That is, use

∀ε>0 ∃δ>0 ∀x∈Df 0 < |x− x0| < δ =⇒ |R0(x)| < ε|x− x0|

and the same statement for S0(x) to prove the same statement for each of the above
6 terms in T0(x) with x restricted to Df ∩Dg.
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Remark 11.3. Both arguments see no difference between Df ∩Dg ⊂ IR and
Df ∩ Dg ⊂ X. Note that f(x0) ∈ IR and g(x0) ∈ IR appear as scalars and
are moved to the left in front of the linear map from X to IR in each of the
two terms in (11.7). In Chapter 11.4 we discuss the general case in which
the other IR is also replaced by Y . But then we must distinguish between the
sum and the product rule.

11.2 The chain rule

We now derive the chain rule3, a rule which is in fact easier than (11.7), easier
because it only needs linear algebra. So consider g(f(x)), with f defined on
some domain Df and g defined on some domain Dg. To be specific, we start
with

x0 ∈ Df ,

and assume that
y0 = f(x0) ∈ Dg.

Theorem 11.4. Let x0 be an interior point of the domain of f , assume f
differentiable in x0, let y0 = f(x0) be an interior point of the domain of g,
and assume that g differentiable in y0. Let

g(f(x) = (g ◦ f)(x)

define the composition g ◦ f of g and f . Then x0 is in the interior of the
domain of g ◦ f and g ◦ f is differentiable in x0 with

(g ◦ f)′(x0) = g′(y0)f ′(x0). (11.8)

Proof4. We want to linearise g ◦ f around x0. To do so

g(y) = g(y0) + B0︸︷︷︸
g′(y0)

(y − y0) + S0(y),

has to be combined with

f(x) = f(x0) + A0︸︷︷︸
f ′(x0)

(x− x0) +R0(x).

We assume both remainder terms R0(x) and S0(y) have the property needed
for differentiability of f in x0 and g in y0, namely (11.27) for f ,

∀ε>0 ∃δ>0 0 < |x− x0| < δ =⇒ |R0(x)| < ε|x− x0|,
3In https://youtu.be/c6QqDazAoAs I restrict to x0 = 0 and f(x) = ax+R(x).
4Simplify! Restrict to x0 = 0, y0 = f(0) = 0, g(0) = 0 and drop all subscripts.
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and
∀ε>0 ∃δ>0 0 < |y − y0| < δ =⇒ |S0(y)| < ε|y − y0| (11.9)

for g. In particular these two statements provide us with δ > 0 for which

Bδ(x0) ⊂ Df and Bδ(y0) ⊂ Dg.

Next we verify that the properties of the remainder terms R0(x) and S0(y)
carry over to the remainder term T0(x) in

g(f(x)) = g(y) = g(y0) +B0(f(x)− f(x0)︸ ︷︷ ︸
y−y0

) + S0(y) =

g(y0) +B0A0(x− x0) +B0R0(x) + S0(y)︸ ︷︷ ︸
T0(x)

.

The first term in T0(x) exists for all x ∈ IR and is estimated via

|B0R0(x)| = |B0| |R0(x)|,
and therefore has the desired property that it is o(|x − x0|X ) as x → x0,
simply because R0(x) does. For the second term we pick ε > 0 and then
know that

|S0(y)| < ε|y − y0| if 0 < |y − y0| < δ,

with δ > 0 as in (11.9). What we want is an estimate in terms of a multiple
of ε|x− x0| if 0 < |x− x0| < δ̃ for some other δ̃ > 0 chosen depending on the
positive ε we started with.

If by chance y = y0 then S(y) = 0 and we’re done. If not, then we need

0 < |y − y0| < δ

if we want to conclude via (11.9). We actually have

|y − y0| = |f(x)− f(x0)| = |A0(x− x0) +R0(x)| ≤ |A0| |x− x0|+ |R0(x)|
< (|A0|+ 1) |x− x0| if 0 < |x− x0| < δR,

in which δR > 0 is provided by (10.2) applied with ε = 1. So we indeed
conclude via (11.9) if

0 < |x− x0| <
δ

|A0|+ 1
= δ̃,

which then implies that the second term in T0(x) exists so that x is actually
in the domain of g ◦ f . Moreover the second term is estimated by

|S0(y)| < ε|y − y0| < ε(|A0|+ 1)︸ ︷︷ ︸
ε̃

|x− x0|.

Leaving further cosmetics to the reader this concludes the proof that also the
second term in T0(x) is o(|x− x0|X ) as x→ x0. We have derived and proved
the chain rule. �
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11.3 Differentiability of inverse functions

Consider the functions f and g in Theorem 8.20. We ask about the dif-
ferentiability of g in some y0 = f(x0) with x0 ∈ (a, b) and f differentiable
in x0 with f ′(x0) > 0. The positive answer to this question is that g is
differentiable in y0 and that

f ′(x0)g′(y0) = 1, (11.10)

a statement which is symmetric in f and g.

Proof of (11.10). To establish the positive answer we first make our lifes
easy by noting that without loss of generality we may assume that 0 = x0 =
y0 = 0 = f(0), and that f ′(x0) = 1. This means that

f(x) = x+ o(x) as x→ 0, (11.11)

i.e.
∀ε>0 ∃δ>0 0 < |x| < δ =⇒ |f(x)− x| < ε|x|. (11.12)

The inequality for |f(x)− x| means that

(1− ε)x < y < (1 + ε)x if 0 < x < δ and y = f(x), (11.13)

and the other way around for −δ < x < 0. We want to replace this statement
by an equivalent statement which is symmetric in x and y, and thereby also
equivalent to

g(y) = y + o(y) as y → 0. (11.14)

How do we get the equivalent symmetric statement? Clearly the condition
y = f(x) already is symmetric because

y = f(x) ⇐⇒ x = g(y),

but the inequalities with x and y are not. Note though that

(1− ε)x < y < (1 + ε)x =⇒ (1− ε)x < y <
1

1− ε
x

if x > 0 and 0 < ε < 1. In other words (11.12) implies that

∀ε∈(0,1) ∃δ>0
0 < x < δ

y = f(x)
=⇒ (1− ε)x < y <

1

1− ε
x, (11.15)

and likewise5 for −δ < x < 0.

5With the same δ given 0 < ε < 1, and with reversed inequalities for y.
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Next observe that (11.15) and its version for x < 0 in turn imply

∀ε∈(0,1) ∃δ>0 0 < |x| < δ =⇒ |f(x)− x| < ε

1− ε
|x|, (11.16)

since
1

1− ε
= 1 +

ε

1− ε
.

But (11.16) and (11.12) are equivalent, by setting

ε̃ =
ε

1− ε
,

and thus (11.15) and its version for x < 0 make up for an equivalent definition
of (11.11): we have

∀ε∈(0,1) ∃δ>0 : Gδ = {(x, y) ∈ IR2 : 0 < |x| < δ, y = f(x)} ⊂ Sε, (11.17)

in which

Sε = {(x, y) 6= (0, 0) :
1

1− ε
<
y

x
< 1− ε} (11.18)

is clearly symmetric in x and y. Now choose δ̃ > 0 such that, for the same
ε ∈ (0, 1), it holds that

Fδ̃ = {(x, y) ∈ IR2 : 0 < |y| < δ̃, x = g(y)} ⊂ Sε.

How? Draw a picture to see that

δ̃ = (1− ε)δ

does the job. This completes the proof. �

Exercise 11.5. In view of Section 11.3 and Theorem 8.20 the function ln has an
inverse function f : IR → IR+. Show that f(0) = 1 and that f ′(y) = f(y) for all
y ∈ IR. Look at Theorem 9.13 and explain why f = exp.

Exercise 11.6. Show again that exp(x+ y) = exp(x) exp(y) for all x, y ∈ IR, and
that with e = exp(1) defined by

ln e =

∫ e

1

1

x
dx = 1,

it follows that
exp(

p

q
) = e

p
q = q
√
ep

for all p ∈ IZ and all q ∈ IN. By general agreement we define ex = exp(x) for all other
x ∈ IR as well.
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Likewise for xα with x > 0. Via

xn = (elnx)n = en lnx

for n ∈ IN, but also with n ∈ IN replaced by r = p
q
∈ IQ and finally by general

agreement:
xα = eα lnx for x > 0 and α ∈ IR. (11.19)

Exercise 11.7. Show that

x→ sinx

cosx
= tanx

is strictly increasing on (−π
2 ,

π
2 ) and has an inverse function

y → arctan y

on IR with derivative
1

1 + y2
.

Show that

arctan y = y − 1

3
y3 +

1

5
y5 − · · ·

for |y| < 1.

Exercise 11.8. Show that
x→ sinx

is strictly increasing on (−π
2 ,

π
2 ) and has an inverse function

y → arcsin y

on (−1, 1) with derivative
1√

1− y2
.

Derive a power series expression for arcsin y for |y| < 1.

Exercise 11.9. On (0, π) consider

x→ cosx.

Show for the inverse that arccos y+ arcsin y is constant on (−1, 1). Which constant?
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Exercise 11.10. Solve the differential equation in Exercise 9.17 via

f ′α(x)

fα(x)
=

α

1 + x

and integration from 1 to x. Prove that

(1 + x)α = 1 +αx+
α(α− 1)

2
x2 +

α(α− 1)(α− 2)

3 · 2
x3 + · · · =

∞∑
k=0

(
α

k

)
xk (11.20)

for all x ∈ IR with |x| < 1.

Exercise 11.11. Take α = 1
2 and square the series in (11.20). Prove that( ∞∑
k=0

(1
2

k

)
xk

)2

= 1 + x,

for all x ∈ IR with |x| < 1. To some extent this was perhaps known to the Babylonians.

Exercise 11.12. Write out the first few terms of

n
√

1 + x = 1 +
x

n
+ · · · and

1
n
√

1 + x
= 1− x

n
+ · · ·

11.4 Differentiation in normed spaces

In fact we may just as well speak about Df ⊂ X, X a normed space6, x0 in
the interior of Df , f : Df → IR,

f(x0 + h) = f(x0) + φ0(h) +R0(h),

in which φ0 : X → IR is linear and Lipschitz7 continuous8. The ε-δ statement
(10.2) then becomes

∀ε>0 ∃δ>0 ∀h∈X : 0 < |h|
X
< δ =⇒ |R(h)| < ε|h|.

6In https://youtu.be/SmwYBRxNgyI I restrict to x0 = 0 and f(x) = ax+R(x).
7If φ : X → IR is linear an continuous in 0 then it is Lipschitz continuous.
8In order to have f differentiable in x0 imply that f is continuous in x0, explain!
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It implies that such φ0, if it exists, is unique, with φ0(h) = A0h in the special
case under consideration in Definition 10.1.

If you understand what’s going on you see that everything also works for
maps Φ from DΦ ⊂ X to Y , X and Y normed spaces. We shall write

Φ(x0 + h) = Φ(x0) + A0h+R0(h),

in which we write A0h instead9 of A0(h) for A0 : X → Y linear and Lips-
chitz10 continuous. Definition 10.1 and Theorem 10.2 are just special cases
of the following definition and theorem.

Definition 11.13. Let X, Y be real normed spaces, DΦ ⊂ X, Φ : DΦ → Y ,
x0 an interior point of DΦ and let A0 : X → Y be Lipschitz continuous.
Then

Φ(x0 + h) = Φ(x0) + A0h+R0(h) (11.21)

defines a remainder term R0(h) for h ∈ X with |h|
X
< δ0 for some δ0 > 0.

It may happen that for every ε > 0 a δ > 0 can be chosen such that

|R0(h)|
Y
< ε|h|

X
if 0 < |h|

X
< δ. (11.22)

If so then the map Φ is called differentiable in x0.

Theorem 11.14. Let X, Y be real normed spaces, DΦ ⊂ X, Φ : DΦ → Y , x0

an interior point of DΦ, and suppose that f is differentiable in x0. Then there
is precisely one linear Lipschitz continuous map A0 : X → Y for which the
statement in Definition 11.13 holds, and Φ′(x0) = A0 is called the derivative
of Φ in x0.

Remark 11.15. The space of all Lipschitz continuous linear maps A from
X to Y that qualify to be used in Definition 11.13 is denoted by L(X, Y ).
We shall write

|A|
L(X,Y )

(11.23)

for the best (smallest) Lipschitz constant of such an A. It is commonly called
the (operator) norm of A.

Theorem 11.16. Let x, y ∈ X, X a normed space, O ⊂ X open,

[x, y] = {ξ(t) = (1− t)x+ ty; 0 ≤ t ≤ 1} ⊂ O,

and f : O → IR differentiable. Then there exists

ξ ∈ (x, y) = {(1− t)x+ ty; 0 < t < 1}

such that
f(y)− f(x) = f ′(ξ)(y − x).

9Another standard notation is 〈A0, h〉, see (17.59).
10Again: if A0 : X → Y is linear an continuous in 0 then it is Lipschitz continuous.
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Exercise 11.17. Give a direct proof that11

t→ f(ξ(t)) (11.24)

is differentiable on [0, 1]. Then use Theorem 10.7 to prove Theorem 11.16. Can the
assumption [x, y] ⊂ O be weakened?

The argument in Theorem 11.1 for the sum function immediately generalises
to Φ : DΦ → Y and Ψ : DΨ → Y as in Definition 11.13 and Theorem 11.14.
For the general Leibniz rule we suppose Φ and Ψ map to a normed algebra
Y and are as in Definition 11.13 and Theorem 11.14. If the multiplication is
commutative we have

A0(x− x0)︸ ︷︷ ︸
in Y

Ψ(x0)︸ ︷︷ ︸
in Y

= Ψ(x0)A0︸ ︷︷ ︸
in L(X,Y )

(x− x0) ∈ Y

and (11.7) remains unaltered. Only the notation changes when we write

(ΦΨ)′(x0) = Ψ(x0)A0 + Φ(x0)B0 = Ψ(x0)Φ′(x0) + Φ(x0)Ψ′(x0). (11.25)

If multiplication in Y is not commutative we have that

((ΦΨ)′(x0))(h) = (Φ′(x0)(h))Ψ(x0) + Φ(x0)(Ψ′(x0)(h)) (11.26)

defines (ΦΨ)′(x0). It is Lipschitz continuous because, using |yz|
Y
≤ |y|

Y
|z|

Y

and recalling (11.23), we have

|(ΦΨ)′(x0)(h)|
Y
≤ |(Φ′(x0)(h))Ψ(x0)|

Y
+ |Φ(x0)(Ψ′(x0)(h))|

Y

≤ |Φ′(x0)(h)|
Y
|Ψ(x0)|

Y
+ |Φ(x0)|

Y
|(Ψ′(x0)(h))|

Y

≤ |Φ′(x0)|L(X,Y ) |h|X |Ψ(x0)|
Y

+ |Φ(x0)|
Y
|Ψ′(x0)|L(X,Y ) |h|X ,

whence

|(ΦΨ)′(x0)|
L(X,Y )

≤ |Φ′(x0)|L(X,Y ) |Ψ(x0)|
Y

+ |Φ(x0)|
Y
|Ψ′(x0)|L(X,Y ).

Next we look at the remainder term T0(x), which is the sum of

Φ(x0)S0(x) +R0(x)Ψ(x0),

A0(x− x0)B0(x− x0),

A0(x− x0)S0(x) +R0(x)B0(x− x0),

and
R0(x)S0(x).

11You really don’t need the general chain rule in Theorem 11.4 to do so.
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Exercise 11.18. Prove in the general setting of normed spaces X and Y that (11.6)
holds. That is, use

∀ε>0 ∃δ>0 ∀x∈X 0 < |x− x0|X < δ =⇒ |R0(x)|Y < ε|x− x0|X (11.27)

and the same statement for S0(x) to prove the same statement for each of the above
6 terms in T0(x).

Exercise 11.19. The functions defined by

(x, y)→ x+ y and (x, y)→ xy

are differentiable from IR2 to IR. Why?

Remark 11.20. Exercise 11.19 should lead you to reflect on the observation
that the (general) chain rule below does in fact imply the sum and product
rules in Section 11.1.

We conclude this section with the observation that there is no difference
between the arguments in the proof of Theorem 11.4 above for

Df ⊂ IR, f : Df → IR, Dg ⊂ IR, g : Dg → IR,

and the arguments for

DΦ ⊂ X, Φ : DΦ → Y, DΨ ⊂ Y, Ψ : Dg → Z,

x
Ψ◦Φ−−→ Ψ(Φ(x))

in Theorem 11.21 below. To linearise this map around x0 we combine

Ψ(y) = Ψ(y0) +B0(y − y0) + S0(y), B0 = Ψ′(y0)

with
Φ(x) = Φ(x0) + A0(x− x0) +R0(x), A0 = Φ′(y0).

We assume both remainder terms R0(x) and S0(y) have the property needed
for differentiability of Φ in x0 and Ψ in y0, namely (11.27) for Φ,

∀ε>0 ∃δ>0 0 < |x− x0|X < δ =⇒ |R0(x)|
Y
< ε|x− x0|X ,

and

∀ε>0 ∃δ>0 0 < |y − y0|Y < δ =⇒ |S0(y)|
Z
< ε|y − y0|Y (11.28)
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for Ψ. Again these two statements provide us with δ > 0 for which

Bδ(x0) = {x ∈ X : |x− x0|X < δ} ⊂ DΦ

and
Bδ(y0) = {y ∈ Y : |y − y0|Y < δ} ⊂ DΨ

hold. Writing

Ψ(Φ(x)) = Ψ(y) = Ψ(y0) +B0(Φ(x)− Φ(x0)︸ ︷︷ ︸
y−y0

) + S0(y) =

Ψ(y0) +B0A0(x− x0) +B0R0(x) + S0(y)︸ ︷︷ ︸
T0(x)

,

in which the second term features the derivative of the composition. We note
that the first term in T0(x) is now estimated via an inequality

|B0R0(x)|
Z
≤ |B0|L(Y,Z)

|R0(x)|
Y
.

The rest of the proof is copy-paste from the proof for X = Y = Z = IR, with
f and g replaced by Φ and Ψ, and the appropiate subscripts on the norms.
We paste only the inequalities. They read

|S0(y)|
Z
< ε|y − y0|Y if 0 < |y − y0|Y < δ,

|y − y0|Y = |Φ(x)− Φ(x0)|
Y

= |A0(x− x0) +R0(x)|
Y

≤ |A0|L(X,Y )
|x− x0|X + |R0(x)|

Y

< (|A0|L(X,Y )
+ 1) |x− x0|X if 0 < |x− x0|X < δR,

0 < |x− x0|X <
δ

|A0|L(X,Y )
+ 1

= δ̃

|S0(y)|
Z
< ε|y − y0|Y < ε(|A0|L(X,Y )

+ 1)︸ ︷︷ ︸
ε̃

|x− x0|X .

The general chain rule is now given by the following theorem.

Theorem 11.21. Let x0 be an interior point of the domain of Φ, assume
Φ differentiable in x0, let y0 = Φ(x0) be an interior point of the domain of
Ψ, and assume that Ψ differentiable in y0. Then x0 is in the interior of the
domain of Ψ ◦ Φ and Ψ ◦ Φ is differentiable in x0 with

(Ψ ◦ Φ)′(x0) = Ψ′(y0)Φ′(x0). (11.29)
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11.5 Exercises

Exercise 11.22. Derive and prove the differentiation rules for fg and g
f if f and

g are real valued functions from Exercise 11.19 and Theorem 11.4. Hint: use also
y → 1

y .

Exercise 11.23. Let f : IR→ IR be defined by f(0) = 0 and

f(x) = x2 sin
1

x2
for x 6= 0.

Show that f is differentiable in every x ∈ IR. Is f Lipschitz continuous on [0, 1]?
Hint: is f ′(x) bounded on [0, 1]?

Exercise 11.24. Let f : IR→ IR be defined by f(0) = 0 and

f(x) = x sin
1

x

for x 6= 0. Is f is differentiable? Is f Lipschitz continuous?

Exercise 11.25. Prove that the function exp defined as the unique integrable
solution f = exp of (7.23) is differentiable in the sense of Definition 10.1. Verify that
the value f ′(x0) of the derivative in Theorem 10.2 is f(x0), to conclude that f ′ = f .

Hint: use exp is continuous12.

Exercise 11.26. Define f : IR→ IR by f(0) = 0 and

f(x) = exp(− 1

x2
)

for x 6= 0. Sketch the graph of f . Show that f is differentiable on the whole of IR, and
that f ′(0) = 0. Then show that the same is true for f ′, namely (f ′)′(x) = f ′′(x) exists
for all x ∈ IR and f ′′(0) = 0. And so on for f ′′′, f ′′′′ and all higher order derivatives.
We say that f belongs to C∞(IR).

12Exercise 8.26.
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11.6 Exam May 29, 2020

Problem 1. Let F : IR→ IR be defined by

F (x) =
x

1 + x

for all x 6= −1 and F (−1) = 1. This F can next earn you

a + b + c + d = 1 + 2 + 3 + 3 = 9 points.

a) Sketch the graph of F . Make sure you got it right for x ≥ 0. Which
interval is {F (x) : x ≥ 0}?

b) Factorise F (x) − F (y) and prove that F is Lipschitz continuous on
[0,∞) with Lipschitz constant 1.

Consider the integral equation

f(x) = 1+

∫ x

0

f(s)

(1 + s)2(1 + f(s))
ds posed for all x ∈ [0, 1] (11.30)

and denote the right hand side of (11.30) by (Φ(f))(x). This defines a
map Φ : A→ A, where

A = {f ∈ C([0, 1]) : f(x) ≥ 0 for all x ∈ [0, 1]}

is the subset of nonnegative functions in C([0, 1]).

c) Prove that Φ is a contraction. Hint: use b), in your estimates you may
use that ∫ 1

0

1

(1 + s)2
ds <

∫ ∞
0

1

(1 + s)2
ds = 1.

d) Explain why it follows that (11.30) has a unique positive solution f .

Answers NB This is the exercise in which you had to apply Theorem 5.14
to (a closed subset of) a complete metric space (of continuous functions) to
solve an integral equation.

a) Near x = 0 the graph looks like y = x, for |x| large like y = 1, and
{F (x) : x ≥ 0} = [0, 1).
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b) For x, y ≥ 0 we have

F (x)−F (y) =
x

1 + x
− y

1 + y
=
x(1 + y)− (1 + x)y

(1 + x)(1 + y)
=

x− y
(1 + x)(1 + y)

,

with denominator ≥ 1 for x, y ≥ 0, so |F (x)− F (y)| ≤ |x− y|.

c) Let f ∈ A. Then

(Φ(f))(x) = 1 +

∫ x

0

f(s)

(1 + s)2(1 + f(s))
ds

exists for every x ∈ [0, 1] as one plus the nonnegative integral of a
continuous nonnegative function.

As a function of x the new function Φ(f) : [0, 1]→ [1,∞) is continuous
because

∫ x
0
φ is (Lipschitz) continuous in x for every integrable φ :

[0, 1]→ IR. Thus Φ maps A to A.

To see if Φ is a contraction let f, g ∈ A and write

(Φ(f)− Φ(g))(x) = (Φ(f))(x)− (Φ(g))(x) =

1 +

∫ x

0

f(s)

(1 + s)2(1 + f(s))
ds− 1−

∫ x

0

g(s)

(1 + s)2(1 + g(s))
ds =∫ x

0

1

(1 + s)2

(
f(s)

1 + f(s)
− g(s)

1 + g(s)

)
︸ ︷︷ ︸

F (f(s))−F (g(s))

ds.

Using b) we estimate

|(Φ(f)− Φ(g))(x)| ≤
∫ x

0

1

(1 + s)2
|F (f(s))− F (g(s))| ds

≤
∫ x

0

1

(1 + s)2
|f(s)− g(s)| ds ≤

∫ x

0

1

(1 + s)2
ds ||f − g||max

≤
∫ 1

0

1

(1 + s)2
ds ||f − g||max

for all x ∈ [0, 1], so

||Φ(f)− Φ(g)||max ≤
∫ 1

0

1

(1 + s)2
ds︸ ︷︷ ︸

= 1
2

||f − g||max.

This holds for all f, g in A, so indeed Φ : A→ A is a contraction, with
contraction factor 1

2
.
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d) By definition of Φ the nonnegative solutions of (11.30) are precisely the
fixed points of Φ : A→ A.

The set A is closed in C([0, 1]), C([0, 1]) is complete with metric defined
by d(f, g) = ||f − g||max, and Φ : A→ A is a contraction.

So Φ has a unique fixed point in A, and thereby there exists a unique
solution in A.

Problem 2. Let F be the function defined in Problem 1. This same F can
next earn you another

a + b + c = 2 + 3 + 3 = 8 points

a) Prove that F is discontinuous in x = −1.

b) Let IR+ = {x ∈ IR : x > 0}. For every n ∈ IN we define fn : IR+ → IR+

by

fn(x) =
nx

1 + nx
for all x ∈ IR+.

Prove that fn(x)→ 1 as n→∞ for every x ∈ IR+.

c) Prove that the convergence in b) is uniform on [1,∞).
Hint: estimate |fn(x)− 1| for all x ∈ [1,∞) simultaneously.

Answers NB This is the exercise in which you had to use epsilon arguments.

a) For x 6= −1 we have

F (x)− F (−1) =
x

1 + x
− 1 = − 1

1 + x

which has a denominator that is small for x close to −1, while for
continuity of F on −1 it should be smaller than ε on an ε-dependent
interval around −1. That’s not going to work. For instance, we have

|x+ 1| < 1

2
=⇒ 1

|x+ 1|
> 2.

It follows that the epsilon-delta statement for continuity in x = −1 fails
with ε = 2, because for every δ > 0 we can choose x with |x−−1| < δ as
well as |x−−1| < 1

2
, and for such x the inequality |F (x)−F (−1)| < 2

fails.
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b) Fix x > 0. The limit 1 is given, so let ε > 0. We have to prove the
existence of an N ∈ IN such that

|fn(x)− 1| = | nx

1 + nx
− 1| = 1

1 + nx
< ε︸ ︷︷ ︸

needed for convergence

for all n ≥ N . The first reasoning I discussed was to rewrite the
inequality needed for convergence. It is equivalent to

1 + nx >
1

ε
⇐⇒ n >

1− ε
εx

,

and once this holds for some n = N then it also holds for all n ≥ N .
If ε ≥ 1 this always holds, and we can take N = 1. For ε < 1

1− ε
εx

is a positive real number, so call on Archimedes to choose N ∈ IN such
that

N >
1− ε
εx

.

Then

n ≥ N >
1− ε
εx

and thereby |fn(x)− 1| < ε

for all n ≥ N . This completes the proof the way I did the first exam-
ples in the course (Exercise 2.32). But quicker is what we did in the
tutorials. First do a convenient simplifying estimate

|fn(x)− 1| = | nx

1 + nx
− 1| = 1

1 + nx
<

1

nx
< ε,

and then take

N >
1

εx
.

c) The above choices of N rely on x. Depending on the set A on which we
consider the convergence, there may be a worst but still OK case for
this choice of N . For A = [1,∞) we see that this worst case is x = 1.
For all x ≥ 1 we now choose this worst case N .

N >
1− ε
εx

as in b) for all x ≥ 1 simultaneously, by choosing

N >
1− ε
ε

.
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Then we see we’re still OK:

n ≥ N

x ≥ 1
=⇒ n ≥ N ≥ 1− ε

ε
≥ 1− ε

εx
,

whence

n >
1− ε
εx

,

equivalent to the desired inequality |fn(x) − 1| < ε as before. This
completes the proof that the convergence is uniform on A = [1,∞).
Here too we might have taken the quicker approach choosing N > 1

ε
,

as in b).

d) Not asked: Can the convergence of fn(x) to 1 be uniform on IR+ ? To
disprove this statement you have to exhibit a sequence xn ∈ IR+ such
that |xn − 1| ≥ ε for all n.

Problem 3. Consider the differential equation f ′′(x) = f(x).

a) Use a power series solution of the form

a0 + a2x
2 + a4x

4 + a6x
6 + a8x

8 + · · ·

to find an even solution with f(0) = 1. You may guess the expression
for a2n from your calculations.

b) The power series that you (should) have found converges for all x ∈ IR.
You don’t need your answer to a) to continue. The derivative of f is
an odd solution denoted by g. Explain in detail why

(f(x))2 − (g(x))2

is constant. Which constant?

a + b = 2 + 4 = 6 points

Answers

a) Write
f(x) = a0 + a2x

2 + a4x
4 + a6x

6 + a8x
8 + · · · ,

f ′(x) = 2a2x+ 4a4x
3 + 6a6x

5 + 8a8x
7 + · · · ,

f ′′(x) = 2a2 + 3 · 4a4x
2 + 5 · 6a6x

4 + 7 · 8a8x
6 + · · · .
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Use f(0) = 1 conclude a0 = 1 and then f ′′(x) = f(x) to choose
a2, a4, . . . with

2a2 = a0 = 1, 3 · 4a4 = a2, 5 · 6a6 = a4, . . . ,

whence

a2 =
1

2
, a4 =

1

4 · 3 · 2
, a6 =

1

6 · 5 · 4 · 3 · 2
,

and recognise the general expression a2n = 1
(2n)!

, consistent also with
a0 and a2.

b) It’s given that the power series are valid for all x. Define g = f ′. Then
g′ = f ′′ = f so by the chain rule the derivative of f 2 − g2 is equal to
2ff ′ − 2gg′ = 2fg − 2gf = 0 on the whole of IR. The mean value
theorem now implies that f(a)2−g(a)2 = f(b)2−g(b)2 for all a, b ∈ IR,
and thus that

f(x)2 − g(x)2 = f(0)2 − g(0)2 = 1 for all x ∈ IR.

Problem 4. Let f : IR→ IR be defined by

f(x) = x(1 + x).

This f can next earn you

a + b + c + d + e = 3 + 1 + 3 + 3 + 5 = 15 points

a) The linear approximation of f(x) near x = 0 is given by x. Verify the
epsilon-delta statement for the remainder term that implies that f is
differentiable in x = 0 with f ′(0) = 1.

b) Now consider for y ∈ IR the equation

f(x) = x(1 + x) = y (11.31)

and the modified Newton scheme xn = xn−1 + f ′(0)−1(y − f(xn−1)) to
solve f(x) = y. Verify that

xn = y − x2
n−1. (11.32)
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c) Starting from x0 = 0 the scheme (11.32) defines a sequence xn that
depends on y, and thereby a sequence of functions gn by defining
gn(y) = xn. So g0(y) = 0 and g1(y) = y. Evaluate g2(y) and g3(y).

Next it’s about finding an (inverse) function g as the uniform limit
of the sequence gn.

d) Following the notation in (3.1) in Chapter 3 and avoiding the Greek
letter ξ we write sn = xn−xn−1, with s for step. Now suppose that for
some n ∈ IN it holds that

|xn−1| ≤
1

4
and |xn| ≤

1

4
.

Use (11.32) to prove that then

|sn+1| ≤
1

2
|sn| . (11.33)

This allows to continue the story-line in Chapter 3 for all y ∈ [−1
8
, 1

8
]

simultaneously.

e) Use d) to show that gn is a uniform Cauchy sequence in C([−1
8
, 1

8
]), see

Definition 4.2.
Hint: recall that xn = gn(y) and show first that

|y| ≤ 1

8
=⇒ |xn| ≤ 2 |y| ≤ 1

4
for all n ∈ IN.

Answers NB This is the exercise in which you had to apply the definitions
and techniques that were introduced in Chapter 3 to prove Theorem 5.14 to
an example with a parameter, and choose the final N independent of this
parameter. Considering the iterates as a function of this parameter, this is
about uniform convergence then.

a) Since
f(x) = f(0) + 1 x+R(x), R(x) = x2,

we see that |R(x)| = |x|2 = |x| |x| < ε|x| if 0 < |x| < ε. It follows that
for all ε > 0 there exists δ > 0, namely δ = ε, such that 0 < |x| < δ = ε
implies |R(x)| < ε|x|. Thus f is differentiable in x = 0 with f ′(0) = 1.
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b) The scheme is of the form xn = F (xn) with F (x) = x+f ′(0)−1(y−f(x)).
For the given f this gives F (x) = x+1−1(y−x(1+x)) = x+y−x−x2 =
y − x2, so xn = y − x2

n−1.

c) With x1 = g1(y) = y we have g2(y) = x2 = y − y2 and then g3(y) =
x2 = y − (y − y2)2.

d) We have

sn+1 = xn+1−xn = y−x2
n−y+x2

n−1 = −(xn+xn−1)(xn−xn−1) = (xn+xn−1)sn,

and thereby

|sn+1| ≤ |xn + xn−1| |sn| ≤ (|xn|+ |xn−1|) |sn| ≤ (
1

4
+

1

4
)|sn| =

1

2
|sn|.

Note that just like xn the sn are y-dependent.

e) We have to get |xm − xn| = |gm(y) − gn(y)| < ε for all y with |y| ≤ 1
8

simultaneously, provided m > n ≥ N , N ∈ IN to be found. Following
the hint we start from

|x1| = |s1| = |y| ≤ 2|y| ≤ 2

8
=

1

4

to get

|x2| ≤ |x1|+ |s2| ≤ |s1|+
1

2
|s1| = (1 +

1

2
)|s1| ≤ 2|y| ≤ 1

4
,

whence

|x3| ≤ |x2|+ |s3| ≤ (1 +
1

2
)|s1|+

1

2
|s2| ≤ (1 +

1

2
+

1

4
)|s1| ≤ 2|y| ≤ 1

4
.

In the next step we have

|x4| ≤ |x3|+|s4| ≤ (1+
1

2
+

1

4
)|s1|+|s4| ≤ (1+

1

2
+

1

4
+

1

8
)|s1| ≤ 2|y| ≤ 1

4
,

because |s4| ≤ 1
2
|s3| ≤ 1

4
|s2| ≤ 1

8
|s1|.

And so on. We conclude that all |xn| = |gn(y)| are bounded by 1
4
,

whence

|sn+1| ≤
1

2n
|s1| =

1

2n
|y| ≤ 1

2n+3
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for all y with |y| ≤ 1
8
. But then we have for all such y and m > n ≥ N

that

|gm(y)−gn(y)| = |xm−xn| ≤ |sn+1|+· · ·+|sm| ≤ |sn+1| (1 +
1

2
+

1

4
+ · · · )︸ ︷︷ ︸

finitely many terms

≤ 2|sn+1| ≤
1

2n+2
≤ 1

2N+2
.

Choosing N so large that 2N+2 > 1
ε

the proof that gn is uniformly
Cauchy on the y-interval [−1

8
, 1

8
] is now complete.

11.7 An earlier version of Exercise 4

This relates to the first page of Chapter 14. Inverse functions, an example
to explain theorem, method and proof.

Problem 5. Let f : IR→ IR be defined by

f(x) = x(1 + x).

a) Explain why the linear approximation of f(x) near x = 0 is given by x.
Verify the epsilon-delta statement for the remainder term that implies
that f is indeed differentiable in x = 0 with f ′(0) = 1.

b) Now consider for y ∈ IR the equation

f(x) = x(1 + x) = y (11.34)

and the modified Newton scheme xn = xn−1 +f ′(0)−1(y−f(x)) to solve
f(x) = y. Verify that

xn = y − x2
n−1. (11.35)

c) Starting from x0 = 0 the scheme (11.35) defines a sequence xn that
depends on y, and thereby a sequence of functions gn by writing xn =
gn(y). So g0(y) = 0 and g1(y) = y.

Evaluate g2(y) and g3(y). Sketch the graph x = g2(y) in the x, y-plane.

d) Use induction (domino principle) to prove that

gn(y) = y +Rn(y)

with Rn(y) a polynomial of degree 2n−1. Hint: verify that

Rn(y) = −y2 − · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·︸ ︷︷ ︸
terms with exponents between 2 and 2n−1

−y2n−1

.
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e) Use d) to explain why g′n(0) = 1 for all n ∈ IN.

f) Following the notation in (3.1) in Chapter 3 and avoiding the Greek
letter ξ we write sn = xn−xn−1, with s for step. Suppose that for some
n ∈ IN it holds that

|xn−1| ≤
1

4
and |xn| ≤

1

4
.

Use (11.35) to prove that then

|sn+1| ≤
1

2
|sn| . (11.36)

This allows to continue the story-line in Chapter 3 for a whole range
of y simultaneously next.

g) Use f) to show that gn is a uniform Cauchy sequence in C([−1
8
, 1

8
]), see

Definition 4.2.
Hint: recall that xn = gn(y) and show that

|y| ≤ 1

8
=⇒ |xn| < 2 |y| ≤ 1

2
for all n ∈ IN.

h) (continued) Which theorem now says that the limit of gn(y) defines a
function g ∈ C([−1

8
, 1

8
])?

i) Consider the scheme in (11.35) starting from x0 = 0 for two different
values of y, say y and ỹ, both in [−1

8
, 1

8
]. Write xn = gn(y), x̃n = gn(ỹ)

and let dn = |xn − x̃n| = |gn(y)− gn(ỹ)|. Show that

dn ≤ |y − ỹ|+
1

2
dn−1 for all n ∈ IN,

and use this to show that all gn and g are Lipschitz continuous on
[−1

8
, 1

8
] with Lipschitz constant 2.

j) Let g be the function obtained in h). Then f(g(y)) = y for all y ∈
[−1

8
, 1

8
]. Substitute x = g(y) in (11.34) and re-arrange to prove that g

is differentiable in y = 0 with g′(0) = 1.
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12 Newton’s method revisited

For the analysis of Newton’s method we need the mean value theorem in
integral form.

Exercise 12.1. Theorem 10.12 can be formulated for F : [a, b]→ IR continuously
differentiable, i.e. F : [a, b]→ IR is differentiable and x→ F ′(x) defines a continuous
function on [a, b]. Rewrite

F (b)− F (a) =

∫ b

a
F ′(x) dx

via the substitution
x = (1− t)a+ tb = a+ t(b− a)

as

F (b)−F (a) =

∫ 1

0
F ′((1−t)a+tb)(b−a) dt =

∫ 1

0
F ′((1−t)a+tb) dt (b−a), (12.1)

and prove the result directly from the definitions, without using the rule dx = (b−a)dt.

We note that if x → F ′(x) is Lipschitz continuous is on [a, b], the first
integral in (12.1) with b = x rewrites as∫ 1

0

F ′(a)(x− a) dt+

∫ 1

0

(F ′((1− t)a+ tx)− F ′(a))(x− a) dt,

so
F (x) = F (a) + F ′(a)(x− a) +R(x; a) (12.2)

with1

R(x; a) = Ra(x) =

∫ 1

0

(F ′((1− t)a+ tx)− F ′(a))(x− a) dt.

If the Lipschitz constant of x→ F ′(x) is L then

|R(x; a)| ≤
∫ 1

0

Lt|x− a|2 dt =
L

2
|x− a|2. (12.3)

In (12.2) we have a linear approximation with a remainder term estimated
in (12.3) by a constant times |x− a|2. We say that

R(x; a) = O(|x− a|2)

is big O of |x− a| squared as x→ a. This is just like what we had for power
series with (9.10). Note that O(|x− a|2) implies o(|x− a|) but in general it
is not true that o(|x− a|) implies O(|x− a|2).

1We change from subscript a on R(x) to R(x; a).
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12.1 The generalised mean value formula

https://www.youtube.com/playlist?list=PLQgy2W8pIli9jyuYN76HM3YdXjwBZrx8L

Theorem 12.2. Let X be complete metric vector space. For f : [a, b] → X
continuous let the function F : [a, b]→ X be defined2 by

F (x) =

∫ x

a

f(s) ds.

Then F is differentiable in every x0 ∈ [a, b] with F ′(x0) = f(x0).

As before Theorem 12.2 says that F is a primitive of f , and that for this
primitive ∫ b

a

f(s) ds = F (b)− F (a), (12.4)

because F (a) = 0. If F̃ is another primitive of f then

G = F − F̃ : [a, b]→ X

is differentiable with G′(x) = 0 for all x ∈ [a, b].

Exercise 12.3. Show that for every linear Lipschitz continuous functions ψ : X →
IR the real valued function

x
g−→ ψ(G(x))

is differentiable on [a, b] with g′(x) for every x ∈ [a, b] defined by

h
g′(x)−−−→ ψ(G(x))G′(x)h = 0

for h ∈ IR. So g(b) = g(a) by Theorem 10.7.

We conclude that ψ(G(b))− ψ(G(a)) = 0 for every Lipschitz continuous
linear function ψ : X → IR. For y = G(b)−G(a) it thus holds that ψ(y) = 0
for every linear Lipschitz continuous functions ψ : X → IR. If this implies
that y = 0 it follows that F (b) − F (a) = F̃ (b) − F̃ (a). This completes the
proof of the following theorem, in which F̃ is called F .

Theorem 12.4. Let X be a complete metric vector space with the property3

that ψ(y) = 0 for every Lipschitz continuous linear function ψ : X → IR

2See Theorem 8.15.
3Zorn’s Lemma implies that this property holds.
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implies that y = 0. If f : [a, b] → X is continuous and F : [a, b] → X is a
primitive4 of f , then∫ b

a

f(s) ds = F (b)− F (a) =

∫ 1

0

F ′((1− t)a+ tb) dt (b− a).

Such a primitive exists in view of Theorem 12.2.

Summing up, the mean value integral formula (12.1) also holds for X-
valued functions and integrals. Only for IR-valued functions the integral can
be seen as lying between the minimum and the maximum of the integrand,
and is therefore equal to some value F ′(ξ) with ξ ∈ [a, b], a slightly weaker
statement than in Theorem 10.7, under a much stronger assumption than
Theorem 10.7, exclusively for IR-valued functions.

For continuously differentiable F : O → Y , Y a complete metric vector
space, O, x, y as in Theorem 11.16, we apply Theorem 12.4 with a = 0 and
b = 1 to the function defined by (11.24), and conclude that

F (y)− F (x) =

∫ 1

0

F ′((1− t)x+ ty)(y − x) dt, (12.5)

as a Y -valued integral, which we can write as

F (y)− F (x) =

∫ 1

0

F ′((1− t)x+ ty) dt(y − x), (12.6)

an operator-valued integral acting on y − x ∈ X. This version of the mean
value theorem will be used in the proof of Theorem 14.4.

12.2 Convergence of Newton’s method

https://www.youtube.com/playlist?list=PLQgy2W8pIli-xh3hDqLh7u_npItPP2RCF

For r > 0 let f : IR→ IR be differentiable on the open ball5

Br = {x ∈ IR : |x| < r}.

If x→ f ′(x) is Lipschitz continuous on Br, and xn is a sequence in Br, (12.2)
rewrites as

f(xn) = f(xn−1) + f ′(xn−1)(xn − xn−1)︸ ︷︷ ︸
linear approximation

+R(xn;xn−1), (12.7)

4F ′(x) = f(x) for all x ∈ [a, b].
5Generalises to f : X → X, X a complete metric vector space (Theorem 8.15!).
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in which

|R(xn;xn−1)| ≤ L

2
|xn − xn−1|2,

with L the Lipschitz constant of f ′ on Br. Assume for all x ∈ Br that

|(f ′(x))−1| ≤ C,

form some positive constant C > 0.
Let

pn = |xn − xn−1| and qn = |f(xn)|, (12.8)

and assume that xn is defined by

xn = xn−1 − (f ′(xn−1))−1f(xn−1) (n ∈ IN), (12.9)

with x0 = 0. Then xn ∈ Br as long as

p1 + p2 + · · ·+ pn < r, (12.10)

in which case it follows that

pn ≤ Cqn−1 and qn ≤
1

2
Lp2

n, (12.11)

because (12.9) puts the linear approximation in (12.7) equal to zero.
The inequalities in (12.11) can now be used beginning with

q0 = |f(0)| and p1 ≤ Cq0 = C|f(0)|. (12.12)

Combining (12.11) and (12.12) it follows that

pn ≤ µp2
n with µ =

1

2
LC and p1 ≤ C|f(0)|. (12.13)

The question then is for which P we can conclude that the implication

p1 ≤ C|f(0)| < P =⇒
∞∑
n=1

pn < r (12.14)

holds. If so then xn ∈ Br for all n ∈ IN, xn converges to a limit x̄ which is
also in Br, and f(xn)→ 0.

The larger P , the stronger the statement in the sense that larger values
of |f(0)| are allowed if we try to find a solution x ∈ Br of f(x) = 0 by means
(12.9) starting from x0 = 0. If we take equalities in (12.13) and (12.14) then

pn = µp2
n−1 for n ∈ IN; p1 = P ;

∞∑
n=1

pn = r. (12.15)
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Putting ξn = µpn so that ξn = ξ2
n−1, this is equivalent to

G(µP ) = µr with G(ξ) = ξ + ξ2 + ξ4 + ξ8 + ξ16 + · · · . (12.16)

This defines P as a function of µ and r.

Exercise 12.5. Use

G(ξ) <
ξ

1− ξ
to show that

|f(0)| ≤ 2r

(2 + rLC)C
=

1

(1
r + LC

2 )C

guarantees xn → x̄ ∈ Br with f(x̄) = 0.

Back to Heron’s method. We we can scale the whole Heron procedure
and put x = y

√
2, and likewise for x̃, xn, xn−1, to obtain

yn =
1

2
(yn−1 +

1

yn−1

),

which has yn → 1 as n→∞ if we start from y0 > 0 with y0 6= 1.

Exercise 12.6. Put y = 1 + z and see what you get for the sequence zn to
understand why the convergence is so fast.

Exercise 12.7. Put e = x2 − 2, rewrite (2.2) in terms of e and ẽ, examine the
sequence en, and compare to Exercise 12.6.
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13 Back to calculus

Most of this chapter could be part of any calculus course, except for Section
13.2 perhaps. Calculus is so much fun:

https://en.wikipedia.org/wiki/Proof_that_22/7_exceeds_%CF%80

13.1 More on exp and ln

Exercise 13.1. Let I ⊂ IR be an open interval, F : I → IR differentiable, F ′(x) =
F (x) for all x ∈ I and (a, b) ⊂ I a maximal open interval on which F (x) > 0. Then
(a, b) = I. Prove this via

F ′(x) = F (x) ⇐⇒ F ′(x)

F (x)
= 1 ⇐⇒ ln(F (x)) = x+ C ⇐⇒ F (x) = ex+c.

Exercise 13.2. Same question as in Exercise 13.1 for F : I → IR satisfying F ′(x) =
F (x)g(x) with g : I → IR continuous. Also solve the differential equation. Hint: use
a primitive G of g.

Exercise 13.3. For α ∈ IR the function Fα : (−1,∞) → IR+ defined by Fα(x) =
(1 + x)α solves (1 + x)F ′(x) = αF (x), a differential equation like in Exercise 13.2.
Determine a power series solution of the form

1 + a1x+ a2x
2 + a3x

3 + · · · .

Write (the coefficients in) the solution in a form which for α = n ∈ IN reduces to
Newton’s binomium.The radius of convergence (for α 6∈ IN0) is R = 1. Why? How
does it follow that for |x| < 1 the power series1 just computed is equal to Fα(x)?

13.2 Early treatment of integrals with parameters

The results in this section are often needed and perhaps justly postponed till
after the introduction of integral calculus for functions of multiple variables.
Still, let’s consider here

J(t) =

∫ 1

0

f(x, t) dx

1NB Take note of α = −1, but also of α = ± 1
n .
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in which, for each t in a t-interval [0, 1], the function x→ f(t, x) is continuous
on the x-interval [0, 1]. Then J(t) is well-defined. What do we need to have
J differentiable? We examine a follow your nose argument for what (the
one-sided) derivative J ′(0) should be and see what we need to prove it. You
may want to jump to Theorem 13.5 for a simpler statement under stronger
assumptions and a much simpler proof in Section 27.2.

If we use the mean value theorem in the form of Theorem 10.7 itself2, for
every fixed x ∈ [0, 1] applied to t→ f(x, t), it follows that

f(t, x) = f(0, x) + ft(τ, x) t,

with τ = τ(x) ∈ (0, t). This requires, for every x, differentiability of f(x, t)
on [0, 1] with respect to t, or on a smaller interval that contains t = 0 but
does not depend on x. We can then write

f(t, x) = f(0, x) + ft(0, x)t+ ft(τ(x), x)− ft(0, x)︸ ︷︷ ︸
R(t,x)

. (13.1)

This defines R(t, x). Continuity of f and ft in x allows to write

J(t) =

∫ 1

0

f(t, x) dx =

∫ 1

0

(f(0, x) + ft(0, x)t+R(t, x)) dx

= J(0) + t

∫ 1

0

ft(x, 0) dx+

∫ t

0

R(t, x) dx (13.2)

= J(0) + t

∫ 1

0

ft(x, 0) dx+ r(t).

Here

r(t) =

∫ t

0

R(t, x) dx with R(t, x) = (ft(τ(x), x)− ft(0, x)︸ ︷︷ ︸
<ε ?

)t

should have the usual property indicated by the question mark in the under-
brace. Indeed, if we assume that

x→ f(t, x)

and
x→ ft(0, x) = g(t, x)

2The integral form would require double integrals, see Section 27.2.
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are continuous on [0, 1] we don’t have to worry about existence of the in-
tegrals. The integral r(t) of R(t, x) in (13.2) is then also continuous. The
second expression with τ(x) ∈ (0, t) above (13.1) can now be used to estab-
lish r(t) = o(t) as t→ 0, since all we need for the remainder term r(t) is that
|r(t)| < εt for t sufficiently small. Thus, if for ft(t, x) = g(t, x) it holds that

|g(t, x)− g(0, x)| < ε (13.3)

if t ∈ (0, δ) for all x ∈ [0, 1] simultaneously for some δ > 0, we will be happily
done.

How can this uniform ε-statement fail to be true? Only if for some ε > 0
there exists a sequence of points (tn, xn) with 0 < tn → 0 for which

|g(tn, xn)− g(0, xn)| ≥ ε.

But then the sequence xn has a convergent subsequence xnk with limit x̄ ∈
[0, 1] and both sequences of points (tn, xn) and of points (0, xn) converge to
(0, x̄) preventing (t, x)→ g(t, x) from being continuous in every point (0, x)
with x ∈ [0, 1]. We have proved the following theorem.

Theorem 13.4. Not so easy to memorise, let (t, x)→ f(t, x) be defined for
all x ∈ [a, b] ⊂ IR, with a < b, and all t ∈ (t0 − δ, t0 + δ), with t0 ∈ IR and
δ > 0. Assume that for fixed t ∈ (t0 − δ, t0 + δ) the function x → f(t, x) is
continuous on [a, b] and thus that

J(t) =

∫ b

a

f(t, x) dx

exists. If for every fixed x ∈ [a, b] the function t → f(t, x) is differentiable
on (t0 − δ, t0 + δ) and (t, x) → ft(t, x) is continuous in every (t0, x) with
x ∈ [a, b], then t→ J(t) is differentiable in t0 with derivative

J ′(t0) =

∫ b

a

ft(t0, x) dx.

Theorem 13.5. A weaker statement easier to memorize: if f and ft exist
as continuous functions on I × [a, b], with I some t-interval, then J : I → IR
is continuously differentiable with derivative

J ′(t) =

∫ b

a

ft(t, x) dx.
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Exercise 13.6. To prove the continuity of the derivative you need to prove that

t→ j(t) =

∫ b

a
g(t, x) dx

is continuous on I if (t, x)→ g(t, x) is continuous on I × [a, b]. Hint: use a uniform
ε-argument and state a version of Theorem 8.10 needed to do so. NB. This continuity
allows for a much quicker proof, see Section 27.2.

13.3 Partial integration and Taylor polynomials

Theorem 13.7. Let a real valued function f be twice continuously differen-
tiable in a neighbourhood of x = 0, and f(0) = 0 and f ′(0) = 0. Then

f(x) =

∫ x

0

(x− s)f ′′(s) ds

for x in that neighbourhood.

This theorem follows from what we discuss below and is a special case of
Exercise 13.10 below. You may consider to go for a direct proof instead, so
that you can skip the rest of this section, which should be part of any calculus
course. Theorem 13.7 is not really essential for the analysis of Newton’s
method in Chapter 12.2, but it is for the proof of Morse’ Lemma in Chapter
15.

No new analysis is required for what follows. Via Theorem 10.12 the
Leibniz rule in Theorem 11.1 has an immediate and important counter part
which we state for continuously differentiable functions

x : [α, β]→ IR and y : [α, β]→ IR

as ∫ β

α

x(t)y′(t) dt = [x(t)y(t)]βα −
∫ β

α

x′(t)y(t) dt. (13.4)

This integration by parts formula can and should never be forgotten. If you
tend to forget important formulas do remember that it follows from Theorem
10.12 applied to a product of two continuously differentiable functions3.

Here’s a nice application. For given f ∈ C([0, 1]) we ask for a function u
such that

−u′′(x) = f(x) for all 0 ≤ x ≤ 1, and u(0) = u(1) = 0. (13.5)

3And in a much more general setting in fact.
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Taking the primitive on both sides we

u′(x) = u′(0)−
∫ x

0

f(s) ds︸ ︷︷ ︸
F (x)

,

in which u′(0) is unknown, and F a primitive of f with F (0) = 0. Taking
primitives once more we have

u(x) = u′(0)x−
∫ x

0

F (s) ds,

with u′(0) still unknown, x →
∫ x

0
F (s) ds the primitive of F which is 0 in

x = 0, and u(1) = 0 not used yet.
Leibniz’ product rule turns F (s) into

1F (s)︸ ︷︷ ︸
G′(s)F (s)

= (s− a)′︸ ︷︷ ︸
G′(s)

F (s) = ((s− a)︸ ︷︷ ︸
G(s)

F (s))′ − (s− a)︸ ︷︷ ︸
G(s)

F ′(s)

= ((s− a)F (s))′︸ ︷︷ ︸
(G(s)F (s))′

− (s− a)f(s)︸ ︷︷ ︸
G(s)F ′(s)

,

in which 1 = G′(s) with G(s) = s− a and a free to choose.
The primitive of F (x) then rewrites as∫ x

0

F (s) ds = [(s− a)F (s)]x0 −
∫ x

0

(s− a)f(s) ds =

∫ x

0

(x− s)f(s) ds. (13.6)

With a = x it follows that

u(x) = u′(0)x−
∫ x

0

(x− s)f(s) ds

and x = 1 gives

u′(0) =

∫ 1

0

(1− s)f(s) ds.

Therefore

u(x) =

∫ 1

0

(1− s)f(s) ds x−
∫ x

0

(x− s)f(s) ds

= x

∫ 1

x

(1− s)f(s) ds+ (1− x)

∫ x

0

sf(s) ds =

∫ 1

0

A(x, s)f(s) ds.

The expression

A(x, s) =

{
(1− x)s for 0 ≤ s ≤ x

(1− s)x for x ≤ s ≤ 1
(13.7)
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is called the kernel for the solution operator, which gives u in terms of f as

u(x) =

∫ 1

0

A(x, s)f(s) ds. (13.8)

You may prefer to memorize the integration by parts formula as∫ b

a

F (x)G′(x) dx = [F (x)G(x)]
b

a
−
∫ b

a

F ′(x)G(x) dx. (13.9)

It’s handy for computing integrals, but also for taking primitives of primi-
tives, as we just saw and see again below.

Exercise 13.8. For f ∈ C([a, b]) define

F1(x) = F (x) =

∫ x

a
f(s) ds and F2(x) =

∫ x

a
F1(s) ds.

Use (13.9) to show that

F2(x) =

∫ x

a
(x− s)f(s) ds.

Hint: the integration variabele is s and 1 is the derivative with respect to s of s− x.

Exercise 13.9. In the context of Exercise 13.8 let

Fn+1(x) =

∫ x

a
Fn(s) ds (n = 1, 2, 3 . . . ).

Show that

Fn(x) =
1

(n− 1)!

∫ x

a
(x− s)n−1f(s) ds.

Hint: for F3 you need two integrations by parts, for F4 three, et cetera.

Exercise 13.10. Modify the scheme in Exercise 13.9 as

F0(x) = f(x), Fn(x) = bn +

∫ x

a
Fn−1(s) ds (n = 1, 2, 3 . . . ), (13.10)

and give a similar formula for Fn(x) with more terms. By construction Fn(a) = bn,
F ′n(a) = bn−1, F ′′n (a) = bn−2, . . . , and what you see is the Taylor approximation of
order n−1 for a function whose first n−1 deravitives in a are given by the b’s. Verify
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for every n times continuously differentiable function defined on an interval I which
contains 0 that for all x ∈ I it holds that

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
(x− a)2

2!
+ · · ·+ f (n−1)(a)

(x− a)n−1

(n− 1)!

+
1

(n− 1)!

∫ x

a
(x− s)n−1f (n)(s) ds.

The last term is the remainder term. LetM = Mn(x, a) andm = mn(x, a)
be the maximum and minimum of f (n)(s) as s varies from s = a to s = x.
Then this term is between

M

n!
(x− a)n en

m

n!
(x− a)n.

It follows that for some s = σ between s = a and s = x the remainder terms
is equal to

f (n)(σ)

n!
(x− a)n.

So

f(x) =
n−1∑
k=0

f (k)(0)

k!
(x− a)k +

f (n)(σ)

n!
(x− a)n︸ ︷︷ ︸

1
(n−1)!

∫ x
a (x−s)n−1f (n)(s) ds.

(13.11)

for some σ between a and x.
The result in (13.11) holds in fact without the assumption that f (n) is con-

tinuous, with σ strictly between a and x, as a clever application of Theorem
10.7 shows. The case n = 1 reduces to Theorem 10.7.

13.4 Asymptotic formulas

This is not part of every standard calculus course. The notation

f(x) ∼ g(x) for x→ a (13.12)

means that
f(x)

g(x)
→ 1 if x→ a,

in which often a is 0 or ∞. Similarly the statement

n! ∼ (
n

e
)n
√

2πn as n→∞ (13.13)

means that the limit of the quotient of the terms on both sides of the twiddle
is 1.

227



Exercise 13.11. Investigate f : x → xx with x ∈ IR+ using (11.19). Determine
g : IR+ → IR as simple as possible such that

f(x)− 1 ∼ xg(x)

as x→ 0, i.e.
f(x)− 1

xg(x)
→ 1.

Put f(0) = 1. Is f differentiable from the right in x = 0?

Exercise 13.12. Since xx is strictly increasing in x for x sufficiently large, x→ xx

has an inverse function y → f(y) definied for y sufficiently large. Show that f is
defined by x lnx = ln y, take lnx to the other side and use the resulting formula in
the right hand side to get a simple g(y) for which

f(y) ∼ ln y

g(y)

as y →∞.

13.5 Exercises

Exercise 13.13. Discuss the following formulas.∫ β

α
x(t) y′(t) dt︸ ︷︷ ︸

dy

= [x(t)y(t)]βα −
∫ β

α
y(t)x′(t) dt︸ ︷︷ ︸

dx

,

∫ β

α
F ′(x(t))︸ ︷︷ ︸
f(x(t))

x′(t) dt = F (x(β))− F (x(α)) =

∫ x(β)

x(α)
F ′(x) dx =

∫ b

a
F ′(x)︸ ︷︷ ︸
f(x)

dx,

∫ b

a
f(x) dx =

∫ β

α
f(x(t))x′(t) dt. (13.14)

Exercise 13.14. Compute∫ ∞
0

exp(−x) dx,

∫ ∞
0

x exp(−x) dx,

∫ ∞
0

x2 exp(−x) dx,

∫ ∞
0

x3 exp(−x) dx,
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and derive an integral formula for n! These are improper integrals, defined via∫ ∞
0

= lim
R→∞

∫ R

0
.

Exercise 13.15. Sketch the graph y = xne−x (for n not too large) in the x, y-plane.
Where’s the top of the mountain?

Exercise 13.16. Scale and shift the integral for n! to conclude that

n! = (
n

e
)n
∫ ∞
−n

gn(x) dx

with
gn(x) = (1 +

x

n
)ne−x

Sketch the graph defined by y = gn(x).

Exercise 13.17. Write

gn(x) = e−ψn(x) met ψn(x) = − ln(gn(x)),

and verify that

ψn(x) = x− n ln(1 +
x

n
) = n(

x

n
− ln(1 +

x

n
)) = nψ1(

x

n
).

Exercise 13.18. Put x = s
√
n to conclude that4

n! = (
n

e
)n
√
n

∫ ∞
−
√
n
e
−nΨ( s√

n
)
ds (13.15)

and show that ∫ ∞
−
√
n
e
−nΨ( s√

n
)
ds→

∫ ∞
−∞

e−
1
2
s2ds (13.16)

as n→∞. Google Stirling’s formula.

4https://youtu.be/8sn5ekwvXSQ
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13.6 Exercises about entropy

Some exercises that correspond to Section 1.6 of Bishop’s Machine learning
book. See if you have enough machinery at your disposal to do them. I’m
updating this section while reading Finn’s master thesis.

Exercise 13.19. Let n > 1 be an integer and let p1, . . . , pn be positive real numbers
with p1 + · · · + pn = 1. You may think of p1, . . . , pn as probabilities, each pk being
the probability that out of n events it is event k that occurs.

a) Then the entropy5

H(p) =
n∑
i=1

pi ln
1

pi

is defined as a positive number. If q1, . . . , qm is another such finite sequence of
positive probabilities, then also

H(q) =

m∑
j=1

qj ln
1

qj
> 0,

and for the joint probabilities

{piqj : i = 1, . . . , n, j = 1, . . . ,m}

the entropy is defined likewise. Write r = p ⊗ q and rij = piqj , define what
H(r) = H(p⊗ q) should be, and show that

H(p⊗ q) = H(p) +H(q).

What do you get without the assumption that p1+· · ·+pn = q1+· · ·+qm = 1?

b) Prove that, upto a multiplicative factor,

h(x) = ln
1

x

defines the only continuous function on IR+ for which

H(p) =
n∑
i=1

pi h(pi) > 0

has this additivity property. For now this is a purely analytical or if you like
algebraic statement. Note that −H is strictly convex.

5The expected “improbability”, if the improbability of event k is defined by ln 1
pk

.
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c) Examine limits of H(p) = H(p1, . . . , pn) as p1 or some other pi goes to zero.
Conclude that H(p1, . . . , pn) is well defined as a nonnegative number for all
nonnegative p1, . . . , pn.

The set of all such (p1, . . . , pn) with p1 + · · ·+ pn = 1 is denoted by Σn. The
global minimum of H on Σn is zero, attained in (1, 0, . . . , 0), . . . , (0, . . . , 0, 1).
The global maximum of H on Σn is lnn, attained in ( 1

n , . . . ,
1
n). The union

of all Σn over n ∈ IN may be denoted by Σ∞, considering p = (p1, . . . , pm)
as p = (p1, . . . , pm, 0, 0, . . . ). Details in the items below. Connection with
information theory in Exercises 13.20 and 13.21.

d) Show there exists a sequence pi ≥ 0 with

∞∑
i=1

pi = 1 but

∞∑
i=1

pi ln
1

pi
=∞,

so H(p1, p2, . . . ) is not defined for all nonnegative sequences p1, p2, . . . with
p1 + p2 + · · · = 1. Hint: you cannot take pn = 1

n , but a logaritmic correction
will do the job. It follows that we cannot define the entropy function H on Σ∞.

e) Fix n ∈ IN and consider

Hn(p1, . . . , pn) = Hn(p) =
n∑
i=1

pi ln
1

pi

for variable p1, . . . , pn ≥ 0 with p1 + · · · + pn = 1. Let Σn be the set6 of all
such p = (p1, . . . , pn) ∈ IRn. Show that Hn has a global maximum on Σn.
Hint: prove that Hn is continuous on Σn.

f) Let p be a global maximizer for Hn : Σn → IR. Suppose that p1 · · · pn > 0.
Prove that p1 = · · · = pn = 1

n . Hint: argue by contradiction and use the linear
approximations of all terms in the sum that defines Hn(p).

g) Prove that Hn : Σn → IR has a positive global maximum lnn, and that the
unique maximizer is given by p1 = · · · = pn = 1

n .

h) Determine all global minimizers of Hn : Σn → IR.

Exercise 13.20. Consider the following 9 binary words w with probabilities p as
indicated.

w

p

00
1
4

010
1
8

011
1
8

100
1
8

101
1
8

1100
1
16

1101
1
16

1110
1
16

1111
1
16

Denote the set of these words by W .

6Σ for simplex.
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a) Verify that the probabilities p = p(w) add up to 1, that is,∑
w∈W

p(w) = 1.

b) Explain how these probabilities are obtained from grouping 16 equally probable
words 0000, . . . , 1111. Hint:

0000, 0001, 0010, 0011︸ ︷︷ ︸, 0100, 0101︸ ︷︷ ︸, 0110, 0111︸ ︷︷ ︸, 1000, 1001︸ ︷︷ ︸, 1010, 1011︸ ︷︷ ︸, 1100, 1101, 1110, 1111.

c) Each w has p = p(w) = 2−n with n the number of bits in w. Thus for the
average (or expected) number of bits we have

ln 2
∑
w∈W

p(w) 2log
1

p(w)
=
∑
w∈W

p(w) ln
1

p(w)

= H(
1

4
,
1

8
,
1

8
,
1

8
,
1

8
,

1

16
,

1

16
,

1

16
,

1

16
).

Verify this H-value is smaller than ln 9.

Exercise 13.21. Bishop uses the example

s

p

0
1
2

10
1
4

110
1
8

1110
1
16

111100
1
64

111101
1
64

111110
1
64

111111
1
64

to explain the relation with information theory. These 8 bit strings of varying length
may be considered as representing the letters from an 8 letter alphabet, with different
propabilities of occurring in words of a particular language that uses that alphabet. If
these probabilities are as indicated the average number of bits used per letter would
be

1× 1

2
+ 2× 1

4
+ 3× 1

8
+ 4× 1

16
+ 6× 1

64
+ 6× 1

64
+ 6× 1

64
+ 6× 1

64
= 2.

Equal probilities with encodings

s

p

000
1
8

001
1
8

010
1
8

011
1
8

100
1
8

101
1
8

110
1
8

111
1
8

would have 3 bits on average. Think of binary coding Dutch sentences consisting of
the 32 symbols

abcdefghijklmnopqrstuvwxyz., ; :?!

with fewer bits for more likely and more bits for more unlikely letters and punctuations.
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We saw that we cannot define the entropy function H on

Σ∞ = {(p1, p2, p3, . . . ) : pn ≥ 0 for all n ∈ IN,
∑
n∈IN

pn = 1}.

How about the entropy of a continuous distribution? Jump to d) in Exercise
13.22 below for a shortcut to how the Kullback-Leiber divergence between
two such distributions f and g appears when trying to answer this question.
What comes first in Exercise 13.22 is for just one distribution f and is not
going to work for distributions on IR.

Exercise 13.22. Let f ∈ C([a, b]) be a nonnegative function7 with
∫ b
a f = 1, let

P be a partition
a = x0 ≤ x1 ≤ · · · ≤ xn = b

of [a, b] as in Definition 6.6, and define

pi =

∫ xi

xi−1

f(x) dx ≥ 0 for i = 1, . . . , n.

Then p1 + · · ·+ pn = 1. Below you may like to take all pi > 0 first.

a) Show that for ever i ∈ {1, . . . , n} there exists ξi ∈ (xi−1, xi) such that

pi = f(ξi)(xi − xi−1).

b) Take the partition P equidistant. Show that

Hn(p1, . . . , pn) = (b− a) lnn+
n∑
i=1

f(ξi) ln
1

f(ξi)
(xi − xi−1)

to conclude that

(b− a) lnn−Hn(p1, . . . , pn)→
∫ b

a
f(x) ln f(x) dx

as n→∞ for every nonnegative f ∈ C([a, b]) with
∫ b
a f = 1.

c) The above derivation implies the nonnegativity property∫ b

a
f(x) ln f(x) dx ≥ 0,

7Think of f as a probability distribution on [a, b].
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and equality holds if f(x) ≡ 1. If equality holds for some other nonnegative
f ∈ C([a, b]) then f must have values large and smaller than 1. Show that such
an f with ∫ b

a
f = 1

can then be modified to make the integral of f ln f smaller than zero and still
have integral of f equal to 1, contradicting the above nonnegativity property.

Hint: use the strict positivity of the second derivative of y → y ln y.

d) This is to modify the above in such a way that we can also handle probability
distributions on IR. But first we stick to [a, b]. Let g ∈ C([a, b]) be another

function with
∫ b
a g = 1 and strictly positive. Choose any partition as in a). We

use

y =

∫ x

a
g, yi =

∫ xi

a
g, f̃(y) = f(x), g̃(y) = g(x)

to transform8

pi =

∫ xi

xi−1

f(x) dx

and see what we get for H(p1, . . . , pn) as n→∞. Verify that

pi =

∫ xi

xi−1

f(x)

g(x)
g(x) dx =

∫ yi

yi−1

f̃(y)

g̃(y)
dy =

f̃(ηi)

g̃(ηi)
(yi − yi−1) =

f(ξi)

g(ξi)

∫ xi

xi−1

g

for some ηi ∈ (yi−1, yi) provided by the mean value theorem, and ξi then defined

by ηi =
∫ ξi
a g.

e) But then we can define

qi =

∫ xi

xi−1

g(x), just like we defined pi =

∫ xi

xi−1

f(x) dx,

and conclude that
pi g(ξi) = qi f(ξi). (13.17)

If f is positive it should follow that

n∑
i=1

pi ln
qi
pi

=

n∑
i=1

∫ xi

xi−1

f(x) dx ln
g(ξi)

f(ξi)
→
∫ b

a
f(x) ln

f(x)

g(x)
dx (13.18)

as n→∞. But under which conditions? For later worries. Playing around we
have derived the formula for the so-called Kullback-Leiber divergence

KL(f ||g) =

∫ b

a
f(x) ln

f(x)

g(x)
dx

between probability densities f and g, and on the left we see KL(p||q).

8Using the rule you discover from (13.14), Theorem 10.12 and Theorem 11.4.
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Exercise 13.23. Generalise the statements above to functions f, g : IR→ IR+ with∫ ∞
∞

f(x) dx =

∫ ∞
∞

g(x) dx = 1,

for which ∫ ∞
∞

f(x) ln
f(x)

g(x)
dx

has a meaning, not necessarily via∫ ∞
∞

f(x) ln f(x) dx−
∫ ∞
∞

f(x) ln g(x) dx.

The first integral above is called minus the differential entropy of f , and denoted here
and elsewhere by

S(f) =

∫ ∞
∞

f(x) ln f(x) dx

when it exists. If so then S(fλ), fλ defined by

fλ(x) =
1

λ
f(
x

λ
),

also exists.

a) Verify that
S(fλ) = S(f)− lnλ.

b) Verify that S(f) is invariant under translation.

c) Given constraints of f , for instance∫ ∞
∞

f(x) dx = 1,

∫ ∞
∞

xf(x) dx = µ,

∫ ∞
∞

(x− µ)2f(x) dx = σ2,

the functional S may or may not have a minimum. Explain why it is no restriction
to restrict to the case that µ = 0 and σ = 1.

d) Try and find this minimum and its minimizer.

Exercise 13.24. In analogy with (13.18) consider

H(p||q) =

n∑
i=1

pi ln
pi
qi

for positive p1, q1, . . . , pn, qn with p1 + · · ·+ pn = q1 + · · ·+ qn = 1. Use

ui =
pi
qi
, F (x) = x lnx,

to show H(p||q) > 0 unless pi = qi for all i = 1, . . . , n. Hint: F is strictly convex.
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Exercise 13.25. (continued) Think of qi ∈ (0, 1) as probabilities for n events, and
assign to each event a value ui ∈ J , with J ⊂ IR an interval. This defines a stochastic
variable U with

P (U = ui) = qi.

If F : J → IR, then V = F (U) is also a stochastic variable with

P (V = vi) = qi, vi = F (ui),

and expectations

EU =
n∑
i=1

uiqi, EV =
n∑
i=1

viqi =
n∑
i=1

f(ui)qi = EF (U)

satisfying EF (U) < F (EU) if F is strictly convex. Verify that F : [0,∞) → IR is
strictly convex and that for p1, . . . , pn ≥ 0 and

ui =
pi
qi

it holds that F (EU) = F (
n∑
i=1

pi) = F (1) = 0

if p1 + · · ·+ pn = 1 and

E(F (U)) =

n∑
i=1

pi ln
pi
qi
.

Thus pi > 0 is not required to conclude H(p||q) > 0 for (p1, . . . , pn) 6= (q1, . . . , qn)
in Exercise 13.24.

Exercise 13.26. Let J ⊂ IR be an interval and g : J → IR+ be continuous with∫
J
g(x) dx = 1,

and let f be another nonnegative continuous function on J . Assume there exists
M > 0 such that f(x) ≤Mg(x) for all x ∈ J , and let

H(f ||g) =

∫
J
f(x) ln

f(x)

g(x)
dx.

a) Show that H(f ||g) is well defined.

b) Define u : J → [0,M ] by

u(x) =
f(x)

g(x)
.

Let F (x) = x lnx as before and assume also
∫
J f(x) dx = 1. Show that

0 = F (1) = F (

∫
J
f(x) dx) = F (

∫
J
u(x)g(x) dx) <

∫
J
F (u(x))g(x) dx = H(f ||g).
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Not sure if this of any use. Let’s examine what we really need to assume
on f and g here. If f and g are bounded Riemann integrable functions on
some bounded interval (a, b) and 1

g
is bounded then it is also integrable by

Theorem 7.5, making also f
g

integrable via Exercise 7.40. In that case we can

introduce y =
∫ x
a
g as new variable and verify that∫ b

a

f(x)

g(x)
dx =

∫ I

0

f̃(y) dy, I =

∫ b

a

g(x) dx,

directly from the definitions. To have an η ∈ (0, I) with∫ I

0

f̃(y) dy = ηI

we then need the continuity of f̃ , and thereby of f . So with continuous
functions on [a, b] we’re good if one the two is positive. What about continous
integrable functions on (−∞, 0]? Same results it seems. So we can generalise
to partitions of IR and nonnegative continuous integrable functions f and g
for which one the two is positive on each open interval of the partition

−∞ = x0 < x1 < · · · < xn =∞.
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14 Implicit functions

https://www.youtube.com/playlist?list=PLQgy2W8pIli-7124huziMvr6eTmFVOCuh

In the playlist the inverse function theorem comes first. I solve f(x) = y,
assuming f(0) = 0, f ′ continuous and invertible in x = 0, via the scheme

gn(y) = xn = xn−1 + f ′(0)−1(y − f(x), x0 = 0.

The iterates are shown to be convergent in an open ball with radius ρ > 0,
ρ chosen to have

|f ′(x)− f ′(0)| < η, γη < 1, γ = |f ′(0)−1| > 0,

provided

|y| < (
1

γ
− η)ρ.

For each such y the limit x = g(y) of the sequence xn is the unique solution
of f(x) = y in the open ball with radius ρ. On this ball the inverses of f ′(x)
exist1.

The approximating functions gn satisfy the uniform Lipschitz condition2

|gn(y)− gn(ỹ)| ≤ |y − ỹ|1
γ
− η

,

en so does the limit g, which is continuously differentiable, with derivative

g′(y) = (f ′(g(y))−1.

The playlist concludes with the same result for F (x, y), F (0, 0) = 0,
proved by the same method, under the assumption that λ → F (x, y) is
uniformly Lipschitz continuous and (x, y)→ Fx(x, y) continuous. In the case
that the corresponding Lipschitz constant is 1, the result is identical to the
one above, except for

F (g(y), y) = 0, and g′(y) = −(Fx(g(y), y))−1(Fy(g(y), y)),

valid if Fy(g(y), y) exists. In the playlist I have y = λ and F (g(λ), λ) = 0, in
the notes below I have the equation g(y) = x as the special case of F (x, y) = 0
solved for y, and the implicit function f satisfying F (x, f(x)) = 0.

1This is new, the geometric series argument needs no further restrictions on the radii.
2Also new, below η = ε̃ and M = γ do appear in the same combination.
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If a function of two real variables, say

IR2 = {(x, y) : x, y ∈ IR} F−→ IR,

satisfies F (0, 0) = 0, then the equation

F (x, y) = 0 (14.1)

usually has more solutions near (x, y) = (0, 0). How do we find these other
solutions? This chapter formulates an approach which generalises to the
more general setting of F : X × Y → Z for complete metric vector spaces
X, Y and Z.

A special case is
F (x, y) = g(y)− x, (14.2)

when the question concerns a possible inverse function f of a given function
g, see Section 8.5. Note that for notational convenience we have then inter-
changed the roles of f and g and ask about the solution y of g(y) = x rather
than the solution x of f(x) = y. More important: we now choose for a local
perspective and want to make assumptions that concern values of x and y
close to 0 only. In Section 11.3, where we already had a global inverse, we
also asked about behaviour in a single point.

In this chapter we ask both about the existence of an implicit function f ,
as well as its properties, but only near a given point. Thus we want to solve
F (x, y) = 0 for given x close to x = 0, hoping that near y = 0 precisely one
solution y = f(x) can be shown to exist.

Before we formulate a local implicit function theorem we discuss Newton’s
method for solving equations3. We assume that for fixed x near x = 0 the
function

y → F (x, y)

is differentiable near y = 0. The derivative is denoted by Fy(x, y). The
special case F (x, y) = g(y)− x with partial derivative Fy(x, y) = g′(y) is not
really different, and will lead to a local inverse function theorem.

For fixed x we take y0 = 0 as starting value for Newton’s method. Thus
we put the linear expansion of F (x, y) around y = 0 equal to 0, solve for
y = y1, and use the linear the linear expansion of F (x, y) around y = y1 to
find y2, and so on. In every step we need Fy(x, yn−1) to be invertible4. The
next yn is uniquely defined by

F (x, yn−1) + Fy(x, yn−1)(yn − yn−1) = 0.

3Fast convergence of this method will be shown in Section 12.2.
4Think of Fy(x, yn−1) as the map h→ Fy(x, yn−1)h .
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For n = 1, 2, . . . we have

yn = yn−1 − Fy(x, yn−1)−1F (x, yn−1), starting from y0 = 0. (14.3)

If this process, which is called Newton’s method, defines a convergent se-
quence yn, the x-dependent limit y defines a so-called implicit function

x→ y = f(x). (14.4)

We then expect/hope that

F (x, f(x)) = 0, (14.5)

and that y = f(x) is the only solution of (14.1) near y = 0. If so we also ask
which conditions will make f continuous and differentiable in x = 0.

14.1 A simpler version of Newton’s method

A direct proof of (fast) convergence of the sequence yn defined by (14.3) was
given in Chapter 12.2 via an estimate of the form

|yn+1 − yn| ≤ C|yn − yn−1|2 (14.6)

and required a condition on the second derivative5 of y → F (x, y). Here
we avoid second derivatives of y → F (x, y) by simplifying the scheme: the
derivative Fy(x, yn−1) that has to be inverted in every step of Newton’s
scheme is replaced by Fy(0, 0). The modified scheme reads

yn = yn−1 − Fy(0, 0)−1F (x, yn−1), (14.7)

and we look for an estimate which is very much like the estimate (3.6) for
Heron’s sequence: we lose the square in (14.6) but have to make sure that
C < 1. To this end

a sufficienctly small bound on |F (x, 0|,
the invertibility of Fy(0, 0),
and the continuity of (x, y)→ Fy(x, y)

will suffice.

Theorem 14.1. Let δ̄ > 0, ε̄ > 0,

B = {x ∈ IR : |x| < δ̄}, C = {y ∈ IR : |y| < ε̄},
5In fact Lipschitz continuity of y → Fy(x, y) will suffice, see Section 12.2.
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and suppose that F : B × C → IR has the properties that

F (0, 0) = 0;
x→ F (x, 0) is continuous in x = 0;
(x, y)→ Fy(x, y) is continuous in (0, 0);
Fy(0, 0) is invertible;
y → Fy(x, y) is continuous on C for every x ∈ B.

Then there exists δ0 > 0 and ε0 > 0 for which the statement

∀(x, y) ∈ B̄δ0 × B̄ε0 : F (x, y) = 0 ⇐⇒ y = f(x)

holds, in which

Bδ0 = {x ∈ X : |x| ≤ δ0}, Bε0 = {y ∈ Y : |y| < ε0},

and f : B̄δ0 → Bε0 is constructed via (14.7) starting from y0 = 0. In partic-
ular f(0) = 0 and f is continuous in 0.

In the proof we avoid a direct application of Theorem 3.16, which requires
a map from a suitable closed and bounded set containing y = 0 to itself. In-
stead we focus on the single x-dependent sequence defined by (14.7) starting
from y0 = 0 only. Note that the unlikely event that y1 = y0 = 0 occurs only
when y = y0 = 0 and then automatically y0 = y1 = y2 = · · · = 0 solves
F (x, y) = 0.

14.2 Estimating the steps: convergence

How large can y1 be if F (x, y0) = F (x, 0) 6= 0? If we set

M0 = |Fy(0, 0)−1| > 0. (14.8)

then6

|y1| = |Fy(0, 0)−1F (x, 0)| ≤M0 |F (x, 0)|. (14.9)

If F (x, y1) is defined we can estimate the next step by

|y2 − y1| = |Fy(0, 0)−1F (x, y1)| ≤M0 |F (x, y1)|

using (14.7) with n = 2. The trick however is to use (14.7) with both n = 1
and n = 2 via

y2 − y1 = y1 − Fy(0, 0)−1F (x, y1)− y0 + Fy(0, 0)−1F (x, y0)

6For future purposes we only use |Fy(0, 0)−1k| ≤M0 |k|.

241



= Fy(0, 0)−1 (F (x, y0)− F (x, y1) + Fy(0, 0)y1 − Fy(0, 0)y0) ,

in which we “factored” out Fy(0, 0)−1.
The first two terms in the remaining large factor are

F (x, y0)− F (x, y1) =

∫ 1

0

Fy(x, ty0 + (1− t)y1) dt (y0 − y1),

an integral we get by applying (12.1), the mean value theorem in integral
form7, to y → F (x, y) with a = y1 and b = y0, x fixed. Combined with the
third and fourth term the whole large factor equals8∫ 1

0

(Fy(x, ty0 + (1− t)y1)− Fy(0, 0)) dt (y0 − y1),

in which we brought the other two terms inside the integral. We conclude
that

y2 − y1 = Fy(0, 0)−1

∫ 1

0

(Fy(x, ty0 + (1− t)y1)− Fy(0, 0)) dt (y0 − y1)

if y → Fy(x, y) is continuous on9

[y0, y1] = {ty0 + (1− t)y1 : 0 ≤ t ≤ 1} (14.10)

for fixed x. Therefore

|y2 − y1| ≤M0

∫ 1

0

|(Fy(x, ty0 + (1− t)y1)− Fy(0, 0)| dt |y0 − y1|. (14.11)

We now ask that (x, y)→ Fy(x, y) is continuous10 in (0, 0). In particular
this continuity requires the existence of Fy(x, y) for (x, y) close to (0, 0). To
be precise we assume that for every η > 0 an ε > 0 can be found such that
for all x and y the implication

|x| ≤ ε en |y| ≤ ε =⇒ |Fy(x, y)− Fy(0, 0)| < η (14.12)

holds. Note that instead of an ε-δ-statement we used an η, ε-statement of
continuity, with nonstrict inequalities on the left hand side of the implication
arrow. In the end we want to have that y = f(x), the limit of the x-dependent
sequence yn, satisfies |y| < ε for all x with |x| ≤ δ, for some δ > 0 depending

7Which will also do for F : X × Y → Y .
8Look at (12.6), this argument is not restricted to F : IR2 → IR!
9This notation for [y0, y1] does not require y0 < y1.

10For F (x, y) = g(y)− x this means g′ continuous in 0.
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on ε > 0 via the continuity of x → f(x, 0), and ε > 0 in turn depending on
some η > 0 to be chosen to make what follows work

From (14.11) and (14.12) we have that |x|, |y0|, |y1| ≤ ε implies

|y2 − y1| < M0η |y1 − y0| in which M0 = |Fy(0, 0)−1| > 0.

The inequality is strict unless y0 = y1, which is why we assumed y0 6= y1.
Thus the second step has

|y2 − y1| < θ |y1 − y0| = θ |y1| with θ = M0η.

By the same reasoning we have

|y3 − y2| ≤ θ |y2 − y1|,

provided |y2| < ε, and so on.
Any θ < 1 is now fine for our purposes11: as long as |yn| < ε it holds

that12

|yn+1| = |yn+1 − y0| ≤ |yn+1 − yn|︸ ︷︷ ︸
≤θ|yn−yn−1|

+ · · ·+ |y2 − y1|︸ ︷︷ ︸
<θ|y1|

+|y1| <

(θn + · · ·+ 1) |y1| <
|y1|

1− θ
≤ M0|F (x, 0)|

1− θ
,

so

|yn+1| <
M0|F (x, 0)|

1− θ
<

M0ε̃

1− θ
=

M0ε̃

1−M0η
(14.13)

if |x| ≤ δ̃. Here ε̃ > 0 is still to be chosen and δ̃ > 0 corresponds to ε̃ via the
definition13 of continuity of x→ F (x, 0) in x = 0.

Now choose

η0 <
1

M0

, (14.14)

and then, given the corresponding ε0 as in (14.12), a positive ε̃0 such that

M0ε̃0

1−M0η0

< ε0, i.e. ε̃0 < (
1

M0

− η0)ε0.

Then let δ̃0 > 0 correspond to ε̃0 > 0 via the definition14 of continuity of
x→ F (x, 0) in x = 0.

11In (3.6) we chose θ = 1
2 for the sake of simplicity only.

12In view of 1 + θ + θ2 + · · · = 1
1−θ , see Section 1.5.

13With ≤ δ̃ instead of < δ̃.
14With ≤ δ̃0 instead of < δ̃0.
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Thus the chain of alternating choices and continuity arguments is

M0 = |Fy(0, 0)−1| choose−−−→ η0 <
1

M 0

(x,y)→Fy(x,y)

continuous in (0,0)−−−−−−−−−−→ ε0

choose−−−→ ε̃0 < (
1

M0

− η0)ε0

x→F (x,0)
continuous in 0−−−−−−−−−→ δ̃0

and we finally let
δ0 = min(δ0, ε0).

Then the x-dependent sequence yn converges to a limit for every x with
|x| ≤ δ0, and the x-dependent limit y = f(x) satisfies |f(x)| < ε0.

Note that we used the map

y
Φ−→ y − Fy(0, 0)−1F (x, y), (14.15)

and the estimate
|Φ(x, y)− Φ(x, ỹ)| ≤ θ |y − ỹ| (14.16)

with θ < 1 and strict inequality if y 6= ỹ. Equation F (x, y) = 0 is via (14.15)
equivalent to y = Φ(x, y) because Fy(0, 0)−1, being the inverse of Fy(0, 0), is
invertible. For the limit y = f(x) the continuity15 of y → Φ(x, y) implies

y = lim
n→∞

yn+1 = lim
n→∞

Φ(x, yn) = Φ(x, y).

Thus

∀(x, y) ∈ B̄δ0 × B̄ε0 : F (x, y) = 0 ⇐⇒ y = f(x), (14.17)

and Theorem 14.1 is proved.

14.3 Differentiable implicit functions

The implicit function in Theorem 14.1 satisfies

|f(x)| ≤ M0|F (x, 0)|
1−M0η0

, (14.18)

in which η0 was chosen at the beginning of Section 14.2, see (14.14). Estimate
(14.18) immediately implies the continuity of f in 0 in view of the assump-
tions on x → F (x, 0). What do we need to conclude that f is differentiable
in 0?

15Continuity follows from differentiability.
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Use (12.1) to write

0 = F (x, f(x)) = F (x, 0) + F (x, f(x))− F (x, 0)

= F (x, 0) +

∫ 1

0

Fy(x, tf(x))f(x) dt = F (x, 0) + Fy(0, 0)f(x) +R(x),

with R(x) =

∫ 1

0

(Fy(x, tf(x))− Fy(0, 0))f(x) dt. (14.19)

Clearly x→ F (x, 0) differentiable in x = 0 is the natural additional assump-
tion, because then

0 = F (x, f(x)) = Fx(0, 0)x+ r(x) + Fy(0, 0)f(x) +R(x), (14.20)

with r(x) = o(|x|) as x→ 0.

Theorem 14.2. Let f be as in Theorem 14.1. If x→ F (x, 0) is differentiable
in x = 0 then also f is differentiable in x = 0 and

f ′(0) = −Fy(0, 0)−1Fx(0, 0).

The proof now follows the nose, although using the Lipschitz continuity
of f would simplify it, watch https://youtu.be/n92I8ua6K-8 and further.
Isolating f(x) in (14.20) we have

f(x) = −Fy(0, 0)−1Fx(0, 0)︸ ︷︷ ︸
f ′(0)?

x−Fy(0, 0)−1r(x)− Fy(0, 0)−1R(x)︸ ︷︷ ︸
remainder

. (14.21)

Since

|Fy(0, 0)−1r(x)| ≤M0|r(x)| and |Fy(0, 0)−1R(x)| ≤M0|R(x)|

it remains to be proved that R(x) = o(|x|) as x → 0. Given an arbitrary16

ε > 0 we need to conclude that

|R(x)| < ε|x| if 0 < |x| < δ

for some δ > 0. Since R(x) is given by (14.19) we use (14.12) again to
conclude that

|R(x)| < η̃ |f(x)| if |x| < ε̃ and |f(x)| < ε̃. (14.22)

16Earlier we only took one fixed ε0 corresponding to one fixed η0 as in (14.14).
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The latter inequality will hold if |x| < δ̃, δ̃ corresponding to ε̃ in the estab-
lished statement, via the construction and (14.18), that f is continuous in
0.

Restricting also to |x| ≤ δ0 we have

|R(x)| < η̃ |f(x)| ≤ M0η̃

1−M0η0

|F (x, 0)|,

while
|F (x, 0)| < (|Fx(0, 0)|+ εr) |x|

if |x| < δr, where δr corresponds to some arbitrarily chosen but then fixed
εr > 0 in the definition of r(x) = o(|x|).

For given ε > 0 we then choose η̃ > 0 such

M0η̃

1−M0η0

(|Fx(0, 0)|+ εr) = ε,

take the corresponding ε̃ and δ̃ as in and below (14.22). With δ = min(δ0, δr, δ̃)
the implication

0 < |x| < δ =⇒ |R(x)| < ε |x|

then holds. Since ε > 0 was arbitrary, this completes the proof that R(x)
and therebye the whole remainder term in (14.21) is o(|x|) as x → 0. This
then completes the proof of Theorem 14.2.

Exercise 14.3. Actually the continuity of f in x = 0 follows directly from (14.21)
and (14.19) if we assume that |y| = |f(x)| ≤ ε0 with ε0 chosen via (14.12) for (14.14).
Use (14.20) in the form

0 = F (x, y) = F (x, 0) + Fy(0, 0)y +

∫ 1

0
(Fy(x, y)− Fy(0, 0))y dt︸ ︷︷ ︸

in norm less than η0|y| if |x|,|y| ≤ ε0

, (14.23)

and derive that for solutions (x, y) of F (x, y) = 0 it holds that

|y| ≤ M0|F (x, 0)|
1−M0η0

if |x| ≤ ε0 and |y| ≤ ε0. (14.24)

Thus the existence of a solution of F (x, y) = 0 with |y| ≤ ε0 for every x with
|x| < δ0 ≤ ε implies that y → 0 if F (x, 0) → 0. Except for the choice of ε0

246



this statement is independent of the construction of f and the uniqueness of
the solution.

What about the other x-values in the domain B̄δ0 of f? We should have
that f is differentiable in every x with |x| ≤ δ̃0 for some 0 < δ̃0 < δ0, and

f ′(x) = −Fy(x, f(x))−1Fx(x, f(x)). (14.25)

For every x ∈ B̄δ0 the validity of (14.25) relies solely on the invertibility
of Fy(x, f(x)). Note that Fy(x, f(x)) is continuous in x = 0 because Fy is
continuous in (0, 0) and f is continuous in 0. Since Fy(0, f(0)) = Fy(0, 0) is
invertible it follows that Fy(x, f(x)) is invertible for all x with |x| ≤ δ̃0 ≤ δ0

for some δ̃0.
The continuity of

x→ f ′(x) = −(Fy(x, f(x)))−1Fx(x, f(x))

in x = x0 with |x0| ≤ δ̃0 requires the continuity of both (x, y) → Fx(x, y)
and (x, y) → Fy(x, y) in (x0, y0), and the continuity of A → A−1 in every
invertible A0 = Fy(x0, y0).

Theorem 14.4. The Implicit Function Theorem. Let X, Y and Z be com-
plete metric vector spaces, δ̄ > 0, ε̄ > 0,

B = {x ∈ X : |x| < δ̄}, C = {y ∈ Y : |y| < ε̄}.

Suppose that F : B × C → Z is continuously differentiable, and that

F (0, 0) = 0; Fy(0, 0) is invertible.

Then there exists δ̃0 > 0 and ε0 > 0 for which

∀(x, y) ∈ B̄δ̃0
×Bε0 : F (x, y) = 0 ⇐⇒ y = f(x)

holds, in which

Bδ̃0
= {x ∈ X : |x| < δ̃0}, Bε0 = {y ∈ Y : |y| < ε0},

and f : B̄δ̃0
→ Bε0 is differentiable on B̄δ0 with

x→ f ′(x) = −(Fy(x, f(x)))−1Fx(x, f(x))

continuous on B̄δ̃0
.

This theorem builds on Theorems 14.1 and 14.2, which also hold in the
general context of complete metric vector spaces. The proofs can be copy-
pasted replacing absolute values by norms in X, Y, Z and provide us with δ0

and ε0. The existence and continuity of f ′(x) requires restriction to a possibly
smaller B̄δ̃0

, as explained above and formulated in the final theorem.

247



14.4 Application to integral equations

This concerns smooth dependence of the solution of (7.15) on ξ, and

x(t) = ξ +

∫ t

0

f(x(s)) ds

as the integral equation corresponding to the differential equation x′ = f(x)
with initial condition x(0) = ξ for X-valued functions t → x(t). Assume
the existence and uniform continuity of f ′. Let x = x(ξ) be the solution of
(14.26). Then

ξ → x(ξ)

is continuously differentiable, and xξ is the solution of the integral equation
corresponding to

y′(t) = f ′(x(t))y(t) with y(0) = 1.

This is a bit of a project17. The first steps are sketched below.
For a, b ∈ IR met 0 ∈ [a, b] and ξ ∈ IR introduce

x = ξ + Φ(x) with (Φ(x))(t) =

∫ t

0

f(x(s)) ds, (14.26)

defining a new Φ(x) ∈ C([a, b]) given and (“old”) function x ∈ C([a, b]).
Theorem 14.4 is applicable if

Φ : C([a, b])→ C([a, b])

is continuously differentientable.
To see why and how, take h ∈ C([a, b]) and write

(Φ(x+ h))(t) =

∫ t

0

f(x(s) + h(s)) ds =

∫ t

0

[f(x(s) + τh(s))]10 ds

=

∫ t

0

∫ 1

0

f ′(x(s) + τh(s))h(s) dτ ds

=

∫ t

0

∫ 1

0

f ′(x(s))h(s) dτ ds+

∫ t

0

∫ 1

0

(f ′(x(s) + τh(s))− f(x(s))h(s) dτ ds︸ ︷︷ ︸
R(h;x)(t)

= (Φ′(x)h)(t) +R(h;x)(t),

17We shall also deal with pararameters in f , e.g. f(x, µ, ε) or so, see Section 16.5.
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in which

h
Φ′(x)−−−→ Φ′(x)h with (Φ′(x)h)(t) =

∫ t

0

f ′(x(s))h(s) ds, (14.27)

and

|R(h;x)(t)| = |
∫ t

0

∫ 1

0

(f ′(x(s) + τh(s))− f(x(s))h(s) dτ ds|

≤ |
∫ t

0

|
∫ 1

0

(f ′(x(s) + τh(s))− f(x(s))h(s) dτ | ds|

≤ |
∫ t

0

|
∫ 1

0

|(f ′(x(s) + τh(s))− f(x(s))h(s)| dτ | ds|

≤ |
∫ t

0

|
∫ 1

0

|f ′(x(s) + τh(s))− f(x(s)|︸ ︷︷ ︸
≤ε

|h(s)|︸ ︷︷ ︸
|h|∞

dτ | ds| ≤ (b− a)ε|h|∞

if |h|∞ ≤ δ, with δ > 0 corresponding to ε > 0 in the definition of uniform
continuity of f ′.

14.5 For later: partial differentiability =⇒ ?

Exercise 11.19 contained an example of a differentiable function F : IR2 → IR.
Differentiability of F in (x0, y0) via linear expansion rewrites as

F (x, y) = F (x0, y0) + a(x− x0) + b(y − y0) +R0(x, y),

with

|R0(x, y)| < ε max(|x− x0|, |y − y0|) if max(|x− x0|, |y − y0|) < δ,

δ > 0 depending on ε.

Exercise 14.5. Put x = x0 + h and y = y0 + k. Prove that

a = Fx(x0, y0) = lim
h→0

F (x0 + h, y0)− F (x0, y0)

h
= lim

x→x0

F (x, y0)− F (x0, y0)

x− x0
;

b = Fy(x0, y0) = lim
k→0

F (x0, y0 + k)− F (x0, y0)

k
= lim

y→y0

F (x0, y)− F (x0, y0)

y − y0
.

249



These are called the partial derivatives of F in (x0, y0). It is possible for
these derivatives to exist if the function is not differentiable. For instance, if
F : IR2 → IR is defined by F (x, y) = 0 if xy = 0 and F (x, y) = 1 if xy 6= 0
then Fx(0, 0) = Fy(0, 0) = 0, but F is not differentiable in (0, 0), why?

What do we need of x→ F (x, y) and y → F (x, y) to conclude that

F : IR× IR→ IR

is differentiable in (x0, y0)? We answer this question for

F : X × Y → IR,

x0 ∈ X, y0 ∈ Y , and assume that x→ F (x, y) and y → F (x, y) are differen-
tiable, respectivily for fixed y ∈ Bδ(y0) and fixed x ∈ Bδ(x0) on Bδ(x0) and
Bδ(y0), for some δ0 > 0.

Using Theorem 11.16 we have

F (x, y) = F (x0, y0) + F (x, y)− F (x0, y0) =

F (x0, y0) + F (x, y)− F (x0, y)︸ ︷︷ ︸
vary x

+F (x0, y)− F (x0, y0)︸ ︷︷ ︸
vary x

=

F (x0, y0) + Fx(ξ(y), y)(x− x0) + Fy(x0, η)(y − y0),

for x ∈ Bδ(x0) and y ∈ Bδ(y0) with ξ(y) ∈ (x0, x) and η ∈ (y0, y). Therefore

F (x, y) = F (x0, y0) + Fx(x0, y0)(x− x0) + Fy(x0, y0)(y − y0) +R0 (14.28)

with remainder term

R0 = (Fx(ξ(y), y)− Fx(x0, y0))(x− x0) + (Fy(x0, η)− Fy(x0, y0))(y − y0).

If
(x, y)→ Fx(x, y) and y → Fy(x0, y)

are continuous in respectively (x0, y0) and y0 then

|R0| ≤ |(Fx(ξ(y), y)−Fx(x0, y0))(x−x0)|+ |(Fy(x0, η)−Fy(x0, y0))(y−y0)| ≤

|Fx(ξ(y), y)− Fx(x0, y0)|︸ ︷︷ ︸
≤ε

|x− x0|+ |Fy(x0, η)− Fy(x0, y0)|︸ ︷︷ ︸
≤ε

|y − y0)|

≤ εmax(|x− x0|, |y − y0|) = ε |(x, y)− (x0, y0)|

if δ > 0 is sufficiently small. Thus F is differentiable in (x0, y0). A slightly
stronger condition easier to remember is given in the following theorem.
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Theorem 14.6. Let X and Y be normed spaces. If F : X × Y → IR has
“partial” functions

x→ F (x, y) en y → F (x, y)

defined and differentiable for x ∈ Bδ(x0) and y ∈ Bδ(y0) with x0 ∈ X, y0 ∈
Y, δ > 0, then continuity of

(x, y)→ Fx(x, y) ∈ X∗ and (x, y)→ Fy(x, y) ∈ Y ∗

in (x0, y0) implies that F is differentiable in (x0, y0), with F ′(x0, y0) defined
by

(h, k)
F ′(x0,y0)−−−−−→ Fx(x0, y0)h+ Fy(x0, y0)k.

Exercise 14.7. For X, Y , Z normed spaces and Φ : X × Y → Z the method via
the mean value theorem fails. Write

Φ(x, y) = Φ(x0, y0) + Φ(x, y)− Φ(x0, y)︸ ︷︷ ︸
vary x

+ Φ(x0, y)− Φ(x0, y0)︸ ︷︷ ︸
vary x

.

Assume Z is complete, x → Φ(x, y0) is continuously differentiable for x ∈ X with
|x− x0| < δx. If for each of these x the partial function y → Φ(x, y) is continuously
differentiable in y ∈ Y with |y − y0| < δy, δx, δy > 0, and if (x, y) → Φy(x, y) is
continuous in (x0, y0), then Φ is differentiable in (x0, y0). Use (12.5) to prove this
statement.

Exercise 14.8. If X, Y , Z are normed spaces, Z complete, and Φ : X × Y → Z
has partial functions with partial derivatives Φx and Φy continuous on an open set O
in X × Y , then Φ is differentiable in every point of O and Φ′ : O → L(X × Y, Z) is
continuous and defined in every (x0, y0) ∈ O.

14.6 Stationary under a constraint

Suppose Φ and F are functions of x and y differentiable in (x, y) = (0, 0),
and f is a function of x differentiable in x = 0, for which it holds that

Fx(0, 0) + Fy(0, 0)f ′(0) = 0. (14.29)

In practice, f is the implicit function in Theorems 14.1 and 14.2. Then
y = f(x) describes the solution set of F (x, y) = 0 near (0, 0), and we are
interested in the restriction of Φ to the zero set of F . Clearly

x
φ−→ φ(x) = Φ(x, f(x))
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is differentiable in x = 0, with

φ′(0) = Φx(0, 0) + Φy(0, 0)f ′(0). (14.30)

If Fy(0, 0) is invertible it follows from (14.29) and (14.30) that

φ′(0) = 0 ⇐⇒ Φx(0, 0) = Φy(0, 0)Fy(0, 0)−1Fx(0, 0). (14.31)

Invertibility of Fy(0, 0) ∈ IR means that Fy(0, 0) 6= 0, whence

φ′(0) = 0 ⇐⇒ Φx(0, 0)Fy(0, 0) = Φy(0, 0)Fx(0, 0),

equivalent to the existence of λ ∈ IR for which it holds that(
Φx(0, 0)

Φy(0, 0)

)
= λ

(
Fx(0, 0)

Fy(0, 0)

)
.

This is a special case of the statement in the Lagrange multiplier theorem
which will be discussed in Chapter 17, starting from (14.31). An instructive
example, which looks useless at first sight, is F (x, y) = g(y) with Φ(x, y) =
y − f(x). With a parameter θ and Φ(x, y) = y − f(x, θ) it’s even more
instructive, see Section 17.4.
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15 Quadratic functions and Morse’ Lemma

This chapter is about a theorem which is not very special in the case of
X = IR, when it says that a C2-function f : IR→ IR with f(0) = f ′(0) = 0
is near x = 0 is just the function

x→ f ′′(0)

2
x2

in disguise1, provided f ′′(0) 6= 0. But such a statement also holds for a
C3-function f : IR→ IR with f(0) = f ′(0) = f ′′(0) = 0 and

x→ f ′′′(0)

6
x6,

provided f ′′′(0) 6= 0, and so on.
Theorem 15.10 below does not generalise to any such other case. It can be

formulated and proved exclusively for functions F : X → IR with F (0) = 0
in IR, F ′(0) = 0 in X∗ = L(X, IR), and F ′′(0) invertible in a space to be
introduced below2. So let X be a complete metric vector space. Its dual space
X∗ is by definition the space of all Lipschitz continuous linear functions from
X to IR. This space is itself a complete metric vector space, if we define the
norm of φ ∈ X∗ to be the smallest Lipschitz constant of φ. It is customary3

to write
〈φ, x〉 = φ(x) for φ ∈ X∗ and x ∈ X.

For a function F : X → IR differentiable in x = ξ ∈ X we thus write

F (x) = F (ξ) + 〈F ′(ξ), x− ξ〉+Rξ(x), Rξ(x) = o(|x− ξ|) as x→ ξ,

and we are interested in a local description of F near points where this holds
with F ′(ξ) = 0. For simplicity we assume that ξ = 0 and F (0) = 0.

The simplest nontrivial examples of such functions are then (purely)
quadratic functions, i.e. functions Q : X → IR of the form

X 3 x Q−→ (Sx)(x) = 〈Sx, x〉 ∈ IR (15.1)

in which S is a Lipschitz continuous linear map 4

X 3 x S−→ S(x) = Sx ∈ X∗

1Yes, we will make this statement explicit.
2We use the notation (11.15) introduced in Chapter 11.4.
3Though annoying at first.
4L(X,X∗) is the complete metric vector space of all Lipschitz continuous linear maps

X
S−→ X∗.
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from X to X∗.

Exercise 15.1. Show that it is no restriction to assume that 〈Sx, y〉 = 〈Sy, x〉 for
all x, y ∈ X. Hint: assume that Q(x, x) = 〈Ax, x〉 with A ∈ L(X,X∗) and write
B(x, y) = 〈Ax, x〉 as in Section 30.4. Use B(x, y) and B(y, x) to construct such an
S ∈ L(X,X∗) with 〈Ax, x〉 = 〈Sx, x〉.

Exercise 15.2. Show that Q is differentiable in 0 and that Q′(0) = 0 in X∗.

Now let O ⊂ X open, 0 ∈ O and F : O → IR differentiable, and assume
F (0) = 0 in IR and F ′(0) = 0 in X∗. Under which conditions is it true that
a coordinate transformation in X turns F into a quadratic function Q as in
(15.1)? If so we say that F and Q are conjugate functions.

15.1 Intermezzo: second order partial derivatives

Theorem 15.3. Let g : IR2 → IR have partial derivatives

(x, y)→ ∂g

∂x
= gx(x, y) and (x, y)→ ∂g

∂y
= gy(x, y)

differentiable in (x0, y0). Then the second order partial derivatives exist in
(x0, y0) and

gyx(x0, y0) =
∂

∂x

∂g

∂y
=

∂

∂y

∂g

∂x
= gxy(x0, y0).

For the proof assume that (x0, y0) = (0, 0). The assumptions imply the
existence of the first order partial derivatives near (0, 0). The differentiability
of gy in (0, 0) and Theorem 10.7 applied to

y → g(x, y)− g(0, y)

for x 6= 0 and y 6= 0 small imply that for some x-dependent η between 0 and
y we have

g(x, y)− g(0, y)− g(x, 0) + g(0, 0) = (gy(x, η)− gy(0, η))y

= (gy(0, 0)+gyx(0, 0)x+gyy(0, 0)η+R(x, η)−gy(0, 0)−gyy(0, 0)η−R(0, η))y

= (gyx(0, 0)x+R(x, η)−R(0, η))y,
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in which

R(x, η) = o(
√
x2 + η2) and so also R(0, η) = o(η) as

√
x2 + η2 → 0.

The differentiability of
(x, y)→ gy(x, y)

in (0, 0) has been used twice, with the same “remainder function” R. Since
|η| ≤ |y| it follows that

g(x, y)− g(0, y)− g(x, 0) + g(0, 0) = gyx(0, 0)xy + y o(r)

= gyx(0, 0)xy + o(r2) = gxy(0, 0)xy + o(r2) (15.2)

for r =
√
x2 + y2 → 0. The second version under (15.2) follows by inter-

changing the roles of x and y and implies gyx(0, 0) = gxy(0, 0).

15.2 Second derivatives of functions on normed spaces

If we introduce f(t) = F (tx) as a function of t ∈ [0, 1] for given small x ∈ X,
then f is differentiable for t,

f ′(t) = F ′(tx)(x) = 〈F ′(tx), x〉, (15.3)

and f(0) = 0 = f ′(0) in IR. Now assume that also f ′ is differentiable with
f ′′ ∈ C([0, 1]). Then two integrations by parts show that

F (x) = f(1) =

∫ 1

0

(1− t)f ′′(t) dt, (15.4)

see also Theorem 13.7.

Exercise 15.4. Give a direct proof of (15.3).

The differentiability of t → F ′(tx)x = f ′(t) will follow from differentia-
bility of

x→ F ′(x) ∈ X∗

in points ξ near 0, which means that

F ′(x) = F ′(ξ) + F ′′(ξ)(x− ξ) +R(x; ξ), (15.5)
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with F ′′(ξ) : X → X∗ in L(X,X∗) and

|R(x; ξ)|
X∗ = o(|x− ξ|

X
)

as |x− ξ|
X
→ 0.

With ξ = t0x and x replaced by tx in (15.5) this becomes

F ′(tx) = F ′(t0x) + F ′′(t0x)(tx− t0x) +R(tx; t0x)

= F ′(t0x) + (t− t0)F ′′(t0x)x+R(tx; t0x)

in X∗, and (15.3) then gives

f ′(t) = 〈F ′(tx), x〉 = 〈F ′(t0x, x〉︸ ︷︷ ︸
f ′(t0)

+(t− t0)〈F ′′(t0x)x), x〉+ 〈R(tx; t0x), x〉.

We conclude that f ′ is differentiable in every t ∈ [0, 1]) for which F ′ is
differentiable in tx, with

f ′′(t) = 〈F ′′(tx)x, x〉. (15.6)

Continuity of F ′′(x) then implies the continuity of f ′′. So we assume that
x→ F ′(x) ∈ L(X,X∗) is continuous in O.

15.3 The second derivative as symmetric bilinear form

Theorem 15.5. Let x → F ′(x) ∈ X∗ be differentiable in x = ξ. With
F ′′(ξ)h ∈ X∗ for all h ∈ X∗ and then (F ′′(ξ)h)k ∈ IR for all k ∈ X∗, we
have that

(h, k)
F ′′(ξ)−−−→ (F ′′(ξ)h)k = 〈F ′′(ξ)h, k〉 ∈ IR (15.7)

is a bilinear form. This form is symmetric:

〈F ′′(ξ)h, k〉 = 〈F ′′(ξ)k, h〉 for all h, k ∈ X∗.

Theorem 15.5 is proved by Exercise 15.6 and Theorem 15.3.

Exercise 15.6. For h and k in X and x → F ′(x) differentiable in x = 0, the
function

(s, t)
g−→ F (sh+ tk)

has mixed partial derivatives in (0, 0) given by gst(0, 0) = F ′′(0)k h and gts(0, 0) =
F ′′(0)h k. Prove this directly from the definitions.
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For S = F ′′(ξ) ∈ L(X,X∗) it follows that

〈Sh, k〉 = 〈Sk, h〉,

which we see as the defining property of

S ∈ S(X,X∗) ⊂ L(X,X∗). (15.8)

With also F ′′(tx) ∈ S(X,X∗) we have from (15.4) that

F (x) =

∫ 1

0

(1− t)〈F ′′(tx)x, x〉 dt = 〈
∫ 1

0

(1− t)F ′′(tx)x dt, x〉,

whence

F (x) = 〈
∫ 1

0

(1− t)F ′′(tx) dt x, x〉 = 〈Φxx, x〉, (15.9)

in which

Φx =

∫ 1

0

(1− t)F ′′(tx) dt ∈ S(X,X∗). (15.10)

Here we use a subscript to denote the x-dependence of the operator Φx which
acts on X.

It follows that

F (x) =
1

2
〈F ′′(0)x, x〉+ 〈

∫ 1

0

(1− t)(F ′′(tx)− F ′′(0)) dt x, x〉

= 〈Φ0x, x〉+ o(|x|2
X

), (15.11)

as |x|
X
→ 0 if F ′′ is continuous in x = 0. The quadratic function defined by

Q0(x, x) = 〈Φ0x, x〉 =
1

2
〈F ′′(0)x, x〉 (15.12)

=the obvious candidate for a conjugate to

F (x) = 〈Φxx, x〉 =

∫ 1

0

(1− t)〈F ′′(tx)x, x〉 dt.

Exercise 15.7. Check that continuity of F ′′ in 0 means that for every ε > 0 a δ > 0
exists such that

0 < |x|
X
< δ =⇒ |(F ′′(x)− F ′′(0))y|

X∗ < ε|y|
X

for all 0 6= y ∈ X.
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Exercise 15.8. Show that

Q0(x, x) = Fx1x1(0, 0)x2
1 + 2Fx1x2(0, 0)x1x2 + Fx2x2(0, 0)x2

2

if X = IR2 and x = (x1, x2) ∈ IR2.

Exercise 15.9. Show there exists r > 0 such that

F (x) =
1

2
〈F ′′(θ(x))x, x〉

for some θ = θ(x) ∈ [0, 1] whenever x ∈ X and |x| < r.

15.4 An equation for a change of coordinates

We ask if
x→ 〈Φxx, x〉 en y → 〈Φ0y, y〉

are the same functions, up to a change of coordinates, which we shall take of
the special form

y = Txx

with Tx ∈ L(X,X). Again we use a subscript to denote the x-dependence,
this time of Tx which acts act on X. Thus, given x → Φx ∈ L(X,X∗), we
look for x→ Tx ∈ L(X,X) such that

〈Φxx, x〉 = (Φxx)x = (Φ0y) y = 〈Φ0y, y〉 (15.13)

for x close to x = 0.
Dropping the x-subscripts we need

〈Φx, x〉 = 〈Φ0Tx, Tx〉 = (Φ0Tx)(Tx) = ((Φ0Tx) ◦ T )(x) = 〈(Φ0Tx) ◦ T, x〉,

which will certainly hold if

Φx = (Φ0T x) ◦ T

in X∗ for all x ∈ X, or
Φh = (Φ0T h) ◦ T

for all h ∈ X for that matter. Thus (15.13) holds if the map

h→ Φh is equal to the map h→ Φ0Th ◦ T = κ0(T, T )h. (15.14)
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This is an L(X,X∗)-valued “quadratic” equation for T ∈ L(X,X).
Abstractly we may write (15.14) as

κ0(T, T ) = Φ, (15.15)

in which
X ×X κ0−→ L(X,X∗)

is the bilinear form defined by

h→ κ0(T, U)h = Φ0Th ◦ U.

Clearly T = I is a solution of (15.14) when Φ = Φ0. We want a solution
T = Tx for Φ = Φx given by (15.10) close to Φ0. If you like you can skip
Section 15.5 and jump to (15.26), or even Exercise 15.13. Just put T = I+H
in (15.14) and see what you can get5.

15.5 A solution via the implicit function theorem?

The implicit function theorem is applicable if the derivative of

T → κ0(T, T )

is invertible in T = I. The continuity of x→ Φx in x = 0 is then the minimal
assumption to obtain a solution Tx close to I for small x. Thus F ′′ continuous
in 0 is a necessary condition to get started.

For the derivative with respect to T in I we write T = I + H, H small.
Then (15.15) rewrites as

Φ0Hh+ Φ0h ◦H + Φ0Hh ◦H︸ ︷︷ ︸
χ0(H)h

= (Φx − Φ0)h (15.16)

for all h ∈ X. The left hand side defines an X∗-valued function

H
χ0−→ χ0(H)

quadratic in H, with Φ0 in the “coefficients” of the two linear terms and one
quadratic term. Writing (15.16) as

χ0(H) = Φx − Φ0, (15.17)

the right hand side is in S(X,X∗).

5But that’s not how I found equation (15.27).
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Look at (15.16). Clearly the derivative of χ0 in H = 0 is given by

h
χ′0(I)H
−−−−→ Φ0Hh+ Φ0h ◦H.

Since χ′0(0)H ∈ L(X,X∗) is characterised by

〈χ′0(0)Hh, k〉 = 〈Φ0Hh, k〉+ 〈Φ0Hk, h〉, (15.18)

we have that χ′0(0)H ∈ S(X,X∗). Thus the invertibility condition cannot be
that

∀h∈X : χ′0(I)H = Φ0Hh+ Φ0h ◦H = Ch (15.19)

is solvable for every C ∈ L(X,X∗), while (15.19) is underdetermined for
C ∈ S(X,X∗).

A handy6 extra condition on H is that Φ0H ∈ S(X,X∗). Then (15.18)
reduces to

〈χ′0(0)Hh, k〉 = 2〈Φ0Hh, k〉, (15.20)

and the invertibility condition (15.19) becomes

2Φ0H = C, (15.21)

which is solvable for H as

H =
1

2
Φ−1

0 C (15.22)

for every C ∈ L(X,X∗).
Only C ∈ S(X,X∗) can be relevant as we continue: we apply the implicit

function theorem to

{H ∈ L(X,X∗) : Φ0H ∈ S(X,X∗)} χ0−→ S(X,X∗)

around H = 0 and x = 0. With K = Φ0H as new independent variable this
becomes7

2Kh+Kh ◦ Φ−1
0 K) = (Φx − Φ0)h (15.23)

for all h ∈ X, which amounts to the equation

2K + T0(K) = Cx = Φx − Φ0 (15.24)

for K ∈ S(X,X∗), in which the quadratic term is given by

T0 : S(X,X∗)→ S(X,X∗), T0(K)h = Kh ◦ (Φ−1
0 K) (15.25)

for all h ∈ X, and
X 3 x→ Cx ∈ S(X,X∗)

is continuous in x = 0 with C0 = 0.

6As it turns out is how Duistermaat and Kolk put it.
7Equation (15.23) follows directly from (15.16).
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15.6 Yes, but main result via power series instead

Theorem 15.10. Let X be a complete metric vector space, F : X → IR twice
continuously differentiable near x = 0. If F ′(0) = 0 and F ′′(0) ∈ L(X,X∗)
is invertible with inverse in L(X,X∗), then there is a transformation of the
form

y = Txx = (I + Φ−1
0 Kx)x,

in which

Φ0 =
1

2
F ′′(0)

and
x→ Kx ∈ S(X,X∗)

is continuous with K0 = 0, such that

F (x) = 〈Φ0Txx, Txx〉,

near x = 0.

Exercise 15.11. Prove Theorem 15.10 by applying the implicit function theorem
to (15.23).

Remark 15.12. If F ′′(0) is positive definite in the sense that for some β > 0
it holds that

〈F ′′(0)(x), x〉 ≥ β|x|2
X

for all x ∈ X, then X is really a Hilbert8 space in disguise because

x→
√
〈F ′′(0)(x), x〉

then defines an equivalent9 norm which comes from the symmetric bounded
coercive bilinear form (x, y)→ 〈F ′′(0)(x), y〉. More on such forms in Section
30.4.

8See Chapter 30.
9Two norms are equivalent if there exists constants M1 > 0 and M2 > 0 such that

1

M1
|x|

2
≤ |x|

1
≤M2|x|

2
for all x.
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In fact there’s a direct way to solve (15.15) in the space

{T ∈ L(X,X∗) : Φ0T ∈ S(X,X∗)}. (15.26)

Via T = I +H and (15.16) equation (15.15) was equivalent to (15.23) for

K = Φ0H ∈ S(X,X∗).

We now return to an equation for H. Write (15.23) as

2Kh+Kh ◦ (H) = (Φx − Φ0)h

and apply it to k ∈ X. Then

〈2Kh, k〉+ 〈Kh ◦ (H), k〉︸ ︷︷ ︸
〈Kh,Hk〉=〈KHk,h〉

= 〈(Φx − Φ0)h, k〉

for all h, k ∈ X. The first and the third term are symmetric in h and k. It
follows that

2K +KH = Φx − Φ0,

and applying Φ−1
0 , the equation to solve for H, still under the assumption

that Φ0H ∈ S(X,X∗), is

2H +HH = Φ−1
0 Φ− I = P, (15.27)

in which P ∈ L(X,X∗) also has Φ0P ∈ S(X,X∗).

Exercise 15.13. Derive (15.27) directly from (15.15), the substitution T = I +H,
and the assumption that Φ0H ∈ S(X,X∗).

In fact

P = Φ−1
0 Φ− I = Φ−1

0 (Φ− Φ0) = Φ−1
0

∫ 1

0

(1− t)(F ′′(tx)− F ′′(0)) dt

= 2F ′′(0)−1

∫ 1

0

(1−t)(F ′′(tx)−F ′′(0)) dt = 2

∫ 1

0

(1−t)(F ′′(0)−1F ′′(tx)−I) dt,

and the equation for H to solve is

I + 2H +H2 = I + P in L(X) = L(X,X). (15.28)
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It follows that T = I + H is the square root of I + P , and we have some
experience on solving that equation if P is not too large, see Exercise 11.11.
The same power series tricks10 give

T = I+H = I+
1

2
P − 1

2!

1

2

1

2
P 2 +

1

3!

1

2

1

2

3

2
P 3− 1

4!

1

2

1

2

3

2

5

2
P 4 + · · · (15.29)

if |P | < 1, and so y = Txx with

Tx = I + Ex −
1

2!
E2
x +

1 · 3
3!

E3
x −

1 · 3 · 5
4!

E4
x + · · · (15.30)

and

Ex =

∫ 1

0

(1− t)(F ′′(0)−1F ′′(tx)− I) dt, (15.31)

which allows a more general setting11. In particular the assumption that
F ′′(0) is invertible may be relaxed. The basic assumption needed is that
|Ex| < 1

2
, the norm being the norm in L(X), i.e. the best Lipschitz constant.

Exercise 15.14. See if you can give a direct derivation of (15.30) and (15.31) as
giving the transformation y = Txx that conjugates a real valued function F (x) of
x ∈ IR having F (0) = F ′(0) = 0 and F ′′(0) 6= 0 with the function g(y) = 1

2F
′′(0)y2.

What do you need to assume on F?

10Copy/paste what you know by now for the case that P,H ∈ IR.
11Think of examples in which F ′′(0) is not invertible in L(X).

263



16 Analysis unpacked: more variables

In this chapter we are concerned with differential and integral calculus for
functions from X to Y in which X and Y are Euclidean spaces. We begin
with X = Y = IR2, with (rectangular) coordinates x, y ∈ IR for X = IR2 and
coordinates u, v ∈ IR for Y = IR2. Later we shall perhaps prefer x1, x2 ∈ IR
for x = (x1, x2) ∈ X = IR2 and y1, y2 ∈ IR for y = (y1, y2) ∈ Y = IR2.

We frequently use polar coordinates r, θ and the transformation

x = r cos θ;

y = r sin θ,

to describe points (x, y) 6= (0, 0) in the plane via their distance r =
√
x2 + y2

to the origin (0, 0) and the angle θ between the halfline

{(tx, ty) : t ≥ 0}

and the positive x-axis. Whenever convenient we identify IR2 with the set IC
of complex numbers

z = x+ iy,

and call |z| = r the absolute value of z, the distance from z to the origin
z = 0. The angle θ = arg z is called the argument of z, uniquely determined
modulo 2π for every z 6= 0.

Next to complex addition

w+ z = (u+ iv) + (x+ iy) = u+x+ i(v+ y) = (u+x, v+ y) = (u, v) + (x, y)

we also have complex mulitplication

wz = (u+iv)(x+iy) = ux−vy+i(uy+vx) = (ux−vy, uy+vx) = (u, v)(x, y),

based on the rule i2 = −1, for w = u+ iv = (u, v) and z = x+ iy = (x, y) ∈
IR2 = IC. The rules for addition and multiplication in IC are the same as the
rules for addition and multiplication in IR. We also have

|w + z| ≤ |w|+ |z| and |wz| = |w| |z|.

Very important is the rule formulated in this exercise.

Exercise 16.1. The summation rules for cos and sin imply that

z1z2 = r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)) for zj = rj(cos θj + i sin θj), j = 1, 2.
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This rule is one many reasons to write

cos θ + i sin θ = exp(iθ) and exp(z) = exp(x) exp(iy)

We note that polar coordinates are not needed to prove that for every
nonzero γ the map

z → γz (16.1)

is a rotation1 around 0 followed by a point multiplication with 0 as fixed
point, see (16.8) and Exercise 16.5.

16.1 Intermezzo: algebra’s main theorem

The set IC is algebraically closed: every polynomial

P (z) =
n−1∑
k=0

αkz
k + zn (16.2)

with α0, . . . , αn−1 ∈ IC and n ≥ 2 has a zero z1 ∈ IC. Long division then gives
that

P (z) =
n−1∑
k=0

αkz
k + zn = (z − z1)Q(z),

in which

Q(z) =
n−2∑
k=0

βkz
k + zn−1,

with β0, . . . , βn−2 ∈ IC. In n steps it follows that

P (z) = (z − z1) · · · (z − zn) with z1, . . . , zn ∈ IC. (16.3)

www-groups.dcs.st-and.ac.uk/history/HistTopics/Fund_theorem_of_algebra.html

Here’s in modern language how Argand saw this. Consider the real valued
function

(x, y) = x+ iy = z → |P (z)| = f(x, y).

If P (z) does not have any zero’s in IC, then f must have a global positive
minimum and that’s not possible.

1Unless γ ∈ IR+.
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Let’s first show the latter statement. In terms of P (z) this would mean
that for some z0 it holds that |P (z)| ≥ |P (z0)| > 0 for all z ∈ IC. Now use
the algebra in IC to write

w = z − z0 and Q(w) =
P (z)

P (z0)
.

Then

Q(w) = 1 +
n∑
k=1

γkw
k (16.4)

and

w → |Q(w)| = |P (z|)
|P (z0)|

has a globale minimum Q(0) = 1. Thus Q(w) cannot have values inside the
unit disk. Now write w = r exp(iθ) and γk = ck exp(iφk). Via Exercise 16.1
we have

Q(w) = 1 +
n∑
k=1

ckr
k exp(i(φk + kθ)), (16.5)

an expression2 in which the φk are parameters and r > 0 can be taken as
small as we want. Exercise 16.2 below shows that all ck are zero, meaning
that Q(w) = 1 for all w ∈ IC and hence |P (z)| = |P (z0)| for all z ∈ IC,
contradicting (16.2).

Exercise 16.2. Assume some first ck is nonzero. Show that |Q(w)| has values
smaller than 1. Hint: you may draw inspiration from the estimate in (16.6) below.

So why would f have a global minimum? Observe that f is continuous,
so it has a minimum mr and a maximum Mr on the closed disk

Dr = {(x, y) : x2 + y2 ≤ r2}.

Clearly mr is nonincreasing in r. We wish to show that for r larger than some
r1 this minimum mr does niet increase anymore, whence we can conclude that
f has a global positive minimum on IR2. This conclusion will follow from an
easy large lower estimate for f on large circles.

Indeed, with z = x + iy and x2 + y2 = r2 we have for |P (z)| = f(x, y)
that

|P (z)| = |
n−1∑
k=0

αkz
k + zn| ≥ |zn| − |

n−1∑
k=0

αkz
k| ≥ rn −

n−1∑
k=0

|αk|rk. (16.6)

2Ptolemaeus would have liked this.
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On the circle defined by x2 + y2 = r2 it then follows that

f(x, y) ≥ rn−1(r −
n−1∑
k=0

|αk|︸ ︷︷ ︸
r0

) = M r,

a lower bound which is positive for r larger than

r0 =
n−1∑
k=0

|αk|.

For r = r0 we have M r0
= 0 < mr0 . Clearly M r increases to ∞ as r

increases from r0 to ∞. Thus for some r1 > r0 we have

M r1
> mr0 ≥ mr1 ,

and then also
f(x, y) > mr1 for all (x, y) 6∈ Dr1 .

It follows that mr1 is the global minimum of f on the whole of IR2 and the
contradiction arises as explained above. This completes this truly remarkable
proof in which elegant algebra, basically algebraic estimates, and rock solid
analysis combine.

16.2 Complex and multivariate differential calculus

In Section 9.2 we saw, for every choice of coefficients αn ∈ IR indexed by
n ∈ IN0, that

x→ α0 + α1x+ α2x
2 + · · · =

∞∑
n=1

αnx
n

defines a function on
BR = {x ∈ IR : |x| < R}

for some maximal R ∈ [0,∞], and that differential calculus for this function
is just as differential calculus for polynomials.

The point to make now is that Theorem 9.3 and its proof carry over
by copy-paste to complex valued power series with complex coefficients and
variables. Also, differentiability via (10.1) becomes complex differentiability
for functions3

H : IC→ IC,

3For convenience we assume H is globally defined.
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but now via
w = H(z) = H(z0) + γ(z − z0) + T (z; z0) (16.7)

= H(z0) +H ′(z0)(z − z0) + o(|z − z0|)
as z → z0.

If we unpack (16.7), writing

z = x+ iy, w = u+ iv, H(z) = F (x, y) + iG(x, y), u = F (x, y), v = G(x, y),

we can view H, via the identification IC = IR2, as a function

H : IR2 → IR2

with components H1 = F and H2 = G. With h = x− x0 en k = y − y0 the
linear term (16.7) unpacks as

γ(z − z0) = (α + iβ)(h+ ik) = αh− βk + i(βh+ αk).

This corresponds to (
αh− βk
βh+ αk

)
=

(
α − β
β α

)(
h

k

)
, (16.8)

in which the matrix describes the map (16.1).
The complex expansion (16.7) rewrites as

u = F (x, y) = F (x0, y0) + a(x− x0) + b(y − y0) +R(x, y;x0, y0);

v = G(x, y) = G(x0, y0) + c(x− x0) + d(y − y0) + S(x, y;x0, y0),

with remainder terms R and S defined via T = R + iS, and a special form
of the 2× 2 matrix A in the linear expansion around (x0, y0), namely(

a b

c d

)
= A =

(
α − β
β α

)
.

Changing to notation with indices,(
H1(x1, x2)

H2(x1, x2)

)
︸ ︷︷ ︸

H(x)

=

(
H1(a1, a2)

H2(a1, a2)

)
︸ ︷︷ ︸

H(a)

+

(
A11(x1 − a1) + A12(x2 − a2)

A21(x1 − a1) + A22(x2 − a2)

)
︸ ︷︷ ︸

H′(a)(x−a)=A(x−a)

+R,

R =

(
R1(x1, x2; a1, a2)

R2(x1, x2; a1, a2)

)
,

we thus have the following theorem.
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Theorem 16.3. Let H : IR2 → IR2 be differentiable in a = (a1, a2) with H ′(a)
given by the matrix A. Then H1 + iH2 : IC→ IC is complex differentiable in
a1 + ia2 if and only if

A11 = A22 and A12 = −A21.

Exercise 16.4. Prove Theorem 16.3.

Exercise 16.5. Examine (16.1) using (16.8).

So far for H. Returning to F : IR2 → IR2 (possibly complex) differentiable
in a = (a1, a2), F ′(a) given by the matrix A, we write h1 = x1 − a1, h2 =
x2 − a2 and

Ah =

(
(Ah)1

(Ah)2

)
=

(
A11h1 + A12h2

A21h1 + A22h2

)
=

(
A11 A12

A21 A22

)(
h1

h2

)
, (16.9)

which we think of as F ′(a) acting on h.
A more algebraic point of view is to be fine with Ah as a product of A

and h. Compare the notation4 to on the one hand the notation with A0

acting on h and the norm of A0 in L(X, Y ), and on the other hand with A0

algebraically multiplying h. In the latter context we can estimate

|(Ah)1| = |A11h1 + A12h2| ≤
√
A2

11 + A2
12

√
h2

1 + h2
2;

|(Ah)2| = |A21h1 + A22h2| ≤
√
A2

21 + A2
22

√
h2

1 + h2
2,

to conclude that

((Ah)1)2 + ((Ah)2)2 ≤ (A2
11 + A2

12 + A2
21 + A2

22)(h2
1 + h2

2),

meaning for the product of A and h that5

|Ah|
2
≤ |A|

2
|h|

2
. (16.10)

In (16.10) the “Euclidean” lengths of h = x− a, Ah and A appear6, in each
case the square root of the sum of the squared entries. You may well prefer
here to forget7 all about the norm of

h
A−→ Ah

4We dropped the zero-subcripts.
5This generalises, see (18.6).
6Actually this 2-norm of A is called the Frobenius norm of A.
7If not note that (16.10) says that this operator norm of A is at most equal to |A|

2
.
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in L(IR2, IR2): going back to

F (x) = F (a) + A(x− a) +R(x; a) and |R(x; a)|
2

= o(|x− a|
2
) (16.11)

as |x− a|
2
→ 0, except for the subscript 2, the condition for differentiability

is undistinguishable from differentiability of F : IR → IR and generalises to
F : IRm → IRn.

Looking at the “partial” functions

x1 → F1(x1, x2), x2 → F1(x1, x2), x1 → F2(x1, x2), x2 → F2(x1, x2)

we find

A =

(
A11 A12

A21 A22

)
=

(∂F1

∂x1
(a1, a2) ∂F1

∂x2
(a1, a2)

∂F2

∂x1
(a1, a2) ∂F2

∂x2
(a1, a2)

)
= F ′(a) = DF (a) (16.12)

in every point x = (x1, x2) = (a1, a2) = a where F is differentiable.
We often identify the linear map8 F ′(a) = DF (a) with its Jacobi matrix

∂F

∂x
=

(∂F1

∂x1

∂F1

∂x2

∂F2

∂x1

∂F2

∂x2

)
evaluated in x = a, but the existence of this matrix is not sufficient for
differentiability. We examined this issue in Section 14.5 for F : IR2 → IR and
F : X × Y → IR.

Exercise 16.6. State and prove a theorem for F : IR2 → IR by specializing Theorem
14.6 to X = Y = IR and generalise to F : IRm → IR and F : IRm → IRn.

16.3 Cauchy-Riemann equations, harmonic functions

Have another look at Theorem 16.3 and let H be complex differentiable9 in
z0 = x0 + iy0. We use the correspondence

z = x+ iy ∈ IC↔ (x, y) ∈ IR2 and w = u+ iv ∈ IC↔ (u, v) ∈ IR2

and write
H ′(z0) = α + iβ.

8Both notations are widely used.
9We now prefer a notation with (x, y) and (x0, y0).
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Exercise 16.7. Show that α and β are then given by

α =
∂u

∂x
and β = −∂u

∂y
, (16.13)

evaluated in (x, y) = (x0, y0).

Thus Theorem 16.3 says that u and v, as functions of x and y, must satisfy
the so-called Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
(16.14)

in (x, y) = (x0, y0).
If these partial derivatives exist and are by themselves differentiable, say

for all (x, y) ∈ IR2 in an open ball containing (x0, y0), then we would have

∂2u

∂x2
=

∂

∂x

∂v

∂y
=

∂

∂y

∂v

∂x
= − ∂

∂y

∂u

∂y
= −∂

2u

∂y2
,

but only if the order of differentiation does not matter, and likewise for
v(x, y). If so, we conclude that in (x0, y0) it holds that

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0 =

∂2v

∂x2
+
∂2v

∂y2
= ∆v, (16.15)

in which the differential operator ∆, the Laplacian, occurs. This ∆ is a
feast to study, but not now. Here we want to be sure under what conditions
(16.15) makes sense. We copy Theorem 15.3 from Section 15.1.

Theorem 16.8. Let v : IR2 → IR have the property that

(x, y)→ ∂v

∂x
= vx(x, y) and (x, y)→ ∂v

∂y
= vy(x, y)

are differentiable in (x0, y0). Then the second order partial derivatives in
(x0, y0) exist, and

vyx(x0, y0) = vxy(x0, y0).

Twice differentiable functions u(x, y) and v(x, y) that satisfy (16.15) on an
open set O ⊂ IR2 are called harmonic. As an example, the functions

(x, y)→ Re(x+ iy)n en (x, y)→ Im(x+ iy)n

are harmonic on the whole of IR2. These are the so-called homogeneous
harmonic polynomials of degree n ∈ IN.
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Referring to Section 15.3, twice differentiable means that the map

(x, y)→ (
∂u

∂x

∂u

∂y
)

is itself differentiable. With the chain rule it follows that

(x, y)→ (
∂u

∂x

∂u

∂y
)→ ∂u

∂x
and (x, y)→ (

∂u

∂x

∂u

∂y
)→ ∂u

∂y

are differentiable. Thus ∆u = 0 has a meaning as

∂2u

∂x2
+
∂2u

∂y2
= 0, (16.16)

without any v interfering10.
There are many non-constant solutions of (16.16). Indeed, you should

have noticed

x, y, x2−y2, 2xy, x3−3xy2, 3x2y−y3, x4−6x2y2+y4, 4x3y−4xy3, . . . (16.17)

above.

Exercise 16.9. Unpack w = exp(z) = exp(x + iy) starting from the power series
for exp(z) and verify that exp(z) = exp(x) exp(iy) with exp(iy) = cosx + i sinx.
Explain why this leads to the concept of multivalued11 functions

w → logw = ln |w|+ i argw.

.

16.4 Monomials and power series again

This should speak for itself. With

H =
|x− a|
r

we have that

xm = am +mam−1(x− a) +Ra,m(x), |Ra,m(x)| ≤ m(m− 1)rm

2
H2.

10Not a priori.
11Which are thereby not functions.
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Likewise for |y|, |b| ≤ s, we have

yn = bn+nbn−1(y−b)+Rb,n(y), |Rb,n(y)| ≤ n(n− 1)sm

2
K2, K =

|y − b|
s

.

Multiplication then gives12

xmyn = ambn +mam−1bn(x− a) + nambn−1(y − b)︸ ︷︷ ︸
linear part

+R2 +R21 +R12 +R2,2︸ ︷︷ ︸
Ra,b,m,n(x,y)

,

in which we identify

R2 = bnRa,m(x) +mnam−1bn−1(x− a)(y − b) + amRb,n(y),

R21 = mam−1(x− a)Rb,n(y),

R12 = nbn−1Ra,m(x)(y − b),
R2,2 = Ra,m(x)Rb,n(y).

With rough but obvious estimates

|R2,2| ≤
1

4
m2n2rmsnH2K2,

|R21| ≤
1

2
m2nrmsnH2K ≤ 1

2
m2n2rmsnH2K,

|R12| ≤
1

2
mn2rmsnHK2 ≤ 1

2
m2n2rmsnHK2,

and also, a little less obvious maybe,

|R2| ≤
1

4
(m2 + n2)rmsn(H2 +K2),

we conclude that

xmyn = ambn +mam−1bn(x− a) + nambn−1(y − b) +Ra,b,m,n(x, y)︸ ︷︷ ︸
R

, (16.18)

in which

|R| ≤ rmsn

4

(
m2n2HK(HK + 2H + 2K) + (m2 + n2)(H2 +K2)

)
. (16.19)

The perhaps less obvious estimate for R2 follows via

|R2 ≤ |snRa,m(x)|+ |mnrm−1sn−1(x− a)(y − b)|+ |rmRb,n(y)| ≤
12This is a bit like (11.5).

273



=
m(m− 1)rmsn

2
H2 +mnrmsnHK +

n(n− 1)rmsn

2
K2 =

rmsn

4

(
m(m− 1) mn

mn n(n− 1)

)(
H

K

)
·
(
H

K

)
,

and the 2-norm of the matrix in this expression being less than m2 + n2.
We now multiply (16.18) by coefficients αmn and the estimates forR2,21,12,22

in
R = Ra,b,m,n(x, y) = R2 +R21 +R12 +R2,2

by coefficients |αmn|, and take the sum over m,n ∈ IN0. Clearly a sufficient
condition to conclude that on the rectangle

Rrs = {(x, y) ∈ IR2 : |x| < r, |y| < s}

the power series

P (x, y) =
∑

m,n∈IN0

αmnx
myn

exists as a differentiable function, with

Px(x, y) =
∑

m,n∈IN0

mαmnx
m−1yn and Py(x, y) =

∑
m,n∈IN0

nαmnx
myn−1,

is that the series∑
m,n∈IN0

(m2 + n2) |αmn|rmsn and
∑

m,n∈IN0

m2n2 |αmn|rmsn (16.20)

converge. We then have

P (x, y) = Px(a, b)(x− a) + Py(a, b)(y − b) +R(x, y; a, b),

with R(x, y; a, b) the sum of four remainder terms, each of which having the
HK part factoring out, and the resulting coefficient bounded by (16.20).

Exercise 16.10. Fill in the details of the above proof. Show in addition that the
convergence of∑

m,n∈IN0

(m2 + n2) |αmn|Rm+n and
∑

m,n∈IN0

m2n2 |αmn|Rm+n (16.21)

suffices to have P (x, y) exist as a differentiable function on the disk

{(x, y) ∈ IR2 : x2 + y2 < R}.
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16.5 Application: the Hopf bifurcation

We examine the system of differential equations

dx

dt
= µx− y + p2(x, y) + p3(x, y) + · · · = P (x, y);

dy

dt
= x+ µy + q2(x, y) + q3(x, y) + · · · = Q(x, y),

for real valued function x(t) and y(t), in which the functions

pn(x, y) = an0x
n + an1x

n−1y + · · ·+ a0ny
n

and
qn(x, y) = bn0x

n + bn1x
n−1y + · · ·+ b0ny

n

have real coefficients for every

n ∈ IN2 = {n ∈ IN : n ≥ 2},

and µ ∈ IR is a parameter. We shall call this family of systems the µ-systems.
In the special case that all the coefficients are zero the µ-systems reduce

to
dx

dt
= µx− y;

dy

dt
= x+ µy.

The reduced µ-system has nontrivial periodic solutions13 if and only if µ = 0.
The plane defined by µ = 0 and the line defined by x = y = 0 in µxy-space
together form the set of all bounded solution orbits of the reduced µ-systems.
We wish show that near x = y = 0 this family of periodic orbits persists as
we add the nonlinear terms. Under the basic assumption that the coefficients
are bounded we will show that there exists a locally defined smooth function
f(x, y) with fx(0, 0) = fy(0, 0) = 0 such that the graph µ = f(x, y) describes
all the periodic solutions of the full system. In particular every level set

Γµ = {(x, y) ∈ IR2, f(x, y) = µ}

is a periodic orbit of the full µ-system.

13Namely x = ε cos t, y = ε sin t, in which ε > 0 is not necessarily small.

275



Exercise 16.11. Assume that the coefficients amn and bmn are bounded. Use
Section 16.4 to conclude that

P (x, y) =
∑

m,n∈IN0

amnx
myn and Q(x, y) =

∑
m,n∈IN0

bmnx
myn

are well-defined and smooth for x and y with |x| < 1 and |y| < 1.

Without loss of generality we now assume that

|amn| ≤ 1 and |bmn| ≤ 1 for all m,n ∈ IN with m+ n ≥ 2, (16.22)

and introduce polar coordinates x = r cos θ, y = r sin θ to transform solutions
of the µ-systems to solutions of

dr

dt
= µr + α2(θ)r2 + α3(θ)r3 + · · · ;

dθ

dt
= 1 + β2(θ)r + β3(θ)r2 + · · · .

Exercise 16.12. Use the chain rule14 and Section 11.3 to determine the expressions
for αn and βn expressed in terms of c = cos θ, s = sin θ, pn(c, s), qn(c, s). Show that

|αn| ≤ n and |βn| ≤ n for all n ∈ IN2,

and denoting the r-dependent part of the right hand side of the θ-equation by

−ρ = β2(θ)r + β3(θ)r2 + · · ·

that

|ρ| ≤ 2r + 3r2 + 4r3 + · · · = r(2− r)
(1− r)2

< 1,

if 0 < r < 2−
√

2.

Exercise 16.13. Use the chain rule and Section 11.3 again to show that, for

0 < r < 2−
√

2,

solutions can be seen as functions r = r(θ) of θ, and that

dr

dθ
= rθ = µr +A3(θ, µ)r2 +A4(θ, µ)r3 +A5(θ, µ)r4 + · · · , (16.23)

14Figure out how to use only the version with X = Y = Z = IR from Section 11.2.
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with A3, A4, . . . polynomials in cos θ en sin θ in which also µ appears. Hint:

1

1− ρ
= 1 + ρ+ ρ2 + ρ3 + · · · =

∞∑
n=0

ρn.

Exercise 16.14. Show directly from the differential equations for r(t) and θ(t) that

|dr
dθ
| = |

dr
dθ
dθ
dθ

| ≤ r

1− 2r
(|µ|(1− r2) + r(2− r))

for 0 < r < 1
2 .

Exercise 16.15. Show that ∫ 2π

0
A3(θ, µ)dθ = 0.

Exercise 16.16. Consider the truncated differential equation

rθ = µr +A3(θ, µ)r2

and do the Kepler trick: introduce w = 1
r > 0 as a function of θ. Why can this

equation have no 2π-periodic solutions? Hint: you should get an equation in which
only dw

dθ , w and A3 appear. Integrate from 0 to 2π to derive a contradiction if w(θ) is
a (positive) 2π-periodic solution.

Consider (16.23) with r(0) = ε > 0 as initial value. For the original µ-
system this corresponds to the solution with x(0) = ε, y(0) = 0. Now scale r
by setting r = εR. Then (16.23) becomes

dR

dθ
= Rθ = µR+ εA3(θ, µ)R2 + ε2A4(θ, µ)R3 + ε3A5(θ, µ)R4 + · · · , (16.24)

and we look for solutions with R(0) = 1. Note that the explicit estimate in
Exercise 16.14 carries over. We have

|dR
dθ
| ≤ R

1− 2εR
(|µ|(1− ε2R2) + εR(2− εR))
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for 0 < εR < 1
2
.

If this initial value problem has a solution R(θ;µ, ε) for small µ and small
ε, then we set

F (µ, ε) = R(2π;µ, ε)− 1

and examine the equation
F (µ, ε) = 0.

Clearly we have F (0, 0) = 0. Can we apply Theorems 14.1 and 14.2? The
answer is yes, via what we already started in Section 14.4.
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17 Stationary under constraints

This topic was started in Section 14.6 with the remarkable formula

Φx = Φy(Fy)
−1Fx (17.25)

in (x, y) = (0, 0) as the condition for

x
φ−→ φ(x) = Φ(x, f(x))

being stationary in x = 0, using the implicit function

y = f(x)

obtained in Section 14.2 to describe the solution set of F (x, y) = 0 near
(x, y) = (0, 0).

Continuity of the partials

(x, y)→ Fx(x, y) and (x, y)→ Fy(x, y)

in a neighbourhood of (0, 0), and the invertibility of Fy in (0, 0) sufficed for
a proof that near (x, y) = (0, 0) the level set

S = {(x, y) : F (x, y) = F (0, 0)} (17.26)

is described as the graph of an implicitly defined continuously differentiable
function f .

With this f the level set S is locally parameterised by

x→ X(x) = (x, f(x)),

which has a 2 × 1 Jacobi matrix ∂X
∂x

. The parameterisation is locally a
bijection bewteen S and a neighbourhood of x = 0, which is due to the
invertibility of the 1× 1 matrix

A = Fy (17.27)

in (0, 0). Differentiability of

(x, y)→ Φ(x, y)

sufficed to have (17.25) as both necessary and sufficient for φ′(x) = 0, not only
in x = 0 but as long as Fy(x, f(x)) is invertible on a whole neighbourhood
of x = 0 in which f(x) was constructed.
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17.1 The method of Lagrange

This abstract section is part of a story line that started for the simplest con-
crete case in Section 14.6 and continues in Section 17.2 with the multivariate
version of the Lagrange Multiplier Theorem. In the abstract setting with
x ∈ X, y ∈ Y , F : X × Y → Y and Φ : X × Y → IR consider

(x, y)
Fx−→ Fx(x, y) and (x, y)

Fy−→ Fy(x, y)

continuous near (x, y) = (0, 0) with Fy invertible, and the continuously differ-
entiable implicit function y = f(x) as a local description of the set S defined
by F (x, y) = 0. Now copy/paste (14.31) and read

φ′(0) = 0 ⇐⇒ Φx(0, 0) = Φy(0, 0)Fy(0, 0)−1Fx(0, 0)

in the abstract setting. This formula will be unpacked in Section 17.2, for
now we write it as (17.25), i.e.

Φx = Φy(Fy)
−1Fx.

If we can write Φy ∈ Y ∗ as

Φy = Λ ◦ Fy,

then
Φx = Φy(Fy)

−1Fx = Λ ◦ Fy(Fy)−1Fx = Λ ◦ Fx,

and the criterion for stationarity becomes

Φ′ = Λ ◦ F ′. (17.28)

What we need here is that every A : Y → Y and ψ ∈ Y ∗ define a (unique)
Λ ∈ Y ∗ with ψ = Λ ◦ A. This relates to what we discussed in Section 30.4.
More details to follow perhaps, but not needed for the next section.

17.2 The Lagrange multiplier method

With for instance
x ∈ IR2, y ∈ IR3,

F : IR5 → IR3, Φ : IR5 → IR,

f : IR2 → IR3, φ : IR2 → IR,
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the theorems and proofs in Chapter 14 are essentially unchanged, beginning
with (17.25) as the characterisation for

x
φ−→ Φ(x, f(x))

being stationary, see (14.29) in Section 14.6.
Let’s see how all this unpacks to give the method of Lagrange multipliers

when we read (17.25) as a statement for Jacobi matrices and the correspond-
ing linear maps. We write (17.25) in transposed form as

∇xF (∇yF )−1∇Φy = ∇xΦ, (17.29)

in which
∇xF,∇yF,∇xΦ,∇yΦ

are the transposes of the “partial” Jacobi matrices

∂F

∂x
,
∂F

∂y
,
∂Φ

∂x
,
∂Φ

∂y

corresponding to Fx, Fy,Φx,Φy.
Unpacking1 the notation we have

∇xF = (∇xF1 ∇xF2 ∇xF3) =

(∂F1

∂x1

∂F2

∂x1

∂F3

∂x1

∂F1

∂x2

∂F2

∂x2

∂F3

∂x2

)
and likewise for∇yF , which is a square 3×3 matrix, by assumption invertible
in (0, 0, 0, 0, 0). Its inverse sends the gradient vectors

∇yF1,∇yF2,∇yF3

back2 to the column3 base vectors e1, e2, e3 in IR3.
Now write ∇yΦ ∈ IR3 as linear combination4

∇yΦ = λ1∇yF1 + λ2∇yF2 + λ3∇yF3 (17.30)

with λ1, λ2, λ3 ∈ IR. It follows that ∇xF (∇yF )−1 in the left hand side of
(17.29) acts on (17.30) as

∇yΦ
(∇yF )−1

−−−−−→ λ1e1 + λ2e2 + λ3e3
∇xF−−→ λ1∇xF1 + λ2∇xF2 + λ3∇xF3 = ∇xΦ

1It is really no more than that, check it!
2Since the column vectors of a matrix A are the images under A of the e’s.
3As opposed to the convention in Exercise 30.28.
4This is possible in view of the invertibility condition imposed on Fy in (0, 0, 0, 0, 0).
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by (17.29) again. With (17.30) this combines as

∇Φ = λ1∇F1 + λ2∇F2 + λ3∇F3, (17.31)

simply5 because it holds for ∇x and ∇y separately! The stationarity of

Φ : S → IR

in (0, 0) is thus equivalent with the existence of multiplicators λ1, λ2, λ3 ∈ IR
for which (17.31) holds in (0, 0, 0, 0, 0). Note that (17.31) rewrites as

∇Ψ = 0 with Ψ = Φ− λ1F1 − λ2F2 − λ3F3,

which we may consider as a function of x ∈ IR5 and λ ∈ IR3 with the
nice property that all x- and λ-derivative equal zero in the point we just
characterised.

17.3 Application: Hölder’s inequality

In (16.10) we had
|Ah|

2
≤ |A|

2
|h|

2

as a special case of
|AB|

2
≤ |A|

2
|B|

2
.

With A = a a row matrix with entries ai and B = b a column matrix with
entries bi, this is the Cauchy-Schwarz inequality

|
n∑
i=1

aibi| ≤

(
n∑
i=1

|ai|2
) 1

2
(

n∑
i=1

|bi|2
) 1

2

.

This inequality is proved in every linear algebra course and then used to
prove the triangle inequality for the Euclidean norm.

We now ask for which values of p > 1 and q > 1 we can also have that

|
n∑
i=1

aibi| ≤ |a|p |b|q , (17.32)

if |a|
p

and |b|
q

are defined by

|a|p
p

=
n∑
i=1

|ai|p and |b|q
q

=
n∑
i=1

|bi|q. (17.33)

Note that (17.32) is the Cauchy-Schwarz inequality of p = q = 2.

5No 3× 3 matrix inverted here.
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Exercise 17.1. Since (17.32) scales with a and b we can restrict the attention to
vectors a and b for which |a|

p
= |b|

q
= 1. Explain!

Thus we introduce two boundary conditions

φ(a1, . . . , an) = |a1|p + · · ·+ |an|p = 1;

ψ(b1, . . . , bn) = |b1|q + · · ·+ |bn|q = 1,

and max- and minimise

(a1, . . . , an, b1, . . . , bn)
F−→ a1b1 + · · ·+ anbn.

Exercise 17.2. Explain why the maximum and the minimum of F under the re-
striction |a|

p
= |b|

q
= 1 exist.

Exercise 17.3. Show that the functions φ and ψ are continuously differentiable if
p > 1 and q > 1. Hint: if we redefine x → xr to be odd for every r > 0 then the
derivative of x→ |x|p is x→ pxp−1.

With two Lagrange multipliers λ en µ we arrive at 2n equations

bi = λpap−1
i ; ai = µqbq−1

i (i = 1, . . . , n)

to solve, together with

n∑
i=1

|ai|p =
n∑
i=1

|bi|q = 1.

Exercise 17.4. Assume that (p− 1)(q − 1) 6= 1. Show that solutions have all |ai|
equal and all |bi| equal, and therefore

n∑
i=1

|aibi| = n(
1

n
)

1
p

+ 1
q = n

1− 1
p
− 1
q . (17.34)

Deduce that (17.32) holds for p > 1 and q > 1 with 1
p + 1

q = 1.
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17.4 Applications in machine learning

This is something Lotte told me, the original source seems to be the 1988
paper “A theoretical framework for back-propagation” by LeCun, Touresky,
Hinton, and Sejnowski. These calculations continue from that discussion
before me reading that paper. She was reading it to understand what was
going on in https://arxiv.org/abs/1806.07366, the Neural ODE preprint
of Chen et al. Have a look at the end of Section 14.6 before you consider for

x ∈ IRn0 , z1 ∈ IRn1 , z2 ∈ IRn2 , . . . , zm ∈ IRnm

the system of transformations6

z1 = f1(x, θ1), z2 = f2(z1, θ2), . . . , zm = fm(zm−1, θm)

with parameters
θ1 ∈ IRk1 , . . . , θm ∈ IRkm .

These define
zm = Z(x, θ)

inm steps as a vector valued function of x, with the θ-variables as parameters.

17.4.1 Minimising some loss function

Suppose that given x ∈ IRn0 and y ∈ IRp, a quantity

L(zm, y)

has to be minimised by learning the θ-parameters in the transformations
f1, . . . , fm. This

L : IRnm+p → IR

is called a loss function, which for now we assume to be as smooth as needed,
and nonnegative. We then write

L̃(θ, x, y) = L(Z(x, θ), y),

but note that in machine learning practice7 one considers growing sets of
inputs x and corresponding outputs y for which one choice of all parameters
has to do the job for all pairs (x, y). The explanation below easily adapts to
that setting.

6Assume all fi are smooth. This is Lotte’s (4.5) and (4.12) with m = N .
7If my understanding is correct.
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17.4.2 Lagrange multipliers to ...

To minimise L̃ we look for its stationary points and interpret the z-transformations
in (17.38) as constraints

fi(zi−1, θi)− zi = 0, i = 1, . . . ,m,

in which z0 = x, and introduce8

L(x, y, z, λ, θ) = L(zm, y) +
m∑
i=1

λi · (fi(zi−1, θi)− zi)

as9 a function of z1, . . . , zm, λ1, . . . , λm, x, y and θ1, . . . , θm. Under the con-
straints defined by (17.38) this expression reduces to

L̃(θ, x, y) = L̃(θ1, . . . , θm, x, y) = L(zm, y), (17.35)

the quantity we want to have zero derivatives with respect to θ = (θ1, . . . , θm)
for given fixed x and y.

This trick allows a calculation of the θ-derivatives of L̃(θ, x, y) which, as
in Section 17.2, uses only transposes of Jacobian matrices, which I denote by
gradients, namely

∇zm−1fm, . . . ,∇z0f1,

and begins by putting the z-gradients of L equal to zero. Compare this to
the closing remarks in Section 17.2. The z-gradients are10

∇zmL = ∇zmL− λm and ∇zi−1
L = ∇zi−1

(λi · fi)− λi−1 (17.36)

for i = 2, . . . ,m. Putting them equal to zero the resulting equations for the
stationarity of

z → L(zm, y)

under the constraints (17.38) read11

λm = ∇zmL, λm−1 = ∇zm−1(λm · fm), . . . , λ1 = ∇z1(λ2 · f2),

with all λ’s en gradients column vectors.

8Lotte’s (4.6), inner product dots, note the choice in the constraints with fi − zi.
9Or with L(z0, . . . , zm, y), or L(zm, y) + L̂(z0, . . . , zm−1).

10Lotte’s (4.7-8), (4.9) corresponds to what I mention at the end of Section 17.2.
11Lotte’s (4.10-11), λi = λl column vectors, backwards passes, λm is like Chen’s (34).
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17.4.3 ... compute the gradient

This backwards scheme defines all λ-values introduced in the application of
the Lagrange method, in terms of y and the z-values already computed from
x and a particular choice of θ-values used to compute zm from x in m steps.
Note that with each12

λi = ∇zi(λi+1 · fi+1)

we also have13

∇θiL̃ = ∇θiL = ∇θi(λi · fi) = λi · ∇θifi︸ ︷︷ ︸
bad notation?

= ∇θifi λi︸ ︷︷ ︸
fine with me

before we continue with14

λi−1 = ∇zi−1
(λi · fi) = (∇zi−1

fi)λi (17.37)

to compute ∇θi−1
L̃, and so on. Recalling that

zi = fi(zi−1, θi) (17.38)

we see that we run forward and backward in

x = z0 → · · · · · · → zi−1 −→ fi(zi−1, θi) = zi −→ · · · · · · · · · −→ zm

λ1 ← · · · ← λi−1 = (∇zi−1
fi(zi−1, θi))λi ← λi ← · · · ← λm = ∇zmL(zm, y)

∇θiL̃ = ∇θi λi · fi(zi−1, θi)

to systematically compute
∇θL̃,

using the transposed Jacobians which can be computed and stored on the
way up from x = z0 to zm. In the last step also the partial derivatives of L̃
with respect to the coordinates of x can be computed of course, simply by
including these in θ1. The method also works for

L(zm, y) = L(zm) = e · zm,

with e some unit vector, so we can compute the partial derivatives of the
coordinates Z(x, θ) in a similar fashion. The only difference is that we start

12Lotte’s (4.7), I keep the dots inside the sum for now.
13Lotte’s (4.13), transposed Jacobians, see Section 17.2, acting on column vectors λi.
14Or λi−1 = (∇zi−1

fi)λi +∇zi−1
L, for the so-called (intermediate) adjoint states.
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from λm = e then. Writing u = Z(x, θ) we have that the k-th component uk
of u has

∇θjuk = ∇θj(λ
k
j · fj(zj−1, θj)), λkj = ∇zj(λ

k
j+1 · fj+1), λkm = ek, (17.39)

with ek the k-th unit vector. Thus we can evaluate ∇θj L̃ via the chain rule

for L̃(Z(x, θ), θ) with u = Z(x, θ). I’ll use this in Subsection 17.4.5, and after
(17.61). For the standard loss function

L(zm, y) =
1

2
|u− y|2

we start from λm = u− y.

17.4.4 A poor man’s tensor notation and the chain rule

We rewrite L as

L(x, y, z, λ, θ) = L(zm, y) + λiki (fkii (zi−1, θi)− zkii ),

summation over i = 1, . . . ,m, and, for each i, over the components15 num-
bered by ki. If you consider the zi as column vectors than the λi are now
row vectors16. We differentiate with respect to every zj, each of which has
components indexed by some index q which I choose not to denote by qj.
But below I do use subscripts on indices used in a summation convention.

We compute and solve

∂L
∂zqj−1

= λjkj
∂f

kj
j

∂zqj−1

− λj−1
q = 0

for j = m, . . . , 2, summation over kj only, starting from

∂L
∂zqm

=
∂L

∂zqm
− λmq = 0,

no summation. This gives

λmq =
∂L

∂zqm
and then λj−1

q = λjkj
∂f

kj
j

∂zqj−1

, j = m, . . . , 2, (17.40)

summation over kj for each j. Simultaneously we have

∂L̃

∂θpj
= λjkj

∂f
kj
j

∂θpj
, j = m, . . . , 1, (17.41)

15So in λikz
k
i we sum over k first, and write k = ki.

16You may prefer λki z
i
k, with zi row vectors and λi column vectors.
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with superscript p for the components of each θj. Note that (17.40) leads to

λmq =
∂L

∂zqm
, λm−1

q =
∂L

∂zkmm

∂fkmm
∂zqm−1

, λm−2
l =

∂L

∂zkmm

∂fkmm

∂z
km−1

m−1

∂f
km−1

m−1

∂zqm−2

, . . . ,

and finally the x-derivatives of L̃(x, θ, y) with j = 1. This also follows from
the chain rule, which is what the end of Section 14.6 alludes to. The less
obvious expression is (17.41), which provides us with all components of ∇θL̃,
layer by layer.

17.4.5 Along the gradient flow

This was written after reading a part in Feddrick’s thesis about https://

arxiv.org/abs/1811.03804. Let’s denote the z-variable computed in the
final step by17

u = zm = fm(zm−1, θm).

Then u = u(x, θ) is a function of all the θ-parameters and x = z0, and ∇θL̃
is the full θ-gradient of L(u(x, θ), y). The gradient flow is the flow of the
dynamical system

θ̇ = −∇θL̃, (17.42)

and along that weight updating flow18 we have, denoting the components of
both u and θ by superscripts, that19 the equations

u̇j =
duj

dt
= −∂u

j

∂θk
∂L̃

∂θk
= −∂u

j

∂θk
∂L

∂ui
∂ui

∂θk
= −∇θu

j · ∇θu
i︸ ︷︷ ︸

Gij

∂L

∂ui

may be appended to (17.42). In conclusion, along the gradient flow we have
that

∂u

dt
= −∇θu · ∇θL̃

rewrites as
u̇ = −G∇uL, (17.43)

in which G is the t-dependent symmetric matrix consisting of the inner prod-
ucts of the full θ-gradients of the components of u. Writing

A =
∂u

∂θ

17Feddrick used this notation, what follows only applies to zm.
18Solved with Euler’s forward method, stepsize α called learning rate, Lotte’s (4.14).
19Summation convention for k and i.
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for the Jacobian matrix20, the symmetric matrix G is of the form

AAT

and its eigenvalues21 are the (nonnegative) singular values of A. Note that

Gij = ∇θu
j · ∇θu

i =
m∑
l=1

Gij
l , Gij

l = ∇θlu
j · ∇θlu

i, (17.44)

is a sum of such matrices. If we use ∇θlu
k = ∇θl(λ

k
l ·fl(zl−1, θl)) from (17.39)

with k = i, j, then

Gij
l = (∇θl(λ

i
l · fl(zl−1, θl))) · (∇θl(λ

j
l · fl(zl−1, θl))) = λilpλ

j
lq∇θlf

p
l · ∇θlf

q
l ,

in which we sum over p, q. Summing up and combining with (17.39) we have
for Gij

l in (17.44) that

Gij
l = λilpλ

j
lq∇θlf

p
l · ∇θlf

q
l , λkl = ∇zl(λ

k
l+1 · fl+1), λkm = ek, (17.45)

in which the λk are a basis for the solutions of the backward pass. Thus
(17.43) becomes

u̇i = −∇θlf
p
l · ∇θlf

q
l λ

i
lpλ

j
lq

∂L

∂uj
,

summation over repeated indices l, p, q, j.
In the case that the loss function L is given by

L(u, y) =
1

2
|u− y|2,

the system (17.43) is linear:

u̇ = −G (u− y).

17.4.6 Along the neural network gradient flow

This is to evaluate (17.43) for neural networks. Needs to be double checked.
Using column vectors zl for the layers, the maps fl in neural networks are of
the form

zl = σl(Wlzl−1 + bl︸ ︷︷ ︸
xl

),

20Which has typically many more columns than rows.
21See Chapter 18, Theorem 18.8.
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in which the sigmiodal functions σl act on xl componentwise to give zl, via

zpl = σl(x
p
l ), xpl = wplqz

q
l−1 + bpl = θplqz

q
l−1 + θpl0,

with θplq collecting the parameters in the lth step, q = 0, . . . , nl−1, p =
1, . . . , nl. Changing to row vectors for the Lagrange multipliers we have
that (17.39) rewrites with upper-lower summation convention as

λkl−1,i = λkl,p
∂fpl
∂zil−1

= λkl,p(σ
′
l(x

p
l )w

p
li), λkmi = δki ,

xpl = wplqz
q
l−1 + bpl

(17.46)

for the λ’s and subsequently

∂L̃

∂wqlj
=

∂L̃

∂uk
∂uk

∂wqlj
=

∂L̃

∂uk
λklp

∂f pl
∂wqlj

= λklp δqp︸ ︷︷ ︸
λklq

σ′l(x
q
l ) z

j
l−1

∂L̃

∂uk
,

and likewise

∂L̃

∂bql
=

∂L̃

∂uk
∂uk

∂bql
=

∂L̃

∂uk
λklp

∂f pl
∂bql

= λklq σ
′
l(x

q
l ) z

j
l−1

∂L̃

∂uk
.

The gradient flow is given by

ẇqlj = −λklq σ′l(x
q
l )︸ ︷︷ ︸ zjl−1

∂L̃

∂uk
, ḃql = −λklq σ′l(x

q
l )︸ ︷︷ ︸ ∂L̃

∂uk
, (17.47)

which we combine with

∂ui

∂wqlj
= λilq︸︷︷︸ σ′l(xql ) zjl−1,

∂ui

∂bql
= λilq σ

′
l(x

q
l )

to get

u̇i + (λilq σ
′
l(x

q
l ) z

j
l−1λ

k
lq σ
′
l(x

q
l ) z

j
l−1︸ ︷︷ ︸

sum over j, q, l

+λilq σ
′
l(x

q
l )λ

k
lq σ
′
l(x

q
l )︸ ︷︷ ︸

sum over q, l

)
∂L̃

∂uk
= 0.

This simplifies to

u̇i + (σ′l(x
q
l )σ
′
l(x

q
l )λ

i
lq λ

k
lq︸ ︷︷ ︸

sum over q, l

(1 + zjl−1 z
j
l−1︸ ︷︷ ︸

sum over j

))
∂L̃

∂uk
= 0, (17.48)
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from which we infer this truly amazing formula

Gik
l = (1 + |zl−1|2) σ′l(x

q
l )λ

k
lq σ
′
l(x

q
l )λ

i
lq︸ ︷︷ ︸

sum over q

,

which we should have seen quicker from (17.45). I kept the two identical
factors σ′l(x

q
l ), which we may want to absorb22 in the λ’s by putting

σ′l(x
q
l )λ

k
lq = µklq, (17.49)

which changes (17.47) into

ẇqlj = −µklq z
j
l−1

∂L̃

∂uk
, ḃql = −µklq

∂L̃

∂uk
, (17.50)

and gives

u̇i = −Gik ∂L

∂uk
, (17.51)

with

Gik =
m∑
l=1

Gik
l , Gik

l = (1 + |zl−1|2)µilq µ
k
lq (17.52)

17.4.7 The space of neural network functions

Let’s start from (17.38),

zl = fl(zl−1, θl), l = 1, . . . ,m,

write u = zm ∈ IRn as in Section 17.4.5, consider u as a function of x ∈ IRN

and all θ, with the function fi as in Section 17.4.6, that is

zl = σl(Wlzl−1 + bl︸ ︷︷ ︸
xl

).

We assume that all σl are continuous. Then for every a ∈ IRn the function

x→ a · zm

is a function with parameters all W -, a- and b-components. Varying a over
IRn we get a linear space of (continuous) functions of x, in which we can
restrict x to23 some closed bounded box I in IRN. Thus we get a linear

22Which perhaps leads to rewriting (17.46).
23To avoid complicated limit behaviour for large x.
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subspace N of C(I), the space of continuous functions on I. A natural
question to ask is whether the closure of N in the maximum norm is C(I).

If not then there is a nontrivial continuous linear functional Φ : C(I)→ IR
such that Φ(f) = 0 for all f ∈ N . Feddrick formulates an already old result
that says this is impossible if m = 1, that is, if the functions in N are all
functions

f(x) =
n∑
i=1

aiσ(Ai(x)),

with Ai : IRN → IR affine for i = 1 to some arbitrary n, a1, . . . , an ∈ IR,
and σ a fixed continuous function that is discriminatory for the signed Borel
measures µ on I. Via the Riesz Representation24

Φ(f) =

∫
I

fdµ

these are exactly the continuous linear functionals on C(I). Note that Φ(f) =
0 for all f ∈ N is equivalent to Φ(f) = 0 for all f of the form

f = σ ◦ A

with A : IRN → IR affine. This is because N is the linear space spanned by
all such σ ◦ A.

We may just as well say that σ is discriminatory for all Φ in the dual space
of the Banach space25 C(I) if Φ(σ ◦A) = 0 for all affine A : IRN → IR implies
that Φ is the zero functional. For such discriminatory σ it is then immediate
that the closure of N in the maximum norm is C(I). Recall Φ(σ ◦A) = 0 is
equivalent to

∫
I
σ ◦ Adµ = 0 for the representing signed Borel measure µ.

Now assume that σ is continuous and nondecreasing, with σ(−∞) = 0
and σ(∞) = 1, let H be a half space in IRn, and α ∈ (0, 1). Taking a suitable
sequence An we can make σ ◦An converge pointwise to a function SH,α which
is 1 on H, α on ∂H, and 0 elsewhere (on the other side of H). It follows by
the dominated convergence theorem that∫

I

SH,α dµ = 0

for all H and α. In particular∫
I

sα ◦ Adµ = 0

24This is the Riesz-Markov-Kakutani representation Theorem, not treated in the notes.
25See Chapter 4 and further.
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for all step functions which have values 0, α ∈ (0, 1) and 1 on the left, in 0, on
the right, and for all linear functions A. Such step functions can be linearly
combined to obtain in suitable limits both cos and sin. It thus follows that
the Fourier transform26 of µ is zero, a contradiction.

17.4.8 Residual networks

In the special case that

fi(zi−1, θi) = zi−1 + hgi(zi−1, θi)

we have

L(x, y, z, λ, θ) = L(zm, y) +
m∑
i=1

λi · (zi−1 + hgi(zi−1, θi)− zi)

= L(zm, y) + h
m∑
i=1

λi · (gi(zi−1, θi)−
zi − zi−1

h
), (17.53)

in which we recognise a discretisation of (17.60) below if mh = 1. We see
that (17.36) becomes

∇zmL = ∇zmL− λm, ∇zi−1
L = h

(
∇zi−1

(λi · gi) +
λi − λi−1

h

)
In machine learning the resulting explicit Euler forward scheme with h = 1
is called a residual network. Such schemes allow calculations in which L(zm)
is replaced by L(x+g1(x, θ1)+g2(z1, θ2)+ · · ·+gm(zm−1, θm)), but we choose
not to27 and continue with L(zm). The Euler scheme

zi = zi−1 + hgi(zi−1, θi) (17.54)

comes with
λi−1 = λi + h(∇zi−1

gi(zi−1, θi))λi, (17.55)

an explicit Euler backward scheme28 from λm = ∇zmL, supplemented by

∇θiL̃ = h(∇θigi(zi−1, θi))λi.

26Which is really a Fourier series because we restrict to x ∈ I.
27This helps to follow Chen et al in their Neural Ordinary Differential Equations paper.
28Or λi−1 = h(∇zi−1

gi)λi −∇zi−1
L, but the last term requires an h to modify (17.58).
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By definition29 this says that

L̃(θ + φ, x, y) = L̃(θ, x, y) + h
m∑
i=1

((∇θigi(zi−1, θi))λi) · φi︸ ︷︷ ︸
∇θL̃(θ,x,y)·φ

+o(|φ|) (17.56)

for

|φ|2 =
m∑
i=1

|φi|2 → 0.

17.4.9 The continuous limit: ODE’s

The z-scheme (17.54) is a numerical solver for the ODE30

ż(t) = g(t, z(t), θ(t)) (17.57)

on the interval [0, 1], given initial data z(0) = x and a varying parameter
θ(t). This ODE defines a solution z(t) that depends on x and the function
θ in (17.57), and L(z(1), y) is thereby a nonlinear functional L̃ of θ, with
parameters x and y. We denote it31 again32 by L̃(θ, x, y).

The λ-scheme (17.55) is a numerical solver for33

λ̇(t) + (∇zg(t, z(t), θ(t)))λ(t) = 0, (17.58)

with final data34

λ(1) = ∇zL(z(1), y),

and varying parameters z(t) and θ(t). Finally the underbraced term in
(17.56) is a Riemann sum for35∫ 1

0

∇θg(t, z(t), θ(t))λ(t)︸ ︷︷ ︸ ·φ(t) dt, (17.59)

in which we recognise the underbraced term as36 the variational37 θ-derivative38

of ∫ 1

0

λ(t) · (g(z(t), θ(t))− ż(t)) dt (17.60)

29See Exercise 16.6.
30Lotte’s equation in (4.15), f = g, no t in θ, as in Chen’s (3), but I take θ(t) here.
31This L̃ is the L in (4.7) of Lotte’s Lemma 4.1.
32Add

∫ 1

0
L̂(t, z(t)) dt to L̃ to get λi−1 = λi +h(∇zi−1

gi(zi−1, θi)λi−∇zi−1
L̂i(zi−1, θi)).

33With a minus, Lotte’s (4.19), Chen’s (35) adjoint state a is Lagrange multiplier λ.
34And likewise for L̃(θ, x, T ) = L(z(T )), compare to (17.35), and to Chen’s (34).
35Chen’s (5) without the minus.
36Acting on constant functions only, this correspond to Lotte’s (4.17), up to a sign.
37Variational derivatives, unlike Lotte’s (4.17) and Chen’s (5).
38See (11.21) and the first footnote on that page, and also Section 14.4.
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acting on the function φ = dθ. This integral is the continuous limit of the
sum in (17.53). Of course (17.59) may be derived directly from (17.57) via
(17.58), see https://youtu.be/fcv25Fwi7Pc and further. There I take the
ODE to be defined for z(s), s running from τ to t, z(τ) = x, and compute the
derivatives of L(z(t, τ, x, θ), two ordinary derivatives for t and τ , one gradient
for x, and one variational derivative for θ. My s corresponds to t in their
(34), but note that their L(z(t) also depends on the final time. It seems to
me that Chen’s method for the derivative with respect to T and a constant
parameter θ generalises to general time-dependent θ. I think there’s a factor
−f missing in their second formula in (52).

The derivative of L(z(1), y) with respect to θ is computed via λ(1) =
∇zL(z(1), y), the initial condition for the backwards equation. As in (17.39)
we may write u(x, θ) = z(1;x, θ) and find that the variational derivative of
the kth component of u(x, θ) is given by

〈ukθ , dθ〉 =

∫ 1

0

∇θg(t, z(t), θ(t))λk(t) · dθ(t) dt, (17.61)

λk being a solution of (17.58) with λk(1) = ek. We then arrive at (17.43)
with

Gij =

∫ 1

0

λipλ
j
q∇θg

p · ∇θg
q (17.62)

along the gradient flow

dθ

ds
= −∇θ(λ(t) · g(t, z(t), θ(t))) (17.63)

if I’m not mistaken.
For a more general cost function

L(z(1), y) +

∫ 1

0

L̂(t, z(t)) dt

the equation for λ(t) comes out as

λ̇(t) + (∇zg(t, z(t), θ(t)))λ(t) = ∇zL̂(t, z(t)).

See39 Fleming&Rishel1975 and Banks&Kunisch1989. In the continuous set-
ting the starting point is usually the sum of this cost function and (17.60),
namely40

L = L(z(1), y) +

∫ 1

0

L̂(t, z(t)) dt+

∫ 1

0

λ(t) · (g(z(t), θ(t))− ż(t)) dt,

39Thanks for the references to Joris Bierkens and Jan van Schuppen.
40Put L̂ = 0 and t0 = 0, t1 = 1 to get Lotte’s (4.16).
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17.5 Applications in optimal transport

This is part of what Finn’s doing in his master project and me understanding
what’s going on from scratch. It concerns the Kantorovich version of the
discrete Monge problem. I’m slightly changing his notation and replace f by
λ, g by µ, C by c.

For ai ≥ 0, bj ≥ 0, cij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n, minimise41

〈c, p〉 = cijpij (17.64)

over the set U(a, b) of m times n matrices

pij ≥ 0 with pij1j = ai and 1ipij = bj, (17.65)

mn inequalities and m + n equations, to obtain M(a, b, c). So the column
sums of p are a1, . . . , am and the row sums are b1, . . . , bn. This minimum of
〈c, p〉 exists because U(a, b) is compact.

Without loss of generality we may assume that

1iai = 1 = 1jbj, whence 1ijpij = 1, (17.66)

and think of ai, bj, pij as probabilities. We write a ∈ Σm, b ∈ Σn, p ∈ Σmn.
The matrix cij is called the cost matrix. Note that adding ε to every cij only
means adding ε to 〈c, p〉 and M(a, b, c). Thus we may just as well consider
arbitrary matrices cij, and then it is no restriction to assume that

cij1i1j

is zero from the beginning. But below we stick to nonnegative cost matrices
first, as the average value c̄ of the cost matrix values will play a role in the
calculations. So if we like we can assume that in addition to cij ≥ 0 for all
i, j also 1ijcij = 1.

The story below should perhaps start after a discussion of the function L
defined by

L(p) =

{
〈c, p〉 if p ≥ 0
∞ else

as a (not strictly) convex function L : IRm×n → IR ∪ ∞. If p∗ ∈ IRm×n is
considered as being in the dual space for p then

L∗(p∗) = sup
p∈IRm×n

〈p∗, p〉 − L(p)

41Summation convention repeated indices, 1i = 1j = 1 for all i, j, Frobenius notation.
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defines the Legendre transform of L, and L∗∗ = L, by a duality theorem that
I first saw in the Masson edition of the Brezis book. In what follows below
and in Section 17.5.1 we recognise the use of p∗ = λ⊕ µ as

L∗(λ⊕ µ) = sup
p∈IRm×n

(λi + µj)pij − L(p) = sup
∀i,j pij≥0

(λi + µj − cij)pij

= − inf
∀i,j pij≥0

(cij − λi − µj)pij.

Note that

Lab(p) =

{
〈c, p〉 if p ∈ U(a, b)
∞ if p 6∈ U(a, b)

also defines a (not strictly) convex function, and

L∗(p∗) = sup
p≥0
〈p∗ − c, p〉︸ ︷︷ ︸

<∞⇐⇒ p∗≤c

≥ max
p∈U(a,b)

〈p∗ − c, p〉︸ ︷︷ ︸
−M(a,b,c−p∗)

= L∗ab(p
∗).

Introducing

L = L(p, λ, µ, a, b, c) = cijpij + λi(ai − pij1j) + (bj − 1ipij)µj (17.67)

= (cij − λi − µj)pij + aiλi + bjµj,

we have that
M(a, b, c) = min

p≥0
sup
λ,µ
L = min

p≥0
p1=a, 1p=b

cijpij (17.68)

because the supremum over λ, µ of (17.67) is either 〈c, p〉, realised with λ =
0, µ = 0, or +∞, depending on whether the m + n equalities in (17.65) are
satisfied.

We note that the matrix

R =

(
−1 1

1 − 1

)
(17.69)

can be added to the matrix p at the entries with indices ij, il, kj, kl without
changing the column and row sums. Now assume that for all such i 6= k and
j 6= l it holds that

cij + ckl 6= cil + ckj.

Then we can restrict to ij and kl with

cij + ckl > cil + ckj (17.70)

and conclude that the maximizing matrix p has pijpkl = 0.
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17.5.1 Dual tricks

Let’s follow4243 a certain Tom Waits fan in French politics and swap infimum
and supremum. Clearly

sup
λ,µ

inf
p≥0
L ≤ inf

p≥0
sup
λ,µ
L = min

p≥0
p1≥a, 1p≥b

cijpij (17.71)

since
inf
p≥0
L ≤ sup

λ,µ
L,

and the infimum evaluates as

inf
p≥0
L = inf

p≥0
(λiai + µjbj + cijpij − λipij1j − µj1ipij)

= λiai + µjbj + inf
p≥0

(cij − λi1j − 1iµj)pij

= 〈a, λ〉+ 〈b, µ〉︸ ︷︷ ︸
dual functional
〈a⊕b,λ⊕µ〉

+ inf
p≥0
〈c− λ⊗ 1− 1⊗ µ, p〉︸ ︷︷ ︸

−L∗(λ⊕µ)

,

in which we introduced the dual functional

〈λ, a〉+ 〈µ, b〉 = aiλi + bjµj = aibj(λi + µj) = 〈a⊗ b, λ⊕ µ〉.

We have indicated how this infimum relates to the Legendre transform of L,
but note it only involves L∗ acting on p∗ of the form λ ⊕ µ, so taking the
supremum over all λ, µ we do not define (L∗)∗(a⊗ b): the inequality in

sup
λ,µ

(〈λ⊕ µ, a⊗ b〉 − L∗(λ⊕ µ)︸ ︷︷ ︸
infp≥0 L

)

≤ sup
p∗

(〈p∗, a⊗ b〉 − L∗(p∗)) = (L∗)∗(a⊗ b) = L(a⊗ b) = aicijbj

is in general strict in view of the sharper estimate in (17.71).
The infimum is −∞ unless

∀i, j : λi + µj ≤ cij, i.e. λ⊕ µ = λ⊗ 1 + 1⊗ µ ≤ c.

Thus the left hand side of (17.71) evaluates as

sup
λ,µ

inf
p≥0
L(p, λ, µ, c, a, b) = sup

λ⊕µ≤c
(〈λ, a〉+ 〈µ, b〉),

42Justified with equality by Section 37 in Rockafellars Convex Analysis book, to check
43And also in Bertsimas and Tsitsiklis, Theorem 4.4.
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whence
sup

∀i,j:λi+µj≤cij
(λiai + bjµj) ≤ min

∀i,j: pij≥0

pij1j=ai, 1ipij=bj

cijpij. (17.72)

Is this latter inequality an equality? It seems that the positive answer is
given by Section 37 in Rockafellar. To show so by direct methods solve

∀i, j : λi + µj ≤ cij and pij ≥ 0;

λiai + bjµj = cijpij; pij1j = ai, 1ipij = bj,
(17.73)

2mn inequalities and 1+m+n equations for m+n+mn unknowns λi, µj, pij.
We will do this for an example in Section 17.5.5.

The existence of one such solution implies that pij must be a minimiser
for (17.68), and that (17.72) holds with equality and sup = max. Note that
if cij happens to be of the form cij = λi + µj then pij = aibj does the job,
but in general cij is not of this form.

Setting pij = aibj − qij we can rewrite (17.72) as

sup
∀i,j:λi+µj≤cij

(λiai + bjµj) + max
∀i: qij1j=0, ∀j: 1iqij=0

∀i,j: qij≤aibj

cijqij ≤ aicijbj, (17.74)

whence we consider
aiλi + bjµj + cijqij (17.75)

subject to the constraints44

∀i, j : λi + µj ≤ cij and qij ≤ aibj;

qij1j = 0 = 1iqij ⇐⇒ q ∈ T,
(17.76)

and see if we can make (17.75) equal to its upper bound aicijbj in (17.74),
which is equivalent to solving (17.73). The lower bound aibj − 1 ≤ qij is
automatic45 from qij1j = 0 = 1iqij and corresponds to pij ≤ 1.

Adding ε to all λi and substracting ε from all µj does not change the dual
functional λiai + bjµj in (17.75), because of (17.66), it does not change the
constraints in the supremum, and it does not change

λ̄+ µ̄ =
1

m
1iλi +

1

n
1jλj,

the sum of the separate averages of the λi and the µj. Moreover, a maximising
sequence λk, µk for the supremum in (17.74) can be chosen with all λki ≥ 0,
forcing µk to be bounded, and since aiλi + bjµj ≤ λi +µj ≤ cij, a convergent

44It’s convenient to introduce a set T for q here, and we will project c on T shortly.
45In fact pij ≤ min(ai, bj) gives aibj −min(ai, bj) ≤ qij .
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subsequence argument establishes that the supremum in (17.74) is in fact a
maximum. We conclude that in

max
∀i,j:λi+µj≤cij

(λiai + bjµj) + max
∀i: qij1j=0, ∀j: 1iqij=0

∀i,j: qij≤aibj

cijqij ≤ aicijbj (17.77)

both maxima exist.

17.5.2 Reduction to zero column and row sums

The equalities in (17.76) can be written as the m+ n equations

〈M i, q〉 = 0 = 〈N j, q〉, (17.78)

in which M i is a matrix with ones on the ith row and zeros elsewhere, and
N j is a matrix with ones on the jth column and zeros elsewhere. Between
the m+ n equations in (17.78) there is one linear dependence given by

1iM
i = 1jN

j,

and the space T of admissible q defined by (17.78) has dimension

dimT = mn−m− n+ 1 = (m− 1)(n− 1).

It is spanned by the (m − 1)(n − 1) matrices obtained by putting a 2 × 2
matrix R as in (17.69) in a zero m× n matrix.

The matrices normal to T in the Frobenius sense are given by

λiM
i + µjN

j with λ̄ = µ̄,

in which the second relation makes the representation unique. It follows that
the matrix c decomposes as

c = λkM
k + µlN

l + γ, γ ∈ T.

To find λi and µj we introduce and set

xi = nξi = 〈c,M i〉 = 〈γ,M i〉+ λk〈Mk,M i〉+ µl〈N l,M i〉 = nλi + 1lµl;

yj = mηj = 〈c,N j〉 = 〈γ,N j〉+ λk〈Mk, N j〉+ µl〈N l, N j〉 = 1kλk +mµj,

from which we infer

ξi = λi + µ̄; ηj = µj + λ̄, (17.79)

whence
ξ̄ = λ̄+ µ̄ = η̄
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must hold for the averages. Note that

ξ̄ = η̄ = c̄

follows from
1ixi = 1ijcij = 1jyj.

Thus
c⊥ = λkM

k + µlN
l = (ξk − µ̄)Mk + (ηl − λ̄)N l,

whence

c⊥ij = λkM
k
ij + µlN

l
ij = (ξk − µ̄)Mk

ij + (ηl − λ̄)N l
ij = ξi + ηj − c̄.

Summing up, we found that if we define

ξi =
1

n
〈c,M i〉 =

cij1j
n

, ηj =
1

m
〈c,N j〉 =

1icij
m

, c̄ =
1

mn
〈1, c〉

and
c⊥ = (ξi − c̄)M i + (ηj − c̄)N j, γ = c− c⊥

then
c = γ + c⊥, γ ∈ T, c⊥ ∈ T⊥.

We have
c⊥kl = ξk + ηl − c̄, γkl = ckl − ξk − ηl + c̄,

in which46

ξk =
ckl1l
n

= c̄rowk , ηl =
1kckl
m

= c̄columnl , c̄ =
〈1, c〉
mn

are the average c-values in row k, column l, and in the whole matrix. Note
that for each i fixed ξiM

i is the projection of c on the matrix line spanned
by M i and likewise each ηjN

j is the projection on the line spanned by N j.

17.5.3 Quadratic costs

With
cij = (i− j)2, i, j = 1, . . . ,m = n = N + 1,

and denoting
Pk(N) = 1k + 2k + · · ·+Nk

46Maybe write c̄rowk 1l = c̄rowkl , 1k c̄
column
l = c̄columnkl , 1k1lc̄ = c̄kl.
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we get

〈1, c〉 = 1ijcij = 2
(
N + (N − 1) 22 + (N − 2) 32 + · · ·+ (N − (N − 1))N2

)
= 2NP2(N)− 2P3(N) + 2P2(N) = 2(N + 1)P2(N)− 2P3(N)

= 2(N + 1)P2(N)− 2P1(N)2 =
2

3
(N + 1)2(N +

1

2
)N − 1

2
N2(N + 1)2,

=
1

6
(N + 2)(N + 1)2N, so c̄ =

1

6
N(N + 2). (17.80)

Numbering the rows and columns with l = i− 1 and l = j − 1 we

c1j1j = 12 + 22 + · · ·+N2 = P2(N) (l = 0),

c2j1j = 12 + 12 + 22 + · · ·+ (N − 1)2 = 1 + P2(N − 1) (l = 1),

c3j1j = 12 + 22 + P2(N − 2) (l = 2),

so

cl+1 j1j = P2(l) + P2(N − l) =
1

3
N3 −N2l +Nl2 +

1

2
N2 −Nl + l2 +

1

6
N

=
1

3
(N + 1)(N +

1

2
)N − (N + 1)l(N − l).

It follows that the column and row averages are

c̄l+1 . = c̄. l+1 =
1

3
N(N +

1

2
)− l(N − l), l = 0, . . . , N. (17.81)

We thus find that

γk+1 l+1 = (k−l)2− 1

3
N(N+

1

2
)+k(N−k)− 1

3
N(N+

1

2
)+l(N−l)+

1

6
N(N+2)

= (k + l)N − 2kl − 2

3
N(N +

1

2
) +

1

6
N(N + 2)

= (k + l)N − 2kl − 1

2
N2,

so

γij = (n+ 1)(i+ j)− 2ij − 1

2
(n+ 1)(n− 1). (17.82)

Only the second term contributes to 〈γ, q〉 if q ∈ T .
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17.5.4 General cost matrix

Recalling (17.77) we note that in

max
∀i,j:λi+µj≤cij

(λiai + bjµj) + max
∀i: qij1j=0, ∀j: 1iqij=0

∀i,j: qij≤aibj

cijqij ≤ aicijbj

we have
cijqij = γijqij

and

cijaibj = γijaibj + ξi1jaibj + 1iηjaibj︸ ︷︷ ︸
aiξi+bjηj

= γijaibj +
aicij1j
n

+
1icijbj
m

.

Assuming c̄ = 0 we see that (17.77) rewrites as

max
∀i,j:λi+µj≤γij

(aiλi + bjµj) + max
∀i: qij1j=0, ∀j: 1iqij=0

∀i,j: qij≤aibj

γijqij ≤ γijaibj.

Given γ ∈ T and 0 < a ∈ Σm, 0 < b ∈ Σn, we’re now down to asking about
equality in

aiλi + bjµj︸ ︷︷ ︸
maximize

+ γijqij︸ ︷︷ ︸
maximize

≤ γijaibj (17.83)

subject to λ, µ with

λi + µj ≤ γij and q ∈ T with qij ≤ aibj. (17.84)

If so then λ, µ realise the first maximum and q realises the second maximum.

We can decompose a⊗ b just as we did with c, by

a⊗ b = α⊗ β︸ ︷︷ ︸
∈T

+(a⊗ b)⊥, αi = ai −
1

m
, βj = bj −

1

n
,

and then write q = α⊗ β +Q to transform (17.83,17.84) in

aiλi + bjµj︸ ︷︷ ︸
maximize

+ γijQij︸ ︷︷ ︸
maximize

≤ 0,

subject to

λi + µj ≤ γij and Q ∈ T with Qij ≤
αi
n

+
βj
m

+
1

mn
.

Section 37 in Rockafellar should explain again why the red inequalitity can
be achieved.
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17.5.5 The simplest nontrivial example

Can we solve (17.73) with c replaced by γ? Let’s take a matrix γ with
γ11 = γ22 = −1, γ12 = γ21 = 1, and all other entries zero. We first maximise
aiλi + bjµj under the constraints on λ, µ.

For fixed i the constraints λi+µj ≤ 0 are satisfied for all j ≥ 3 if and only
if λi + µ̄3 ≤ 0, in which µ̄3 is the maximum of all µ3, . . . , µn, and likewise for
fixed j and λ̄3 the maximum of all λ3, . . . , λm. The constraints are therefore
equivalent to

λ1 + µ1 ≤ −1, λ1 + µ2 ≤ 1, λ1 + µ̄3 ≤ 0,

λ2 + µ1 ≤ 1, λ2 + µ2 ≤ −1, λ2 + µ̄3 ≤ 0,

λ̄3 + µ1 ≤ 0, λ̄3 + µ2 ≤ 0, λ̄3 + µ̄3 ≤ 0.

Dropping the bars each µj can be chosen maximal so as to have an equality
in each row47.

Suppose we have equalities in the inequalities with −1, that is

λ1 + µ1 = λ2 + µ2 = −1.

Then
µ1 = −1− λ1, λ1 − λ2 ≤ 2, λ1 + µ3 ≤ 0, (17.85)

λ2 − λ1 ≤ 2, µ2 = −1− λ2, λ2 + µ3 ≤ 0,

λ3 − λ1 ≤ 1, λ3 − λ2 ≤ 1, λ3 + µ3 ≤ 0,

and under the constraints

λ3 − 1 ≤ λ1, λ2, λ3 ≤ −µ3, |λ1 − λ2| ≤ 2, (17.86)

we must maximise

aiλi + bjµj = −b1 − b2 + (a1 − b1)λ1 + (a2 − b2)λ2 + a3λ3 + b3µ3. (17.87)

If a1 ≥ b1 and a2 ≥ b2 then λ1 = λ2 = λ3 = −µ3 maximise

aiλi + bjµj = −b1 − b2 − (a1 − b1)µ3 − (a2 − b2)µ3 − a3µ3 + b3µ3 = −b1 − b2,

and
p11 = b1, p12 = 0, p12 = a1 − b1,

p21 = 0, p22 = b2, p23 = a2 − b2,

47Then repeat with the columns, in the Sinkhorn spirit?
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p31 = 0, p32 = 0, p33 = a3

uniquely realise the minimum M(a, b, γ) = −b1−b2. So the min and the max
coincide. This deals with the case that

a1 ≥ b1 and a2 ≥ b2.

The case a1 ≤ b1 and a2 ≤ b2 follows by interchanging i and j.
If a1 ≥ b1 and a2 ≤ b2 then λ1 = λ3 = −µ3 and λ2 = λ3 − 1 = −µ3 − 1

are allowed in view of |λ1 − λ2| = λ1 − λ2 = 1 ≤ 2 to maximise

aiλi + bjµj = −b1 − b2 − (a1 − b1)µ3 − (a2 − b2)(µ3 + 1)− a3µ3 + b3µ3

= −b1 − b2 − (a2 − b2) = −b1 − a2,

but only if a2 + a3 ≥ b2 we have

p11 = b1, p12 = 0, p12 = a1 − b1,

p21 = 0, p22 = a2, p23 = 0,

p31 = 0, p32 = b2 − a2, p33 = b3 − a1 + b1 = a3 − b2 + a1 = a2 + a3 − b2

uniquely realising the minimum M(a, b, γ) = −b1 − a2. This deals with the
case that

a2 + a3 ≥ b2 ≥ a2 and a1 ≥ b1,

for which we see the min and the max coincide again.
Finally we consider the case

a1 ≥ b1 and b2 > a2 + a3

when the optimal choice

p11 = b1, p12 = p21 = 0, p22 = a2

is not realisable under the constraints becaude p33 would be negative. Note
that

b2 > a2 + a3 ⇐⇒ a1 > b1 + b3.

Let’s now first look at the minimisation of 〈γ, p〉 on U(a, b). If we have to
take p11 maximal to minimise 〈γ, p〉 then

p11 = b1, p21 = 0, p31 = 0,

then
p12 = (1− s)b2, p22 = ta2, p32 = sb2 − ta2
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gives

p13 = a1 − b1 − (1− s)b2, p23 = (1− t)a2, p33 = a3 + ta2 − sb2.

The constraints on s, t ∈ [0, 1] are then

ta2 ≤ sb2 ≤ ta2 + a3, a1 + sb2 ≥ b1 + b2.

Fixing t we take s maximal by sb2 = ta2 + a3 and then see if t = 1 maximal
is allowed. We find

p11 = b1, p12 = b2 − a2 − a3, p13 = b3,

p21 = 0, p22 = a2, p23 = 0,

p31 = 0, p32 = a3, p33 = 0,

which makes 〈γ, p〉 = b2 − b1 − 2a2 − a3, but requires a2 + a3 ≤ b2, which by
itself implies a2 ≤ b2. Note that for b2 > a2 + a3 we have p12 > 0.

If we have to take p22 maximal to minimise 〈γ, p〉 then

p21 = 0, p22 = a2, p23 = 0,

and
p11 = tb1, p12 = (1− s)a1, p13 = sa1 − tb1,

gives

p31 = (1− t)b1, p32 = b2 − a2 − (1− s)a1, p33 = b3 + tb1 − sa1,

with constraints

tb1 ≤ sa1 ≤ tb1 + b3, b2 + sa1 ≥ a1 + a2.

Fixing t ∈ [0, 1] we make s maximal by sa1 = tb1 + b3 whence t = 1 maximal
gives tb1 = b1 and sa1 = b1 + b3, and we get the same matrix for p as with
p11 maximal, and the same value 〈γ, p〉 = b2− b1− 2a2− a3. To check is that
this is the minimum M(a, b, γ).

17.5.6 Entropy modification

Recall (13.18) and let ε > 0. We replace (17.64) by

Cε(p) = 〈c, p〉+ εKL(p||a⊗ b), (17.88)
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in which48

KL(p||a⊗ b) = pij ln
pij
aibj

+ 1i(aibj − pij)1j, (17.89)

and minimise Cε(p) over the set U(a, b) of m times n matrices with

pij ≥ 0 with pij1j = ai and 1ipij = bj (17.90)

as before. Note that the second term in (17.89) vanishes on U(a, b). If
Mε(a, b, c) denotes the minimum of49

Cε(p) = (cij + ε ln
pij
aibj
− ε)pij + ε1iaibj1j (17.91)

then the minimiser is unique and has all pij > 0. This is because the function
Cε is strictly convex50 and

∂Cε
∂pij

→ −∞ as pij → 0.

As a consequence of (the reasoning that produced) the Lagrange multiplier
statement in (17.31), the minimiser must be a solution of the system of
mn+m+ n equations

cij + ε ln
pij
aibj

= λi + µj, pil1l = ai, 1kpkj = bj (17.92)

for pij > 0, λi, µj, i = 1, . . . ,m, j = 1, . . . , n. These say that (17.88) is
stationary in p along the m+ n linear constraints in (17.90).

Now (17.92) simplifies (17.91) to

(λi + µj − ε)pij + ε1iaibj1j = (λi + µj)aibj exp(
λi + µj − cij

ε
)

because the first mn equations in (17.92) are uniquely solved by51

pij = aibj exp(
λi + µj − cij

ε
), (17.93)

48I first did my calculations without the second term in the KL-definition 17.89.
49With c = c⊥+γ as at the end of Section 17.5.2 we have 〈c⊥, p〉 = ak c̄

row
k +blc̄

column
l −c̄.

50As the sum of all pij ln pij and a linear function of p.
51Writing pij = aibj − qij as before it follows that

qij = aibj exp(
cij − λi − µj

ε
).
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which we then plug into the remaining m+ n equations in (17.92) to get

aibj exp(
λi + µj − cij

ε
)1j = ai, 1iaibj exp(

λi + µj − cij
ε

) = bj, (17.94)

a system of m+n equations for λi, µj, i = 1, . . . ,m, j = 1, . . . , n. In the first
we sum over j, better use l later, in the second over i, better use k later. But
these we recognise52 as the formula’s for stationarity of the concave function

Φε(λ, µ) = ε1iaibj1j −εaibj exp(
λi + µj − cij

ε
) + aiλi + bjµj︸ ︷︷ ︸

defines εFε(u,v) settingλi=ε lnui, µj=ε ln vj

. (17.95)

Via (17.93) the stationary points of (17.95) thus define the points p where
(17.88) is stationary along the m + n linear constraints in (17.90). Equiva-
lently, the stationary points of Fε(u, v) define p by

pij = aibjuivj exp(−cij
ε

).

We already know that the minimiser p is unique in view of the strict
convexity of Cε makes53 that this p is also the unique stationary point of Cε
along U(a, b). For the function Fε announced in (17.95) defined by

Fε(u, v) = ai lnui + bj ln vj − aibj exp(−cij
ε

)uivj

things are less obvious, but one of its stationary points must produce the
maximiser p, and is thereby itself the global maximiser for Fε.

So is what follows54 still needed? If we modify (17.67) as

(cij + ε ln
pij
aibj
− ε)pij + ε1iaibj1j + λi(ai − pij1j) + (bj − 1ipij)µj =

Lε = (cij − λi − µj + ε ln
pij
aibj
− ε)pij + aiλi + bjµj + ε1iaibj1j, (17.96)

then Lε is again a strictly convex function of p. Note that in the p-dependent
part it’s only the cost matrix55 in (17.88) that has been changed, but now
we take

pij ≥ 0, i = 1, . . . ,m, i = 1, . . . , n

52To expand on.
53All stationary points being strict local minimisers allows for no mountain passes.
54The min = inf sup = max min reasoning from the ε = 0 case in Section 17.5.1.
55See the comment below (17.73) in this respect.
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as the only restrictions when minimising with respect to p. Again the min-
imiser has all pij > 0. These are found by equating the pij-derivatives of Lε
to zero, which reproduces the first system of mn equations in (17.92). If we
then use

Mε(a, b, c) = min
p≥0

sup
λ,µ
Lε = max

λ,µ
inf
p≥0
Lε,

we see that
inf
p≥0
Lε = min

p≥0
Lε

is realised by (17.93) and equal to

−ε1i1jpij + aiλi + bjµj

with pij given by (17.93). Thus

min
p≥0
Lε = εaibj(1− exp(

λi + µj − cij
ε

)) + aiλi + bjµj = Φε(λ, µ),

our strictly concave function, of which we determined the maximiser as the
unique stationary point via the Lagrange multiplier method and (17.94)
above. This maximum coincides with the minimum of (17.91) over U(a, b).

If a ∈ Σm,b ∈ Σn then

Φε(λ, µ) = ε− εaibj exp(
λi + µj − cij

ε
) + aiλi + bjµj.

17.5.7 Sinkhorn method

This is what Augusto56 suggested Finn to do in his last chapter. Note that
(17.94) rewrites as

bj exp(
λi+µj−cij

ε
) = 1, i = 1, . . . ,m, sum over j;

ai exp(
λi+µj−cij

ε
) = 1, j = 1, . . . , n, sum over i,

and we know a priori that this system must have a solution λ, µ that defines
a unique minimiser p ∈ U(a, b) for Mε(a, b, c) via

pij = aibj exp(
λi + µj − cij

ε
). (17.97)

We may write the above system as57

λi = −ε ln
(
bj exp(

µj−cij
ε

)
)

= µC,εi ;

µj = −ε ln
(
ai exp(

λi−cij
ε

)
)

= λC,εj ,
(17.98)

56https://arxiv.org/pdf/1911.06850.pdf, see also https://arxiv.org/pdf/2006.06033.pdf
57On the right Finn’s notation, with λ for f , µ for g, and C-transform terminology.
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with summation convention in the logarithms. The right hand sides are called
the (c, ε)-transforms of µ and λ, and the functions

ε ln
(
bj exp(

µj
ε

)
)
, ε ln

(
ai exp(

λi
ε

)

)
are used in estimates.

Since the λi, µj are only a means to an end we may just as well work with

ui = exp(
λi
ε

), vj = exp(
µj
ε

)

for that matter. Recalling (17.95) we have

Φε(λ, µ) = εΨε(u, v),

Ψε(u, v) = 1iaibj1j + ai lnui + bj ln vj − uiKε
ijvj︸ ︷︷ ︸

Fε(u,v)

. (17.99)

Rewriting (17.98) as

bj exp(− cij
ε

)vj = 1
ui
, i = 1, . . . ,m;

ai exp(− cij
ε

)ui = 1
vj
, j = 1, . . . , n,

the Gibbs kernel
Kε
ij = ai exp(−cij

ε
)bj

makes these equations read58

ui =
ai
Kε
ilvl

; vj =
bj

ukKε
kj

; pij = uiK
ε
ijvj = aiui exp(−cij

ε
)bjvj,

with summation over the repeated index in both denominators. The solution
u, v may be nonunique, but we know p is unique.

Now the Sinkhorn method is solving this system with one of the first
two dropped, and then in the next step the other one. This should define a
scheme for (u, v) that converges, with p to follow. Note that using the first
in the third we have

1ipij =
ai

Kε
ijvj

Kε
ijvj = ai,

58Do the method with c replaced by γ ∈ T? Very different Gibbs kernel!
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and likewise the second in the third gives

pij1j = uiK
ε
ij

bj
uiKε

ij

= bj.

So start from
vj = 1j

and then repeat the commands

ui :=
ai
Kε
ilvl︸ ︷︷ ︸

new u

=
1

exp(− cil
ε

)blvl︸ ︷︷ ︸
sum over l

; p̃ij := uiK
ε
ijvj︸ ︷︷ ︸

=⇒ p̃ij1j=ai

=
ai exp(− cij

ε
)bjvj

exp(− cil
ε

)blvl︸ ︷︷ ︸
sum over l

;

vj :=
bj

ukKε
kj︸ ︷︷ ︸

new v

=
1

akuk exp(− ckj
ε

)︸ ︷︷ ︸
sum over k

; p̂ij := uiK
ε
ijvj︸ ︷︷ ︸

=⇒ 1ip̂ij=bj

=
aiui exp(− cij

ε
)bj

akuk exp(− ckj
ε

)︸ ︷︷ ︸
sum over k

,

as long as some non-stopping condition is satisfied. In every step the new u
and p̃ are defined in terms of the old v, and the new v and p̂ in terms of the
new u just computed. The rows of p̃ sum up to the ai and the colums of p̂
sum up to bj. This is because of the structure

ui :=
1

sum over terms indexed by l
, p̃ij := ai

jth term

sum over all terms

and likewise for v, p̂ in the loop above.
Convergence of these iterations relies59 on the transformation

(u, v)→ (ũ, ṽ) defined by ũi =
ai

Kε
ijvj

, ṽj =
bj

ũiKε
ij

increasing

Fε(u, v) = ai lnui + bj ln vj − aibj exp(−cij
ε

)︸ ︷︷ ︸
Kε
ij

uivj,

see (17.99). Finn formulates and proves this for the scheme derived from
(17.98) and Φε(λ, µ). His statements correspond to60

Fε(u, v) ≤ Fε(ũ, v) ≤ Fε(ũ, ṽ),

and imply that along the sequence of Sinkhorn iterates the value of Fε is
nondecreasing. A convergent subsequence argument should then provide a
limit point in which Fε is stationary in both u and v and thereby maximal,
in view of its properties in its separate u and v variables.

59Still have to check this.
60This only uses that f(x) ≤ f(x̃) if x̃ is defined by f ′(x̃) = 0 and f is concave.

311



Exercise 17.5. Why is the maximum thus found equal to M(a, b, c)?

The compactness needed here is provided in Section 17.5.9, as I realised
continuing reading Finn’s master thesis.

17.5.8 Sinkhorn for the first nontrivial example

Put

δ = exp(−1

ε
),

start with u1 = u2 = u3 = 1 and iterate, with

v1 :=
1

a1u1/δ + δa2u2 + a3u3

; v2 :=
1

δa1u1 + a2u2/δ + a3u3

;

v3 :=
1

a1u1 + a2u2 + a3u3

as intermediate step, the scheme

1

u1

:=
b1/δ

a1u1/δ + δa2u2 + a3u3

+
δb2

δa1u1 + a2u2/δ + a3u3

+
b3

a1u1 + a2u2 + a3u3

;

1

u2

:=
δb1

a1u1/δ + δa2u2 + a3u3

+
b2/δ

δa1u1 + a2u2/δ + a3u3

+
b3

a1u1 + a2u2 + a3u3

;

1

u3

:=
b1

a1u1/δ + δa2u2 + a3u3

+
b2

δa1u1 + a2u2/δ + a3u3

+
b3

a1u1 + a2u2 + a3u3

.

The scheme rewrites as

1

u1

:=
b1

a1u1 + δ2a2u2 + δa3u3

+
δ2b2

δ2a1u1 + a2u2 + δa3u3

+
b3

a1u1 + a2u2 + a3u3

;

1

u2

:=
δ2b1

a1u1 + δ2a2u2 + δa3u3

+
b2

δ2a1u1 + a2u2 + δa3u3

+
b3

a1u1 + a2u2 + a3u3

;

1

u3

:=
δb1

a1u1 + δ2a2u2 + δa3u3

+
δb2

δ2a1u1 + a2u2 + δa3u3

+
b3

a1u1 + a2u2 + a3u3

,

and putting δ = 0 we obtain61 the scheme

1

u1

:=
b1

a1u1

+
b3

a1u1 + a2u2 + a3u3

;
1

u2

:=
b2

a2u2

+
b3

a1u1 + a2u2 + a3u3

,

1

u3

:=
b3

a1u1 + a2u2 + a3u3

,

It would seem that the Sinkhorn method works for ε = 0 as well. Via the
system above for the example62, but not only for the example.

61Use reciprocals to continue? Or write this projectively? Notation u1 : u2 : u3?
62Re-examine what we did and compare!
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17.5.9 The Hilbert metric and Birkhoff tricks

We’re continuing with the u-scheme, but then in the general case. In view of
the scaling we measure the difference between u and another u called v, not
v as above, by transforming

xi = lnui, yi = ln vi,

zi = xi − yi, dH(u, v) = max
i,j

(zi − zj) = max
i,j
|zi − zj| = d∞(x, y),

which is like the maximum norm of z modulo a constant. That is, if we
choose c such that z̄i = zi + c has its minimal coordinate equal to 0 then
|[z]|

max
= |z̄|

max
, in which [z] is the equivalence class of z for the equivalence

relation x ∼ y ⇐⇒ xi − yi ≡ c for some c. In terms of u and v this reads
u ∼ v if and only v is a scalar multiple of v, and with

lnwi = zi = xi − yi = lnui − ln vi = ln
ui
vi

we have

dH(u, v) = max
i,j

(zi− zj) = max
i,j

(lnwi− lnwj) = max
i,j

(ln
wi
wj

) = max
i,j

(ln
uivj
ujvi

)

Exercise 17.6. Write 1 = (1, . . . , 1) for the n-vector with only ones in IRn. We
can consider IRn

1 is IRn modulo 1 with the metric d∞. This is a nice space. Why?

If K is a matrix with positive entries Kij then

Xi = ln(Kil exp(xl)) = Φ(x)i

defines a map Φ that commutes with adding a constant c to all coordinates.
We need to estimate d∞(X, Y ) = d∞(Φ(x),Φ(y)) in terms of d∞(x, y). This
involves the ln of the maximum of

Kik exp(xk)Kjl exp(yl)

Kjk exp(xk)Kil exp(yl)
=
KikKjl exp(xk + yl)

KjkKil exp(xk + yl)
,

with summation over k and l in numerator and denominator, over i and j.
This can be estimated in terms of

max
ijkl

KikKjl

KjkKil

and exp(d∞(x, y)).
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We write v = U , xi = lnui, Xj = lnUj, and estimate

d∞(X, Y ) = max
ij

(Xi + Yj −Xj − Yi) = ln(max
ij

UiVj
UjVi

)

in terms of

d∞(x, y) = max
ij

(xi + yj − xj − yi) = ln(max
ij

uivj
ujvi

).

We have for i 6= j fixed that

UiVj
UjVi

=
Kjlul
Kikuk

Kikvk
Kjlvl

=
Kikvk
Kikuk

Kjlul
Kjlvl

=
KikKjlulvk
KikKjlukvl︸ ︷︷ ︸

A
ij
kl
zkl

A
ij
kl
wkl

=
KjkKilukvl
KikKjlukvl︸ ︷︷ ︸

A
ij
kl
zkl

B
ij
kl
zkl

,

with summation over k, l in numerators and denominators. We conclude that

UiVj
UjVi

≤ max
kl

ulvk
ukvl

and
UiVj
UjVi

≤ max
kl

KikKjl

KilKjk

= ηij(K),

and that K is an isometry if K is a diagonal matrix. In particular the
diameter of the range of Φ is bounded by

η(K) = max
ij

ηij(K) ≥ 1.

Garrett Birkhoff63 showed that in fact it holds that Φ is contractive with
contraction factor

λ(K) =

√
η(K)− 1√
η(K) + 1

< 1.

He first rewrites

u = u1 : u2
K−→ U = U1 : U2 = (K11u1 +K12u2) : (K21u1 +K22u2)

for

eξ = x =
u2

u1

and eη = y =
U2

U1

as

x
K−→ y =

K21u1 +K22u2

K11u1 +K12u2

=
K21 +K22 x

K11 +K12 x
=
ax+ b

cx+ d

63Google Extensions of Jentzsch’s Theorem.
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to effectively compute

∂η

∂ξ
=
∂η

∂y

∂y

∂x

∂x

∂ξ
=

1

y

ad− bc
(cx+ d)2

x =
(ad− bc)x

(ax+ b)(cx+ d)
,

which is maximised in absolute value by

x =

√
bd

ac

to give, with

µ2 =
ad

bc
,

∂η

∂ξ
=

ad− bc
ad+ bc+ 2

√
abcd

=
µ2 − 1

1 + 2µ+ µ2
=

√
ad
bc
− 1√

ad
bc

+ 1
= tanh

1

4
ln
ad

bc
.

Let’s see how this should generalise. For a positive matrix K indexed
with 0, 1, 2 we consider

u0 : u1 : u2
K−→ U0 : U1 : U2 =

(K00u0+K01u1+K02u2) : (K10u0+K11u1+K12u2) : (K20u0+K21u1+K22u2).

Then

eξi = xi =
ui
u0

, eηi = yi =
Ui
U0

, i = 1, 2

leads to

y1 =
K10 +K11x1 +K12x2

K00 +K01x1 +K02x2

, y2 =
K20 +K21x1 +K22x2

K00 +K01x1 +K02x2

.

More generally we can write

u0 : uj
K−→ U0 : Uj

for
u0 : u1 : · · · : un

K−→ U0 : U1 : · · · : Un
with

U0 = K00u0 +K0iui, Uj = Kj0u0 +Kjiui,

summation over i = 1, . . . , n, so

yi =
Ki0 +Kikxk
K00 +K0lxl

,
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summation over k = 1, . . . , n, l = 1, . . . , n, whence

∂yi
∂xj

=
KijK00 −K0jKi0 + (KijK0k −KikK0j)xk

(K00 +K0lxl)2
,

summation over k 6= 0, j in the numerator, over l 6= 0 in the denominator.
Thus

∂ηi
∂ξj

=
xj
yi

∂yi
∂xj

= xj
KijK00 −K0jKi0 + (KijK0k −KikK0j)xk

(Ki0 +Kikxk)(K00 +K0lxl)
,

But this is not what GB did. For u0 : u1 : · · · : un and v0 : v1 : · · · : vn
he would choose representations u = (u0, u1, . . . , un) and v = (v0, v1, . . . , vn)
with u0 +u1 + · · ·+un = v0 +v1 + · · ·+vn = 1, and intersect the line l through
u and v with the closed cone of all points with nonnegative coordinates, thus
obtaining a closed line segment [a, b], a and b chosen such that u ∈ [a, v],
v ∈ [u, b], and map the triangle Oab to IR2, O ∈ IRn+1 to O ∈ IR2, a to (1, 0),
b to (0, 1), denote the images of u and v by f and g, and observe64 that

dH(u, v) = dH(f, g).

Since diagonal matrices are isometries, a can in fact be mapped to any point
on the first positive axis, and b to any point on the second positive axis.

We should also look at the Jacobian matrix

∂Xi

∂xk
,

for
ln(Ui) = Xi = ln(exp(Γij)e

xj)︸ ︷︷ ︸ = ln(exp(Γij)uj),

and observe that

∂Xi

∂xk
= exp(Γik + xk −Xi) = κik =

exp(Γik)uk
Ui

acts in the tangent space and should have a norm there which derives from
d∞.

64NB. In fact he uses this as a definition, why does it reproduce what we have?
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18 Measures of parallelotopes

In this chapter we prove the spectral theorem1 for compact linear symmetric
operators. In fact this theorem is just a minor varation of a theorem for
symmetric matrices S that we need for what follows next, starting from two
2-vectors2

a =

(
a1

a2

)
and b =

(
b1

b2

)
spanning a parallelogram in the plane.

If you draw such a parallelogram you can easily deform it into a rectangle,
while keeping its area fixed, and then it’s clear what its area is. Have a look
at

https://en.wikipedia.org/wiki/Parallelogram

to see how, and read to see how this can be turned into algebra.
We observe that there are two ways to put the two 2-vectors a and b into

what we call a matrix. We choose for

A =

(
a1 b1

a2 b2

)
,

with transpose

AT =

(
a1 a2

b1 b2

)
.

Likewise two 3-vectors a and b fit in AT as

AT =

(
a1 a2 a3

b1 b2 b3

)
.

How does such a matrix provide us with the area spanned by a and b? The
answer involves the matrix product

S = ATA, (18.1)

a symmetric matrix to which Section 18.4 applies.

1Essentially Theorem 18.6.
2We momentarily surrender to the boldface vector notation in physics......
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18.1 Matrix products

In general an m×n real matrix A is a block3 with real entries aij. The vertical
index i runs from 1 to m, the horizontal index j from 1 to n. Considered
as a map4 A sends an n-vector x ∈ IRn with coordinates x1, . . . , xn to an
m-vector y ∈ IRm with coordinates

yi =
n∑
j=1

aijxj.

We say that
A ∈ L(IRn, IRm),

the space of linear maps from IRn to IRm, and we write y = Ax.
If B is a real n × p matrix with entries bjk, the vertical index j running

from 1 up n, the horizontal index k from 1 up p, then AB is by definition
the m× p matrix with entries

n∑
j=1

aijbjk, (18.2)

with the corresponding linear map5

A ◦B : IRp B−→ IRn A−→ IRm.

If we transpose both blocks A and B by numbering the first index horizon-
tally, and the second index vertically, then we get transposed matrices AT

and BT with entries atji = aij and btkj = bjk, and (18.2) reads as

n∑
j=1

btkja
t
ji,

the entries of BTAT in (AB)T = BTAT .
In the special case that m = n = p it can happen that AB = In, the

n× n matrix with all diagonal entries equal to 1, and all off-diagonal entries
equal to 0. This matrix corresponds to the linear map I = In that sends
every x ∈ IRn to itself . What you really need to know from linear algebra6

is that the map A ◦ B being the same map as the map In is equivalent to

3With m and n in IN.
4A linear map in fact.
5So A is preceded by B.
6A proof should be given in one of the first hours of any course in Linear Algebra.
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AB = I for the corresponding matrices. We say that A and B are each others
inverses, as linear maps because A ◦B = B ◦A = In, with AB = I = BA for
the matrices. And likewise for the transposes. We emphasise that these are
statements about square matrices, and solutions of Ax = y with A a square
matrix.

If a third p × r matrix C has entries ckl then (AB)C is the matrix with
entries

p∑
k=1

(
n∑
j=1

aijbjk)ckl =

p∑
k=1

n∑
j=1

aijbjkckl, (18.3)

and these are also the entries of A(BC): just change the order of the sum-
mations. Thus (AB)C = A(BC) and we write ABC for the product of A,
B and C. The corresponding linear map is A ◦ B ◦ C. Transposing we have
(ABC)T = CTBTAT , which is what we will use in Section 17.2 for (17.25).

18.2 Matrix norms

The series
I + A+ A2 + A3 + · · · , (18.4)

with A a square matrix7, is important for the implicit function theorem with
F : IRn+m → IRm in Section 23.1. You should also compare (18.4) to (15.29),
and ask the question as to what is required to justify the manipulations that
led to it. Estimates that do so can be best understood starting from a 2× 2
matrix as in (16.9) and estimates for A : IR2 → IR2 of the form (16.10).

Indeed you easily check8 that for every n × n matrix and every real n-
vector h it is true that

|Ah|
2
≤M |h|

2
, (18.5)

if M ≥ 0 is defined by

M2 =
n∑

i,j=1

a2
ij.

If you like this defines a kind of Pythagoras length of A, notation

M = |A|
2
.

This norm has the property that

|A+B|
2
≤ |A|

2
+ |B|

2
and |AB|

2
≤ |A|

2
|B|

2
. (18.6)

7A 2× 2 matrix as in (16.9) for instance.
8Using proof by induction if you like.
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holds9.
If you like all of the above is just algebra with matrices. The smallest M

for which (18.5) holds is called the operator norm of A, notation |A|
op

. It is
for this latter definition that we we want see A as a linear map from IRn to
IRn. Then the norm of A is the largest possible ratio between the norm of
Ah and the norm of h.

We note that L(IRn) = L(IRn, IRn) is not only a vector space over IR, but
also a normed algebra, because also the product operation

(A,B)→ AB

behaves as it should with respect to the norm

A→ |A|
op
,

namely, it holds that
|AB|

op
≤ |A|

op
|B|

op
.

This is in addition to

|A|
op

= 0 ⇐⇒ A = 0, |λA|
op

= |λ| |A|
op
≥ 0, |A+B|

op
≤ |A|

op
+ |B|

op

for all A,B ∈ L(IRn) and λ ∈ IR.

As a vector space L(IRn) is just10 IRn2

, with the standard Pythagoraen
norm11 defined by

|A|2
2

=
n∑

i,j=1

a2
ij,

the (Frobenius) norm for which we have both inequalities in (18.6). Since
|A|

op
≤ |A|

2
for all A ∈ L(IRn) we prefer to use the smaller of the two

norms12.

Exercise 18.1. Prove there exists µn ∈ (0, 1] such that

µn|A|2 ≤ |A|op ≤ |A|2

for all A ∈ L(IRn). Hint13: if not then on

{A ∈ L(IRn) : |A|
op

= 1}

9Verify this. How does this generalise to non-square matrices?
10Entries in a block or in a column, what’s the difference really?
11In the literature it is called the Frobenius norm.
12Which makes for a sharper statement than in Exercise 1.15.
13Hardy would dislike this proof and prefer an explicit construction of the µn.

320



the Pythagoras norm |A|
2

can be arbitrarily large, and therefore also the length of at
least one of the column vectors. This is at odds with |A|

op
= 1.

Exercise 18.2. If A ∈ L(IRn) has |A|
op
< 1 then it holds for the series in (18.4)

that
(I −A)(I +A+A2 +A3 + · · · ) = I.

Explain why and prove that

(I +A)−1 = I −A+A2 −A3 + · · · =
∞∑
j=0

(−A)j .

Remark 18.3. It should by now be clear that the whole machinery of power
series carries over to Banach algebra’s.

18.3 Quadratic forms and operator norms

In (18.2) we can put B = AT , the transpose of the matrix A with entries aij
used in

yi =
n∑
j=1

aijxj,

which defined A ∈ L(IRn, IRm). This gives14

S = AAT ∈ L(IRm, IRm) with entries sik =
n∑
j=1

aijakj = ski. (18.7)

Since

|A|
op

= max
06=x∈IRn

|Ax|
2

|x|
2

= max
|x|

2
=1
|Ax|

2
,

and likewise for |AT |
op

, we have

|AT |2
op

= max
|z|

2
=1
|AT z|2

2︸ ︷︷ ︸
AT z·AT z

= max
|z|

2
=1
AAT z ·z = max

|z|
2

=1
Sz ·z = max

0 6=z∈IRm

Sz · z
z · z

, (18.8)

and we note that the bilinear mapping

(z, w)→ Sz · w
14Don’t let (18.1) confuse you.

321



from IRm× IRm to IR then satisfies all the axioms of an inner product, except
that Sz · z = 0 does not imply that z = 0.

Exercise 18.4. Rederive the Cauchy-Schwarz inequality for z, w ∈ IRm by inspec-
tion of the minimum of the nonnegative function

λ→ |λw − z|2
2

= (λw − z) · (λw − z),

and show that the same reasoning leads to

|Sz · w| ≤
√
Sz · z

√
Sw · w.

Note the special case m = n and S = A = I and don’t forget to discuss the possibility
that the function you use is not a quadratic but a linear function.

For S = AAT as above we set

M = max
|z|

2
=1
Sz · z,

whereby we note that S is a symmetric matrix for which Sz · z ≥ 0 holds for
all z ∈ IRm. Just like it is easy to prove from the definition of the 2-norm via

|w|
2

=
√
w · w

that
|z + w|2

2
+ |z − w|2

2
= 2 |z|2

2
+ 2 |w|2

2
,

you easily verify that

S(z + w) · (z + w) + S(z − w) · (z − w) = 2Sz · z + 2Sw · w, (18.9)

an identity to play with, with S = AATas above, but also with S = I the
identity:

Exercise 18.5. The Cauchy-Schwarz inequality and the definition of the operator
norm immediately imply that M ≤ |S|

op
. Write

4Sz · w = S(z + w) · (z + w)− S(z − w) · (z − w)

and estimate the right hand side in terms of M , z and w to obtain that in particular
for all z, w ∈ IRm with |z|

2
= |w|

2
= 1 it holds that |Sz · w| ≤ M . Conclude that

|S|
op

= M .
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The map
z → Q(z) = Sz · z

defined by the symmetric matrix S is called a quadratic form. Observe that
in Exercise 18.5 the assumption that Sz ·z ≥ 0 can be dropped if M is defined
by

M = sup
|z|

2
=1

|Sz · z|.

You should never forget the remarkable fact that the maxima of z → |Q(z)|
and z → |Sz| on the unit ball coincide.

18.4 Eigenvalues of compact symmetric operators

The above carries over to S : H → H when H is any inner product space
and S : H → H is linear and symmetric with respect to that inner product,
and has the property that Sz · z ≥ 0 for all z ∈ H, except that we no longer
know that the maxima exist. Introducing

|S|
op

= sup
06=z∈H

|Sz|
|z|

= sup
06=z∈H

√
Sz · Sz
z · z

= sup
z·z=1

√
Sz · Sz, (18.10)

and
M = sup

z·z=1
Sz · z, (18.11)

it suffices to have that S is bounded on the unit ball in H to have

M = |S|
op
<∞. (18.12)

Ignoring the trivial case thatM = 0 we now observe that the Cauchy-Schwarz
inequality in Exercise 18.4 also holds with S replaced by M − S = MI − S,
I being the identity map, and it thus holds that

|(M − S)z · w| ≤
√

(M − S)z · z
√

(M − S)w · w, (18.13)

whence (varying w over the unit ball)

|(M − S)z| ≤
√

(M − S)z · z
√
|M − S|

op
≤
√

(M − S)z · z
√
M + |S|

op

Taking a sequence zn ∈ H with |zn| = 1 and Szn ·zn →M , it then follows
that the right hand side goes to zero, and thus

Mzn − Szn → 0.

If the sequence zn can be chosen to have Szn converging to a limit y ∈ H, it
follows that also Mzn → y and that M = |y| > 0. But then w = y

M
is a unit

eigenvector of S with eigenvalue M . We have therefore proved the following
Theorem.
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Theorem 18.6. Let H be an inner product space and S : H → H linear,
symmetric with Sz · z ≥ 0 for all z ∈ H, Sz 6= 0 for at least one z ∈ H.
If for every bounded sequence zn in H it holds that Szn has a convergent
subsequence, then

λ1 = max
06=z∈H

Sz · z
z · z

> 0

exists, and λ1 is an eigenvalue of S whose eigenvectors are precisely the
maximisers15 of the quotient under consideration.

Remark 18.7. In fact we only need one single sequence zn with zn · zn = 1
such that Szn converges and

Szn · zn → sup
06=z∈H

Sz · z
z · z

to conclude that λ1 exists, and is an eigenvalue of S whose eigenvectors
are the maximisers. In particular this is the case when the supremum is a
maximum.

Given an eigenvector w1 with |w1| = 1 it easily follows that S maps

H1 = {z ∈ H : z · w1 = 0}

to itself. Unless H1 is16 the null space of S it then follows that

λ2 = max
z·w1=06=z∈H

Sz · z
z · z

> 0

is also an eigenvalue of S with eigenvector w2 with |w2| = 1.
Repeating the argument with

H2 = {z ∈ H : z · w1 = z · w2 = 0}

we obtain a sequence of eigenvalues

λ1 ≥ λ2 ≥ · · · > 0,

which either terminates17, or has the property that λn → 0 as n→∞. The
latter statement is a consequence of the convergent subsequences assumption:
the corresponding mutually perpendicular unit eigenvectors

w1, w2, . . . ,

15Typically only multiples of one eigenvector.
16This includes the possibility that H1 = {0}.
17If the range of H is spanned by v1, . . . , vN for some N ∈ IN.
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terminating or not, have

|Svn − Svm|2
2

= λ2
n + λ2

m,

which prohibits Cauchy subsequences of Svn if the sequence λn > 0 does not
terminate and decreases to a positive limit.

If we do not assume that Sz · z ≥ 0 for all z ∈ H then the absolute value
of the first eigenvalue is still obtained as

|λ1| = max
0 6=z∈H

|Sz · z|
z · z

> 0,

because, changing from S to −S if necessary, it is no restriction to assume
that

M = sup
06=z∈H

|Sz · z|
z · z

= sup
06=z∈H

Sz · z
z · z

,

and reason as above. With the Cauchy-Schwarz inequality in (18.13) still
holding18 while the version in Exercise 18.4 fails, the upshot is that we still
obtain eigenvalues with

|λ1| ≥ |λ2| ≥ · · · ≥ 0,

with eigenvectors as before. This is essentially the spectral theorem for com-
pact symmetric linear operators S from an inner product space H to itself.
It does not require any knowledge of the determinants which will become
important next in the finite-dimensional case.

18.5 Singular values and measures of parallelotopes

In the case that H = IRm the subsequence argument is not needed as the
maximiser w for the maximum in Theorem 18.6 exists in view of the com-
pactness of the unit ball in IRm. Now consider the matrix A defined by

AT =

(
a1 a2 a3

b1 b2 b3

)
(18.14)

and19

S = ATA =

(
a2

1 + a2
2 + a2

3 a1b1 + a2b2 + a3b3

b1a1 + b2a2 + b3a3 b2
1 + b2

2 + b2
3

)
=

(
a · a a · b
b · a b · b

)
(18.15)

18I first saw this Cauchy-Schwarz trick in the appendix of the PDE book of Craig Evans.
19Compared to (18.7) we switch from A to AT , back to (18.1) for what comes next.
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The outer product a× b of these two 3-column vectors a and b with, respec-
tively, entries a1, a2, a3 and entries b1, b2, b3, is defined as the 3-vector with
entries

a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1,

and has squared length

|a× b|2 = (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2 = det(ATA),

as you should verify. That is to say, det(ATA) is the sum of all the squares
of all the 2× 2-determinants of 2× 2 submatrices of A. Here we count these
2× 2 submatrices modulo the column permutations in (18.14).

As you may know, the length of the outer product a× b of a and b equals
the area of the parallellogram spanned by a and b. Thus this area is the
square root of the sum of the squares of the three 2 × 2-determinants in
(18.14). It is precisely this statement that generalises to the n-dimensional
measure of a parallelotope spanned by n vectors x1, . . . , xn in IRN.

Theorem 18.8. Let 1 ≤ n ≤ N . Consider the parallelotope P spanned by
the vectors x1, . . . , xn in IRN. After putting these vectors in the columns of a
matrix A, the n-dimensional measure Mn(x1, . . . , xn) of P is the square root
of the determinant of ATA, and this determinant in turn is the sum of all
the squares of the determinants of all n× n submatrices, and also equals the
product σ1 · · · σn of the (nonnegative) singular values of A.

Let us sketch a proof of this statement, first for (18.14), without using the
outer product, using the invariance of the area under shear transformations.
That is to say, the area of the parallelogram spanned by the vectors a and b
is the same as that of the parallelogram spanned by the vectors a + tb and
b with t ∈ IR arbitrary. The same statement holds for the determinant of
S = ATA and the determinant of St = ATt At where At is the matrix with
column vectors a+ tb and b. Indeed, writing At = A+ tB we have

ATt At = (A+ tB)T (A+ tB) = ATA+ tATB + tBTA+ t2BTB

= ATA+ tATB︸ ︷︷ ︸
Ct

+t(BTA+ tBTB︸ ︷︷ ︸
Dt

) = St

The matrix Ct is the matrix obtained from S = ATA by adding t times
the second (last) row of S to its first row. Therefore Ct and S have the
same determinant. In turn, the matrix St is obtained from Ct by adding
t times the second (last) column of Ct to its first column. Therefore St
and Ct have the same determinant. It follows that St and S have the same
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determinant. So both the area and the determinant are invariant under this
shear transformation, which allows us to restrict our proof to the case in
which a · b = 0. Then the square of the area is equal to the product of
the squares of the lengths of a and b, which is also the determinant of the
diagonal matrix with entries a · a and b · b. To prove the general statement
in the theorem we use repeated shear transformations which leave both the
determinant and the measure invariant and reduce the statement to be proved
to the case that xi · xj = 0 if i 6= j and a corresponding diagonal matrix
S with entries x1 · x1, . . . , xn · xn. But this should be obvious from any
formal definition of the n-dimensional measure of parallelotopes spanned by
n vectors, a definition we happily leave here to be for what it is.

It remains to show that the determinant of the matrix S defined in (18.7)
is also equal to the sum of the squares of the determinants of all the maximal
square submatrices of A. These are also invariant under the shear transfor-
mations used above. Rather than using these transformations to reduce the
statement to be proved to the case that the column vectors satisfy xi ·xj = 0
for i 6= j we now use them diagonalise a maximal square part of the matrix A.
Note that if the matrix A has no n×n submatrix with nonzero determinant,
then the sum of the squared n× n determinants is zero, while also it cannot
be the case that the column vectors are independent. Then our reduction
to the case that the column vectors satisfy xi · xj = 0 leads to one of these
vectors being zero making the n-dimensional measure of P , and thereby the
determinant of ATA zero as well.

Thus we may as well assume that the upper n× n part of A has nonzero
determinant. It is a straightforward linear algebra exercise to show that, most
likely after relabeling the first n coordinates, shear transformations bring A
in the form

A =

(
Λ

B

)
where Λ is an n×n diagonal matrix with nonzero entries λ1, . . . , λn. Here we
already assumed that n < N because otherwise there was nothing to prove20

in the first place. It now follows that

ATA = Λ2 +BTB = Λ2 + S,

where B is an m× n matrix with entries bik and S has entries

sij =
m∑
k=1

bikbjk.

20If you know your determinants.
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We therefore have, writing B = [B1, . . . , Bn] with B1, . . . , Bn the column
vectors of B and using product notation, that

det(ATA) = Πjλ
2
j︸︷︷︸

λ1
j ···λ

n
j

+s11 Πj 6=1λ
2
j︸ ︷︷ ︸

λ2
j ···λ

n
j

+ · · ·+ snnΠj 6=nλ
2
j

+det

(
s11 s12

s12 s22

)
Πj 6=1,2λ

2
j + · · ·+ detS =

Πjλ
2
j + (B1 ·B1)Πj 6=1λ

2
j + · · ·+ det

(
B1 · B1 B1 · B2

B1 · B2 B2 · B2

)
Πj 6=1,2λ

2
j + · · · ,

in which we wrote the term of degree n and only the first terms of degree
2n − 2 and degree 2n − 4 in λ1, . . . , λn. It should be obvious what the
remaining terms are.

On the other hand, the sum of the squared determinants of the n × n
submatrices of A is

Πjλ
2
j+(b2

11+b2
21+· · ·+b2

m1)Πj 6=1λ
2
j+· · ·+

(
det

(
b11 b12

b12 b22

)2

+ · · ·

)
Πj 6=1,2λ

2
j+· · ·

It remains to show that

B1 ·B1 = b2
11 + b2

21 + · · ·+ b2
m1,

which is clearly the case, and then that

det

(
B1 · B1 B1 · B2

B1 · B2 B2 · B2

)
= det

(
b11 b12

b12 b22

)2

+ · · ·+ det

(
b(m−1)1 b(m−1)2

bm2 bm2

)2

,

etcetera. These are the statements we set out to prove for A, before applying
shear transformations. But now look at the dimensions to observe that we
can systematically reduce the statement we want to prove to lower dimensions
of the matrix under consideration, until we reach the easy case that m = 1.
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19 Transformation theorem

This chapter is only a sketch of what we want. Let’s see what that is from
an example. For R ⊂ IR2 and continuous f : R→ IR we have that∫∫

R

f(x, y) dxdy =

∫∫
Q

f(x(r, θ), y(r, θ)) (
∂x

∂r

∂y

∂θ
− ∂y

∂r

∂x

∂θ
)drdθ,

if

Q
(r,θ)→(x,y)−−−−−−→ R

is reasonably nice. We explore how we can prove such statements.
If

(x, y)
Φ−→ (u, v)

is a bijection between R ⊂ IR2
x,y and A ⊂ IR2

u,v we would like to have that
the integral ∫∫

A

g(u, v) dudv

relates to an integral with g(u(x, y), v(x, y)) and dxdy over R, perhaps with
the convention that dudv = −dvdu en dxdy = −dydx. Let’s assume that R
is a rectangle, e.g. R = [0, 1]× [0, 1].

Have a look at (14.2) and read

F (x, y, u, v) =

(
Φ1(x, y)− u
Φ2(x, y)− v

)
instead of F (x, y) = g(y)− x.

Unpacking1 the theorem we obtain an inverse function theorem which says
that if the Jacobi matrix in in (x0, y0), i.e.

J(x, y) =

(∂Φ1

∂x
∂Φ1

∂y

∂Φ2

∂x
∂Φ2

∂y

)
is invertible, in some neightbourhood of (u0, v0) = (Φ1(x0, y0),Φ2(x0, y0)) the
inverse function

(u, v)
Φ−1

−−→ (x, y)

exists and continuously differentiable. The Jacobi matrix of the inverse map
is the inverse of the Jacobi matrix of Φ.

For a transformation theorem we therefore assume that the Jacobi matrix
J(x, y) is invertible in every point of R. This makes A a region in IR2

u,v with
four boundary parts parameterised by

x→ Φ(x, 0), y → Φ(1, y), x→ Φ(x, 1), y → Φ(0, y).

1Chapter 16 explained how to unpack.
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Partitions

(P ) 0 = x0 ≤ x1 ≤ · · · ≤ xN = 1 met N ∈ IN,

(Q) 0 = y0 ≤ y1 ≤ · · · ≤ yM = 1 met M ∈ IN,

then give (M + 1)(N + 1) parameterisations

x→ Φ(x, yj) en y → Φ(xi, y) (i = 0, . . . ,M, j = 0 . . . , N),

which form a grid of deformed rectangles Sij in A.
A proper definition of Riemann integrability of g : A → IR should2 give

that with
Mij = sup

Sij

g and mij = inf
Sij
g

it follows that ∑
ij

mij|Sij| ≤
∫∫

A

g ≤
∑
ij

Mij|Sij|,

in which Sij is the area of Sij. We then rewrite this as∑
ij

mij
|Sij|
|Rij|

|Rij| ≤
∫∫

A

g ≤
∑
ij

Mij
|Sij|
|Rij|

|Rij|,

and note that
Mij = sup

Rij

f and mij = inf
Rij

f

with f = g ◦ Φ.
It remains to make precise3 that

|Sij|
|Rij|

∼ |detJ(xi, yi)| (19.1)

as M,N →∞ to obtain the Riemann integrability of

(x, y)→ f(x, y)|J(x, y)|

over R and conclude that ∫∫
R

f |detJ | =
∫∫

A

g. (19.2)

2To do, note that J is constant if Φ is linear.
3See e.g. Section 5 of Chapter III in the Advanced Calculus book of Edwards.
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20 Applications

Still in Dutch. Part of the this was initially written for students in chemistry.
Wat bruggetjes naar hoe de natuurkundigen en scheikundigen het doen, en
aan het eind wat complexe functietheorie, met de lijnintegralen alleen maar
over rechte lijnstukjes. Voldoende voor an early introduction of the functional
calculus waarmee voor z in f(z) ook iets heel anders mag worden ingevuld,
bijvoorbeeld een vierkante matrix.

20.1 Integraalrekening in poolcoördinaten

Merk op dat we in het echte leven over meer verzamelingen zullen willen
integreren dan over rechthoeken. Bijvoorbeeld over heel IR2. Voor niet-
negatieve functies u : IR2 → IR is∫∫

IR2

u = lim
R→∞

∫∫
[−R,R]×[−R,R]

u(x, y)d(x, y)︸ ︷︷ ︸
J(R)

= lim
R→∞

J(R) (20.1)

op natuurlijke manier gedefinieerd in [0,∞] als limiet van een niet-dalende
functie R→ J(R) ≥ 0.

Er is natuurlijk geen enkele reden om een integraal over heel IR2 per se
als een limiet van integralen in rechthoekige coördinaten over in dit geval
vierkanten te introduceren. Poolcoördinaten zijn vaak veel handiger. Voor
Riemannsommen in poolcoördinaten ten behoeve van de rechtstreekse defini-
tie en uitwerking van∫∫

x2+y2≤R2

u(x, y)d(x, y) =

∫ 2π

0

∫ R

0

u(r cos θ, r sin θ) rdr dθ

=

∫ R

0

∫ 2π

0

u(r cos θ, r sin θ) dθ rdr (20.2)

gebruiken we

0 = r0 ≤ r1 ≤ · · · ≤ rM = R met M ∈ IN (20.3)

en
0 = θ0 ≤ θ1 ≤ · · · ≤ θN = 2π met N ∈ IN, (20.4)

en tussensommen van de vorm

M∑
k=1

N∑
l=1

u(ρk cosφl, ρk sinφl)
1

2
(r2
k − r2

k−1)(θl − θl−1)︸ ︷︷ ︸
waarom dit dan?

=
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M∑
k=1

N∑
l=1

u(ρk cosφl, ρk sinφl)
rk + rk−1

2︸ ︷︷ ︸
ρ̃k

(rk − rk−1)(θl − θl−1),

met tussenwaarden ρk, ρ̃k ∈ [rk−1, rk] en φl ∈ [θl−1, θl]. De details zijn zelf in
te vullen. Leuker is deze mooie toepassing van (20.2) in de volgende stelling
over harmonische functies.

Exercise 20.1. Een twee keer continu differentieerbare functie (x, y) → u(x, y) =
u(r cos θ, r sin θ) heet harmonisch als ∆u = 0. Laat zien dat

u(0, 0) =
1

2π

∫ 2π

0
u(r cos θ, r sin θ) dθ,

en dat harmonische functies dus in elk punt het gemiddelde van hun waarden op een
diskvormige omgeving zijn. Hint: gebruik Stelling 13.5 als je de integraal van ∆u over
B̄R hebt vertaald naar een integraal met alleen maar dθ.

Ook leuk is dat voor niet-negatieve continue functies u : IR2 → IR de
integraal ∫∫

IR2

u = lim
R→∞

∫∫
x2+y2≤R2

u(x, y)d(x, y) (20.5)

nu net zo natuurlijk gedefinieerd is in [0,∞] als door (20.1). Alleen een
wiskundige vraagt zich dan af dit consistent is. Dat moet en dat mag hoor:

Exercise 20.2. Voor niet-negatieve continue u : IR2 → IR geldt

lim
R→∞

∫∫
x2+y2≤R2

u(x, y)d(x, y) = lim
R→∞

∫∫
[−R,R]×[−R,R]

u(x, y)d(x, y).

In de formule van Stirling stond nog een integraal die we nu netjes kunnen
uitrekenen met behulp van Opgave 20.2 en de functie

(x, y)
u−→ e−

1
2

(x2+y2)

Kort door de bocht opgeschreven concluderen we dat(∫ ∞
−∞

e−
1
2
x2

dx

)2

=

∫ ∞
−∞

e−
1
2
x2

dx

∫ ∞
−∞

e−
1
2
y2

dy =

∫∫
IR2

e−
1
2

(x2+y2) d(x, y)

=

∫ ∞
0

∫ 2π

0

e−
1
2
r2

rdθdr =

∫ ∞
0

2πe−
1
2
r2

rdr = 2π[−e−
1
2
r2

]∞0 = 2π.
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Exercise 20.3. Laat met Opgave 20.2 zien dat∫ ∞
−∞

e−
1
2
x2
dx =

√
2π.

Bijgevolg hebben

f(x) =
1√
2π
e−

1
2
x2

en u(x, y) =
1

2π
e−

1
2

(x2+y2) (20.6)

dus de eigenschap dat ze (positief zijn en) en totale integraal gelijk aan 1
hebben. We noemen zulke functies kansdichtheden. De dichtheid f(x) hoort
bij een stochastische grootheid X waarvoor geldt dat de kans op uitkomst
X ∈ [a, b] gelijk is aan

P (X ∈ [a, b]) =

∫ b

a

f(x) dx,

en

P (X ≤ x) =

∫ x

−∞
f(s) ds

wordt de cumulatieve verdelingsfunctie van X genoemd.
Een vanX onafhankelijke stochastische grootheid Y kan een kansdichtheid

g(y) hebben die beschrijft dat de kans op Y ∈ [c, d] gelijk is aan

P (Y ∈ [c, d]) =

∫ d

c

g(y) dy.

De simultane kansdichtheid u(x, y) = f(x)g(y) geeft dan de kans opX ∈ [a, b]
en Y ∈ [c, d] als ∫∫

IR2

u =

∫ b

a

f(x) dx

∫ d

c

g(y) dy.

De kansdichtheden in (20.6) worden de 1-en 2-dimensionale standaard
normale verdeling genoemd. Is de functie g hetzelfde als de functie f in (20.6),
dan zijn X en Y allebei standaard normaal verdeeld. De twee stochastische
grootheden X en Y kunnen op elkaar gedeeld worden. De kans op

Q =
Y

X
∈ [a, b]

is dan gelijk aan de integraal van u(x, y) over het gebied ingesloten door de
lijnen y = ax en y = bx.
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In het geval dat X en Y standaard normaal verdeeld en onderling on-
afhankelijk zijn, bestaat die integraal uit twee identieke stukken waarvan er
één gegeven wordt door

{(x, y) : x ≥ 0, ax ≤ y ≤ bx},

een gebied dat in poolcoördinaten beschreven wordt door θ in een deelinterval
van (−π

2
, π

2
).

We willen concluderen dat

P (Q ∈ [a, b]) = 2

∫ ∞
0

∫ bx

ax

1

2π
e−

1
2

(x2+y2) dy dx

=
1

π

∫ ∞
0

∫ arctan b

arctan a

e−
1
2
r2

rdθdr =
1

π
(arctan b− arctan a) =

∫ b

a

1

π

1

1 + q2
dq.

De stochastische grootheid Q heeft dan een kansdichtheid gegeven door de
functie

q → 1

π

1

1 + q2
.

Exercise 20.4. Hierboven manipuleerden we met meervoudige oneigenlijke inte-
gralen over “taartpunten” in IR2. De daarvoor benodigde theorie vraagt om een
uitbreiding van de theorie van integralen over het hele vlak in poolcoördinaten. Dat
kun je ook zelf proberen precies te maken nu.

20.2 Gradient, kettingregel, coördinatentransformaties

De kettingregel generaliseert de regel in Opgave 11.2. Met de opmerking dat
de formules gelezen moet worden met matrices1 is de regel met bewijs en al
over te schrijven en nu meteen toepasbaar.

We spellen een en ander nu uit in het geval van coördinatentransformaties,
met als belangrijk voorbeeld de overgang op poolcoördinaten die we al ge-
bruikten om IC te beschrijven en in IC te rekenen: ieder punt (x, y) ∈ IR2

kunnen we via
x = r cos θ en y = r sin θ (20.7)

zien als gegeven door poolcoördinaten r, θ ∈ IR voor (x, y) 6= (0, 0).

1Beter: lineaire afbeeldingen, in dit hele hoofdstuk de facto matrices.
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Een differentieerbare scalaire functie F (x, y) van x en y is zo automatisch
ook een differentieerbare functie van r en θ. In wat volgt zien we (20.7) als
transformatie

Z : IR2 → IR2

van de onafhankelijke plaatsvariabelen, en F (x, y) = F (Z(r, θ)) als de afhanke-
lijke variabele. Buiten de wiskunde, met name in de natuurkunde, is het
gebruikelijk om de afhankelijke variabele met hetzelfde symbool te noteren
als alleen de onafhankelijke variabelen worden getransformeerd.

20.2.1 Gradient, divergentie en Laplaciaan

Voor F : IR2 → IR is de definitie van differentieerbaarheid in de gewone
rechthoekige coördinaten x en y en h = x− x0, k = y − y0 te lezen als

F (x0 + h, y0 + k) = F (x0, y0) + ah+ bk +R(h, k;x0, y0), (20.8)

met a, b ∈ IR en

R(h, k;x0, y0)√
h2 + k2

→ 0 als
√
h2 + k2 → 0, (20.9)

vergelijk met het eerdere uitpakken. De volgende opgave is misschien nu wat
dubbelop, maar dat kan geen enkel kwaad.

Exercise 20.5. Neem voor F : IR2 → IR, (x0, y0) ∈ IR2 en a, b ∈ IR aan dat (20.8)
geldt met (20.9). Dan volgt dat

F (x0 + h, y0)− F (x0, y0)

h
→ a en

F (x0, y0 + k)− F (x0, y0)

k
→ b

als h, k → 0. Laat dit zien.

Meerdere notaties worden gebruikt, zoals

a = Fx(x0, y0) =
∂F

∂x
(x0, y0) = (δxF )(x0, y0) = (D1F )(x0, y0); (20.10)

b = Fy(x0, y0) =
∂F

∂y
(x0, y0) = (δyF )(x0, y0) = (D2F )(x0, y0), (20.11)

waarbij (x0, y0) en haakjes vaak worden weggelaten want

a = Fx =
∂F

∂x
= δxF = D1F en b = Fy =

∂F

∂y
= δyF = D2F
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ziet er gewoon fijner uit.
Als kolomvector schrijven we ook, met

ex =

(
1

0

)
en ey =

(
0

1

)
, (20.12)

(
a

b

)
= ∇F =

∂F

∂x
ex +

∂F

∂y
ey = ex

∂F

∂x
+ ey

∂F

∂y
, (20.13)

de gradient van F in (x0, y0), geschreven zonder (x0, y0). Merk op dat het
lineaire gedeelte in (20.8) te schrijven is als

ah+ bk =

(
a

b

)
·
(
h

k

)
=

(
h

k

)
·
(
a

b

)
= h

∂F

∂x
+ k

∂F

∂y
, (20.14)

het inprodukt2 van ∇F en de verschilvector
(
h
k

)
.

We zien dus hoe de gradiënt de vector is die de lineaire afbeelding DF :
IR2 → IR via het inprodukt representeert als(

h

k

)
DF−−→ ∇F ·

(
h

k

)
,

maar ook dat (20.14) te lezen is als de differentiaaloperator

h
∂

∂x
+ k

∂

∂y
werkend op F.

Evenzo zien we ∇ als

∇ = ex
∂

∂x
+ ey

∂

∂y
werkend op F geeft ∇F, (20.15)

een vectorwaardige differentiaaloperator.
Middels het inprodukt kan ∇ ook werken op een vectorwaardige differen-

tieerbare functie

(x, y)→
(
Vx(x, y)

Vy(x, y)

)
=

(
Vx
Vy

)
= Vxex + Vyey,

en wel als

∇ · V = (ex
∂

∂x
+ ey

∂

∂y
) · (Vxex + Vyey) =

∂Vx
∂x

+
∂Vy
∂y

, (20.16)

2Het inprodukt van twee vectoren in IR2 wordt gegeven door
(
a
b

)
·
(
h
k

)
= ah+ bk.
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de divergentie van V .
We schrijven hier nu V met subscripten3 x, y voor de x- en y-coördinaten

Vx en Vy van V t.o.v. de orthonormale vectoren (20.12) die samen de stan-
daardbasis van IR2 vormen. Merk wel op dat Vx en Vy van x en y afhangen
maar ex en ey niet. De indices x en y staan voor de x-richting en de y-richting,
en die richtingen zijn overal in het x, y-vlak hetzelfde.

Elk van de twee termen in ∇ werkt nu alleen op Vx en Vy, en omdat

ex · ex = ey · ey = 1 en ex · ey = ey · ex = 0, (20.17)

blijven er maar twee termen over in (20.16). Omdat ex en ey niet van x en y
afhangen geeft elk van de vier termen

ex
∂

∂x
· Vxex, ex

∂

∂x
· Vyey, ey

∂

∂y
· Vxex, ey

∂

∂x
· Vyey

die we krijgen bij het uitwerken van (20.16) maar één term, te weten

ex
∂

∂x
· Vxex = ex

∂

∂x
· Vxex = ex ·

∂

∂x
Vxex = ex ·

∂Vx
∂x

ex =
∂Vx
∂x

ex · ex =
∂Vx
∂x

voor de eerste,

ex
∂

∂x
· Vyey = ex

∂

∂x
· Vyey = ex ·

∂

∂x
Vyey = ex ·

∂Vx
∂x

ey =
∂Vx
∂y

ex · ey = 0

voor de tweede, en

ey
∂

∂y
· Vxex = 0, ey

∂

∂x
· Vyey =

∂Vy
∂y

voor de derde en vierde. Van de vier termen worden er dus nog twee nul
vanwege ex · ey = 0 in (20.17) en de andere twee vereenvoudigen en blijven
in die vorm over in (20.16).

Als V = ∇F differentieerbaar is dan volgt zo dat

∇·∇F = (ex
∂

∂x
+ey

∂

∂y
) ·(∂F

∂x
ex+

∂F

∂y
ey) =

∂

∂x

∂F

∂x
+
∂

∂y

∂F

∂y
= ∆F, (20.18)

de Laplaciaan van F , die weer gezien kan worden als

∆F is ∆ =
∂

∂x

∂

∂x
+

∂

∂y

∂

∂y
=

∂2

∂x2
+

∂2

∂y2
werkend op F. (20.19)

Omschrijven van gradiënt, divergentie en Laplaciaan naar poolcoördinaten
is nu een nuttige oefening waarvoor de volgende subsecties van belang zijn.
Het is handig om daarbij naar twee net iets anders uitgewerkte notaties voor
de kettingregel te kijken.

3Niet te verwarren met het gebruik van subscripten voor partiële afgeleiden!
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20.2.2 Kettingregel uitgeschreven voor transformaties

We weten dat we de kettingregel toe mogen passen op

(r, θ)→ (r cos θ, r sin θ) = (X(r, θ), Y (r, θ)) = (x, y)→ F (x, y) = G(r, θ),

door de lineaire benadering van

(r, θ)→ (r cos θ, r sin θ)

rond (r0, θ0) in te vullen in de lineaire benadering van

(x, y)→ F (x, y)

rond (x0, y0). We doen dit nu met h̃ = r − r0 en k̃ = θ − θ0, met weglating
van (r0, θ0) in de partiële afgeleiden.

Omdat we in deze sectie F (x, y) = G(r, θ) als onbekende afhankelijke
grootheid willen zien, bijvoorbeeld de oplossing van een partiële differenti-
aalvergelijking, kiezen we nu eerst voor de schrijfwijze zoals rechts in (20.14).
De lineaire termen in de expansies

X(r0 + h̃, θ0 + k̃) = X(r0, θ0) + h̃
∂X

∂r
+ k̃

∂X

∂θ
+ · · · ,

Y (r0 + h̃, θ0 + k̃) = Y (r0, θ0) + h̃
∂Y

∂r
h̃+ k̃

∂Y

∂θ
+ · · ·

moeten dan als

h = h̃
∂X

∂r
+ k̃

∂X

∂θ
en k = h̃

∂Y

∂r
+ k̃

∂Y

∂θ

in (20.14) worden ingevuld4, en het resultaat

(h̃
∂X

∂r
+ k̃

∂X

∂θ
)
∂F

∂x
+ (h̃

∂Y

∂r
+ k̃

∂Y

∂θ
)
∂F

∂y
=

h̃(
∂X

∂r

∂F

∂x
+
∂Y

∂r

∂F

∂y
) + k̃(

∂X

∂θ

∂F

∂x
+
∂Y

∂θ

∂F

∂y
)

is dan volgens de kettingregel gelijk aan

h̃
∂G

∂r
+ k̃

∂G

∂θ
.

4We gaan er nu niet echt vanuit dat de lezer al met matrices heeft leren rekenen.
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Er volgt dus dat
∂G

∂r
=
∂X

∂r

∂F

∂x
+
∂Y

∂r

∂F

∂y
(20.20)

∂G

∂θ
=
∂X

∂θ

∂F

∂x
+
∂Y

∂θ

∂F

∂y
, (20.21)

in vector-matrixnotatie te schrijven als(∂G
∂r
∂G
∂θ

)
=

(∂X
∂r

∂F
∂x

+ ∂Y
∂r

∂F
∂y

∂X
∂θ

∂F
∂x

+ ∂Y
∂θ

∂F
∂y

)
=

(∂X
∂r

∂Y
∂r

∂X
∂θ

∂Y
∂θ

)(∂F
∂x
∂F
∂y

)
, (20.22)

waarin we links een 2 bij 1 matrix zien met de partiële afgeleiden van G, en
rechts net zo’n matrix voor F , en een 2 bij 2 matrix voor

(r, θ)
Z−→ (X(r, θ), Y (r, θ)),

met Z : IR2 → IR2 via (20.7) gedefinieerd door

Z(r, θ) = (X(r, θ), Y (r, θ)) = (r cos θ, r sin θ).

Horizontaal worden deze matrices genummerd met de variabele groothe-
den in het beeld, verticaal met die in het domein van de betreffende af-
beelding. Andersom als voorheen, omdat we de schrijfwijze rechts in (20.14)
hebben gebruikt.

De kolomvectoren in (20.22) zien er uit als gradiënten, maar dat is slechts
misleidende schijn, zoals we in Sectie 20.2.4 zullen zien.

20.2.3 Kettingregel met Jacobimatrices

Mooie voorbeelden van matrixprodukten als in (18.3) zien we als we in (20.22)
aan beide kanten links (h̃ k̃) erbij zetten. Dan is

(h̃ k̃)

(∂G
∂r
∂G
∂θ

)
= (h̃ k̃)

(∂X
∂r

∂Y
∂r

∂X
∂θ

∂Y
∂θ

)(∂F
∂x
∂F
∂y

)
, (20.23)

nu links en rechts uit te werken tot een 1 bij 1 matrix, met daarin precies
de twee lineaire stukken die we hierboven aan elkaar gelijkstelden bij het
uitwerken van de kettingregel, om tot (20.20) en (20.21) te komen.

Via links en rechts transponeren is (20.23) equivalent met

(
∂G

∂r

∂G

∂θ
)

(
h̃

k̃

)
= (

∂F

∂x

∂F

∂y
)

(∂X
∂r

∂X
∂θ

∂Y
∂r

∂Y
∂θ

)(
h̃

k̃

)
, (20.24)
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waarin we de Jacobimatrices van G, F en Z herkennen, waarin de beeldvari-
abelen niet horizontaal maar verticaal genummerd worden. Ook zien we dat
de volgorde in (20.24) nu prettig is als we h̃ en k̃ zien als variabel.

Als F (x, y) = G(r, θ) een grootheid is met twee componenten

F1(x, y) = G1(r, θ) en F2(x, y) = G2(r, θ),

dan kan een en ander voor beide componenten in één keer opgeschreven
worden als (∂G1

∂r
∂G1

∂θ
∂G2

∂r
∂G2

∂θ

)(
h̃

k̃

)
=

(∂F1

∂x
∂F1

∂y

∂F2

∂x
∂F2

∂y

)(∂X
∂r

∂X
∂θ

∂Y
∂r

∂Y
∂θ

)(
h̃

k̃

)
, (20.25)

en zien we hoe de kettingregel toegepast op

IR2 Z−→ IR2 F−→ IR2

de Jacobimatrix van G produceert via het matrixprodukt van de Jacobima-
trices van F en Z.

Deze notatie suggereert om de afhankelijke grootheid F (x, y) = G(r, θ)
als 2-vector te zien, dus

F (x, y) =

(
F1(x, y)

F2(x, y)

)
en G(r, θ) =

(
G1(r, θ)

G2(r, θ)

)
,

en dus ook x, y en r, θ als componenten van de 2-vectoren(
x

y

)
en

(
r

θ

)
.

We blijven echter F = F (x, y) en G = G(r, θ) schrijven.

20.2.4 Omschrijven van differentiaaloperatoren

De notatie (20.23) is handiger als we zoals gebruikelijk in de natuurkunde
aan F (x, y) = G(r, θ) denken als één en dezelfde afhankelijke grootheid, en
niet als een functie zoals gebruikelijk in de wiskunde.

In dat geval ligt het voor de hand om die grootheid af te splitsen uit
de notatie in (20.22) en de kettingregel voor coördinatentransformaties te
schrijven als ( ∂

∂r
∂
∂θ

)
=

(∂X
∂r

∂Y
∂r

∂X
∂θ

∂Y
∂θ

)( ∂
∂x
∂
∂y

)
, (20.26)
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hetgeen de matrixnotatie is voor

∂

∂r
=
∂X

∂r

∂

∂x
+
∂Y

∂r

∂

∂y
;

∂

∂θ
=
∂X

∂θ

∂

∂x
+
∂Y

∂θ

∂

∂y
,

waaruit de differentiaaloperatoren

∂

∂x
en

∂

∂y

kunnen worden opgelost in termen van de coëfficiënten

∂X

∂r
,
∂Y

∂r
,
∂X

∂θ
,
∂Y

∂θ
en de differentiaaloperatoren

∂

∂r
,
∂

∂θ
.

Exercise 20.6. In het concrete geval van poolcoördinaten geeft dit

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
;

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.

Laat dit zien.

Met Opgave 20.6 zijn we nog niet klaar als we in (20.15)

∇ =

( ∂
∂x
∂
∂y

)
= ex

∂

∂x
+ ey

∂

∂y

willen omschrijven naar r en θ. De vraag is ook hoe we ex en ey omschrijven
naar er en eθ, en daarvoor komt de vraag wat er en eθ eigenlijk zijn.

Een natuurkundige zal hier niet lang over nadenken Teken maar een
plaatje en het is evident dat Teken

plaatje!

er =

(
cos θ

sin θ

)
en eθ =

(
− sin θ

cos θ

)
,

en

∇ = ex
∂

∂x
+ ey

∂

∂y
= er

∂

∂r
+

1

r
eθ
∂

∂θ
(20.27)
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de gradiënt in poolcoördinaten geeft. Daar had’ie de hele kettingregel überhaupt
niet voor nodig. Omdat

er · er = eθ · eθ = 1 en er · eθ = eθ · er = 0,

staan de vectoren er en eθ in ieder punt onderling loodrecht5, met elk lengte
1, en wijzen in de richtingen waarin het punt (x, y) = (r cos θ, r sin θ) loopt
als je r respectievelijk θ varieert. De voorfactor 1

r
compenseert de met r

evenredige snelheid bij gelijkmatige toename van θ.

Exercise 20.7. In (20.27) staan twee representaties van dezelfde operator. Door ex
en ey in er en eθ uit te drukken en Opgave 20.6 te gebruiken kun je zien dat ze inderdaad
hetzelfde zijn. Doe dat. Schrijf ook V = Vxex + Vyey om als V = Vrer + Vθeθ.

Exercise 20.8. Laat zien dat de divergentie in poolcoördinaten wordt gegeven door

∇ · V = (er
∂

∂r
+

1

r
eθ
∂

∂θ
) · (Vrer + Vθeθ) =

∂Vr
∂r

+
Vr
r

+
1

r

∂Vθ
∂θ

.

Hint: Omdat er en eθ van θ afhangen werkt met de produktregel van Leibniz de eθ
∂
∂θ

in de factor links nu ook op er en eθ in de factor rechts, en één van die twee geeft na
inprodukt met de voorfactor eθ een bijdrage.

Exercise 20.9. Pas de regel in Opgave 20.8 nu toe op ∇ zelf en laat zien dat

∆ = ∇ · ∇ =
∂2

∂r2
+

1

r

∂

∂r︸ ︷︷ ︸
∆r

+
1

r2

∂2

∂θ2︸︷︷︸
∆S

Hint: wellicht eerst Opgave 20.8 toepassen op ∇ als werkend op de afhankelijke
grootheid G = F , waarvoor de natuurkundige dezelfde letter gebruikt en de wiskundige
dan met G(r, θ) = F (r cos θ, r cos θ) in de war raakt, omdat G en F niet dezelfde
functies zijn.

In Opgave 20.9 zien we

∆ = ∆r +
1

r2
∆S, (20.28)

5Wiskundig is dit per definitie en consistent met wat je ziet als je pijltjes tekent.
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waarin ∆r de radiële Laplaciaan is, die ook werkt op functies R = R(r), en
∆S de Laplace-Beltrami operator op

S = {(x, y) ∈ IR2 : x2 + y2 = 1},

uitgedrukt in de hoekvariabele θ als

∆S =
∂2

∂θ2
.

Het aardige nu is dat de integraal van de Laplaciaan van een nette functie

u(x, y) = u(r cos θ, r sin θ)

over een disk BR met straal R > 0 in poolcoördinaten meteen tot een belan-
grijke conclusie leidt, maar daarvoor moeten we eerst weten wat meervoudige
integralen zijn.

20.3 Harmonische polynomen

We vinden deze polynomen ook als we de Laplace vergelijking

uxx + uyy = 0

voor u = u(x, y) met scheiding van variabelen in poolcoördinaten oplossen
door de operator in Opgave 20.9 los te laten op

u(x, y) = R(r)Θ(θ), (20.29)

en het resultaat gelijk aan nul te stellen. Dit geeft

0 = (
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
)R(r)Θ(θ)

= Θ(θ)(
∂2

∂r2
+

1

r

∂

∂r
)R(r) +

R(r)

r2

∂2

∂θ2
Θ(θ)

= Θ(θ)(R′′(r) +
1

r
R′(r)) +

R(r)

r2
Θ′′(θ).

Als Θ′′ een veelvoud is van Θ, zeg

−Θ′′ = µΘ (20.30)

dan volgt Euler’s vergelijking

R′′(r) +
1

r
R′(r) = µ

R(r)

r2
(20.31)
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voor R(r).
Merk op dat (20.30) gezien kan worden als een (eigenwaarde)probleem

voor

−∆S = −d
2

dθ
op de eenheidscirkel waar bij Θ een 2π-periodieke functie moet zijn om een
functie op de cirkel

S = {(x, y) : x2 + y2 = 1}
te definiëren.

Exercise 20.10. Welke µ zijn toegestaan in (20.30) voor oplossingen (20.29) die op
heel IR2 zijn gedefinieerd? Leg uit dat je die waarden ook meteen6 aan de harmonische
polynomen kunt zien zonder de precieze vorm van (20.30) te kennen. Schrijf die
harmonische polynomen in gescheiden variabelen r en θ als R(r)Θ(θ) en verifieer dat
R(r) een oplossing is van (20.31) met de bijbehorende µ.

Exercise 20.11. Voor elke N ∈ IN en a0, . . . , aN , b1, . . . , bN in IR is

a0

2
+

N∑
k=1

(ak cos kθ + bk sin kθ)rn

via x = r cos θ, y = r sin θ een harmonische functie. Overtuig jezelf van de juistheid
van de informele uitspraak dat deze oplossing in (0, 0) gelijk is aan zijn gemiddelde op
elke disk met middelpunt (0, 0).

Opgave 20.11 suggereert

u(x, y) =
a0

2
+
∞∑
k=1

(ak cos kθ + bk sin kθ)rn

als een algemene oplossing voor de Laplacevergelijking op de eenheidsdisk
met randvoorwaarde

u(cos θ, sin θ) = f(θ) =
a0

2
+
∞∑
k=1

(ak cos kθ + bk sin kθ), (20.32)

een zogenaamde Fourierreeks7 voor een 2π-periodieke functie θ → f(θ). Ook
deze u(x, y) is dan in (x, y) = (0, 0) het gemiddelde van u(x, y) op elke disk
met middelpunt (0, 0) en straal voldoende klein, kleiner dan 1 in dit geval.

6In IR3 eigenwaarden en -functies van Laplace-Beltrami operator ook via polynomen.
7Uitgebreid behandeld in de mamanotes van vorig jaar.
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Exercise 20.12. In IR3 gebruiken we bolcoördinaten

x = r sin θ cosφ;

y = r sin θ sinφ;

z = r cos θ,

en

er = sin θ cosφ ex + sin θ sinφ ey + cos θ ez

eθ = cos θ cosφ ex + cos θ sinφ ey − sin θ ez

eφ = − sinφ ex + cosφ ey.

Schrijf er, eθ, eφ al of niet als kolomvectoren, en verifieer dat

er · er = eθ · eθ = eφ · eφ = 1; er · eθ = er · eφ = eθ · eφ = 0.

Overtuig jezelf van

∇ = er
∂

∂r
+

1

r
eθ
∂

∂θ
+

1

r sin θ
eφ

∂

∂φ
, (20.33)

en gebruik (20.33) om voor

V = Vrer + Vθeθ + Vφeφ

eerst af te leiden dat

∇ · V =
∂Vr
∂r

+
2

r
Vr +

1

r
(
∂Vθ
∂θ

+
cos θ

sin θ
Vθ +

1

sin θ

∂Vφ
∂φ

),

en vervolgens via V = ∇F dat

∆ =
∂2

∂r2
+

2

r

∂

∂r︸ ︷︷ ︸
∆r

+
1

r2
(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin θ

∂2

∂φ2︸ ︷︷ ︸
∆S

).

Wederom zien we hier (20.9), maar nu met ∆S gedefinieerd op

S = {(x, y) ∈ IR2 : x2 + y2 + z2 = 1},

De formules in IRn laten zich nu raden, afgezien wellicht van de exacte vorm
van ∆S in de hoekvariabelen θ1, . . . , θn−1, maar met

∆r =
∂2

∂r2
+
n− 1

r

∂

∂r

voor het radiële gedeelte.
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Exercise 20.13. In IR3 gebruiken we bolcoördinaten

x = r sin θ cosφ;

y = r sin θ sinφ;

z = r cos θ,

en
er = sin θ cosφ ex + sin θ sinφ ey + cos θ ez

eθ = cos θ cosφ ex + cos θ sinφ ey − sin θ ez

eφ = − sinφ ex + cosφ ey.

Schrijf er, eθ, eφ al of niet als kolomvectoren en verifieer dat

er · er = eθ · eθ = eφ · eφ = 1; er · eθ = er · eφ = eθ · eφ = 0.

Overtuig jezelf van

∇ = er
∂

∂r
+

1

r
eθ
∂

∂θ
+

1

r sin θ
eθ
∂

∂φ
(20.34)

en gebruik (20.34) om voor

V = Vrer + Vθeθ + Vφ

eerst af te leiden dat

∇V =
∂Vr
∂r

+
2

r
Vr +

1

r
(
∂Vθ
∂θ

+
cos θ

sin θ
Vθ +

1

sin θ

∂Vφ
∂φ

),

en vervolgens via V = ∇F dat

∆ =
∂2

∂r2
+

2

r

∂

∂r︸ ︷︷ ︸
∆r

+
1

r2
(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin θ

∂2

∂φ2︸ ︷︷ ︸
∆S

).

Wederom zien we hier (20.9), maar nu met ∆S gedefinieerd op

S = {(x, y) ∈ IR2 : x2 + y2 + z2 = 1},

De formules in IRn laten zich nu raden, afgezien wellicht van de exacte vorm
van ∆S in de hoekvariabelen θ1, . . . , θn−1, maar met

∆r =
∂2

∂r2
+
n− 1

r

∂

∂r

voor het radiële gedeelte.
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20.4 Derivation of the heat equation

For8 some bounded domain Ω ⊂ IRn we denote by ε(t, x) the thermal energy
density and by w the heat flux. Given any ball or box B ⊂ Ω with outside
normal ν on ∂B this means that

d

dt

∫
B

ε = −
∫
∂B

ν · w.

The Gauss Divergence Theorem9 turns the integral on the right into an in-
tegral over B. The term on the left becomes the integral of the partial time
derivative of ε, basically as in Section 13.2. This leads to∫

B

(εt +∇ · w) = 0

for every such B and therefore10 to

εt +∇ · w = 0 (20.35)

in Ω.
Physics also tells us that the energy density is given by

ε(t, x) = σ(x)u(t, x), in which u is temperature and

σ(x) = ρ(x)χ(x), with χ the specific heat capacity and ρ the density.

Fourier’s cooling law says that

w = −κ∇u, κ = κ(x) > 0 thermal conductivity. (20.36)

If ν is an outward pointing normal vector on the (smooth) boundary ∂Ω,
then

ν · w = −ν · κ∇u

is the outward heat flux at the boundary.
Equations (20.35) and (20.36), and a possible heat source h = h(t, x),

lead to the linear partial differential equation

(χρu)t = ∇ · κ∇u+ h (20.37)

8This section relates to Section 4.1 in Olver’s PDE book.
9See Chapter 27.5.

10Certainly if the integrand is continuous.
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for the temperature. Only if χ, ρ, κ are independent of x this reduces, in the
absence of heat sources, to

ut = γ∆u, γ =
κ

χρ
. (20.38)

Before we scale the variables to have γ = 1 we discuss the boundary condi-
tions.

Either u or the outward heat flux ν ·κ∇u prescribed as function of x ∈ ∂Ω
and t > 0 lead to the Dirichlet and Neumann initial boundary value problems
for (20.37). The standard homogeneous boundary conditions are therefore

u = 0 on ∂Ω (Dirichlet) (20.39)

and
ν · ∇u = 0 on ∂Ω (Neumann) (20.40)

for t > 0.
The Robin boundary condition prescribes the flux in terms of also the

temperature, e.g. the homogenous boundary condition

ν · κ∇u+ βu = 0 (20.41)

is Newton’s cooling law. If the outside temperature is equal to zero, it relates
the outward flux to the temperature inside via some heat exchange constant
β > 0. With β = 0 it reduces to (20.40). Note that Olver writes this
condition with κ = 1. Initial data for u(0, x), x ∈ Ω, complete the initial
boundary value problem formulation.

Each of the natural homogenous boundary conditions above allows for
separation of variables to solve (20.38). Without loss of generality we now
assume that γ = 1 and κ = 1. We then have that

u(t, x) = e−λtv(x)

is a solution of
ut = ∆u

if
−∆v = λv. (20.42)

There are now two natural boundary conditions to choose from,

u = 0 (Dirichlet) and ν · ∇u+ βu = 0 (Robin). (20.43)

The Neumann boundary condition corresponds to β = 0.
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20.5 Intermezzo: het waterstofatoom

Met

V (r) = −e
2

r
is de stationaire Schrödinger vergelijking voor het waterstofatoom

h̄2

2m
∆ψ − e2

r
ψ = Eψ, (20.44)

waarin m de massa van het electron is, e de lading van het electron, h̄ de
constante van Planck. De negatieve waarden van E waarvoor (20.44) een
oplossing met ∫∫∫

IR3

|ψ(x, y, z)|2 d(x, y, z) = 1

heeft zijn de energieniveaus die het electron in gebonden toestand kan aan-
nemen.

We hebben gezien dat

∆ =
∂2

∂r2
+

2

r

∂

∂r︸ ︷︷ ︸
∆r

+
1

r2
(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin θ

∂2

∂φ2︸ ︷︷ ︸
∆S

).

Via
ψ(x, y, z) = R(r)Pl(

x

r
,
y

r
,
z

r
),

waarin Pl(x, y, z) = Y (θ, φ) een harmonisch homogeen polynoom van graad
l in x, y, z is, en een nieuwe x en n gedefinieerd door

x =
1

h̄

√
−2mE r en − E =

me4

2h̄2n2
,

leidt dit tot
d2R

dx2
+

2

x

dR

dx
− l(l + 1)

x2
R +

2n

x
R = R

met R(x) ∼ xl voor x→ 0 en R(x) ∼ e−x voor x→∞.
Substitueer daarom R(x) = xle−xu(x) en leidt voor u(x) af dat

d2u

dx2
+ (

4l

x
− 2)

du

dx
= 2

n− l − 1

x
u.

Exercise 20.14. Corrigeer eventuele typo’s hierboven. De machtreeksoplossing11

u(x) = 1 + a1x+ a2x
2 + a3x

3 + · · ·

breekt af voor een n die van l afhangt. Welke n is dat?

11Instructief om eerst d2R
dx2 + 2

x
dR
dx = R op te lossen.
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21 Differential forms

Have a look at Section 10.3 and then look at the first part of the proof of
Theorem 27.7. Dropping the tildes we found that∫

Ω

vx =

∫ b

a

v(x, f(x))f ′(x) dx and

∫
Ω

vy = −
∫ b

a

v(x, f(x)) dx

for a function v ∈ C1(Ω̄) vanishing outside a window in which we (locally)
describe the boundary as a graph y = f(x). It is tempting to write∫

Ω

vx = −
∫
∂Ω

vdy and

∫
Ω

vy =

∫
∂Ω

vdx, (21.1)

in which the right hand sides are evaluated using the parameterisation1

x = x(t) = t and y = y(t) = f(t). (21.2)

x(t)︸︷︷︸
x

, y = f(t)︸ ︷︷ ︸
y

, dx = x′(t) dt = dt︸ ︷︷ ︸
dx

and dy = y′(t) dt = f ′(t) dt︸ ︷︷ ︸
dy

.

We have skipped the spaces in front of dx and dy to allow v = v(x, y) =
v(t, f(t)) to cozy up with dx and dy. This reminds us of notation in and
below (10.6). Can we see the right hand sides of (21.1) as∫

∂Ω

acting on the 1-forms vdy = v(x, y)dy and vdx = v(x, y)dx?

If so, how should we see the (double) integrals on the left hand sides then?
Recall that in Theorem 27.1 we read the repeated integral∫ d

c

∫ b

a

u(x, y) dx︸ ︷︷ ︸
function of y

dy

as ∫ d

c

{∫ b

a

u(x, y) dx

}
dy

and wrote∫
[a,b]×[c,d]

u =

∫ d

c

∫ b

a

u(x, y) dx︸ ︷︷ ︸
function of y

dy =

∫ b

a

∫ d

c

u(x, y) dy︸ ︷︷ ︸
function of x

dx,

1We only need a local parameterisation because v was localised by a fading function.
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with a little space in front of dx and dy. This is not yet a notation with
2-forms udxdy as hinted at under Theorem 10.12.

We shall now agree2 that∫ d

c

∫ b

a

u(x, y) dx︸ ︷︷ ︸
function of y

dy =

∫
[a,b]×[c,d]

u︸ ︷︷ ︸
J as in Theorem 27.1

=

∫
[a,b]×[c,d]︸ ︷︷ ︸

integral acting on

udxdy︸ ︷︷ ︸
2-form

,

in which we view∫
[a,b]×[c,d]

as acting on the 2-form udxdy, u = u(x, y).

The result of this action is equal to

−
∫

[a,b]×[c,d]

u(x, y)dydx

if we adopt3 the rule dxdy = −dydx. Likewise, we can then see∫
Ω

as acting on both vxdydx and vydxdy,

so that (21.1) can now be read with the forms

vxdydx, vdy, vydxdy, vdx

having (two different) integrals acting on them. Let’s look at the formal al-
gebra first to see which rules will make the d-algebra work for the expressions
with x, y, d, dx, dy that we encounter.

21.1 Formal d-algebra

The algebra for such “differential” forms developes itself. After du = u′(x)dx
for u = u(x) what else could we have but

du = uxdx+ uydy =
∂u

∂x
dx+

∂u

∂y
dy (21.3)

for the d of the 0-vorm u = u(x, y)? This expression is of the form4

fdx+ gdy = f(x, y)dx+ g(x, y)dy,

2Here we avoid the notation dx∧ dy used when defining an action of forms on vectors.
3Definition 7.9 already led us to consider the sign of dx and also dy in relation to

∫
.

4As it happens, a differential form.
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a 1-form that in turn must be ready and willing to have d acting upon it.
Here’s the obvious action:

d(fdx+ gdy) = d(fdx) + d(gdy) (a sum rule for d)

= dfdx+ fddx︸ ︷︷ ︸
d(fdx)

+ dgdy + gddy︸ ︷︷ ︸
d(gdy)

(twice a Leibniz rule for d)

= (fxdx+ fydy)︸ ︷︷ ︸
definition of df

dx+ fddx+ (gxdx+ gydy)︸ ︷︷ ︸
definition of dg

dy + gddy.

= fxdxdx+ fydydx+ gxdxdy + gydydy + fddx+ gddy (bye bye brackets)

= fxdxdx−fydxdy+gxdxdy+gydydy+fddx+gddy (if we use dydx = −dxdy)

= (gx − fy)dxdy + fddx+ gddy (if we use dxdx = 0 = dydy).

The Leibniz rules we used were

d(fdx) = (df)dx+ f(ddx), which mimics d(fg) = (df)g + f(dg),

and likewise
d(gdy) = (dg)dy + g(ddy).

Both rules can then be evaluated using the earlier definition of df and dg,
and a convenient rule for ddx and ddy. Let’s take the simplest choice, we
just introduce5 the rule that

ddx = ddy = 0.

Following old and new rules we then obtain

f(x, y)dx+ g(x, y)dy
d−→ (gx(x, y)− fy(x, y))dxdy,

as the action of d on a 1-form. If we’re fine with this action it follows that

u(x, y)
d−→ uxdx+ uydy

d−→ (uyx − uxy)dxdy = 0

if uxy = uyx. We’re fine with that. Apparently the rules imply that d2 = 0.
Using a notation with differential quotients the rules for d-algebra with two
variables are

f
d−→ ∂f

∂x
dx+ ∂f

∂y
dy, fdx+ gdy

d−→ ( ∂g
∂x
− ∂f

∂y
)dxdy,

fdxdy
d−→ 0, gdxdy

d−→ 0,
(21.4)

in which f = f(x, y), g = g(x, y). The (zero) action of d on 2-forms is a
consequence of the rules if we have only two variables.

5Recall we decided that dxdx = 0 because dxdy = −dydx.
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Exercise 21.1. Look at the forms in (21.1) and see how they are related by the
d-algebra just developed.

We will be looking for a formulation in which the result is∫
Ω

dω =

∫
δΩ

dω (21.5)

for a 1-form ω and a bounded domain Ω with sufficiently nice boundary
∂Ω. This result will generalise to (n − 1)-forms and Ω ⊂ IRn, and is in fact
equivalent to the Gauss Divergence Theorem, Remark 27.8 in Section 27.17.

Exercise 21.2. Do the algebra for

f
d−→ ∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz,

fdx+ gdy + hdz
d−→ (

∂h

∂y
− ∂g

∂z
)dydz + (

∂f

∂z
− ∂h

∂x
)dzdx+ (

∂g

∂x
− ∂f

∂y
)dxdy,

fdydz + gdzdx+ hdxdy
d−→ (

∂f

∂x
+
∂g

∂y
+
∂h

∂z
)dxdydz,

hdxdydz
d−→ 0,

with f = f(x, y, z), g = g(x, y, z), h = h(x, y, z). Use the sum and Leibniz rule for
d, the anti-symmetry rules dxdy = −dydx, dxdz = −dzdx, dydz = −dzdy, then also
dxdx = dydy = dzdz = 0, and ddx = ddy = ddz = 0. Verify ddf = 0 and also
dd(fdx+ gdy + hdz) = 0. If dd kills x,y and z, then dd kills all forms. We like d.

Exercise 21.3. Do it again for F
d−→ F ′(x)dx and f(x)dx

d−→ 0 with f(x) and F (x).

Remark 21.4. The notation is consistent with

dx ∧ dy = −dy ∧ dx

in Adams’ calculus book and his treatment of such objects as acting on (pairs
of) vectors6. For now we find it easier not to write wedges between the dx,
dy, etc.

6Tangent vectors really, written as xy-dependent linear combinations of ∂
∂x and ∂

∂y .

353



21.2 Pull backs

If x → f(x) = F ′(x) and t → x′(t) are continuous, say with x(0) = a and
x(1) = b, then∫ b

a

f(x) dx =

∫ b

a

F ′(x) dx =

∫ b

a

dF = F (b)− F (a) = F (x(1))− F (x(0)) =

[F (x(t))]10 =

∫ 1

0

F ′(x(t))x′(t) dt =

∫ 1

0

f(x(t))x′(t)dt.

In
dx = x′(t)dt (21.6)

we recognise the d-algebra from Section 21.1, and we see that a 1-form f(x)dx
in x is pulled back by t→ x(t) to a 1-form

f(x)dx = f(x(t))x′(t)dt (21.7)

in t. Likewise the 1-form

f(x, y)dx+ g(x, y)dy

is pulled back by t→ x(t) and t→ y(t) to a 1-form

f(x, y)dx+ g(x, y)dy = (f(x(t), y(t))x′(t) + g(x(t), y(t))y′(t))dt (21.8)

in t. So t→ (x(t), y(t)) leads to

f(x, y)dx+ g(x, y)dy
pull back−−−−−→ (f(x(t), y(t))x′(t) + g(x(t), y(t))y′(t))dt

for a general 1-form, while for the 2-form dxdy we find

dxdy → x′(t)dt y′(t)dt = x′(t)y′(t)dtdt = 0,

not of much use, but
(r, θ)→ (x(r, θ), y(r, θ))

gives

dxdy → (
∂x

∂r
dr +

∂x

∂θ
dθ)(

∂y

∂r
dr +

∂y

∂θ
dθ) = (

∂x

∂r

∂y

∂θ
− ∂y

∂r

∂x

∂θ
)drdθ, (21.9)

with the determinant7 of the Jacobi matrix.

7Plus or minus the area spanned by the two vectors, compare to (19.2) in Chapter
27.10.
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In case of x = r cos θ, y = r sin θ this reads

dxdy → rdrdθ.

Note that (21.8) does not correspond to a coordinate transformation but
(21.9) does. Have another look at the derivation of (21.8) and replace t by φ
in [0, 2π]. With x(0) = x(2π) and y(0) = y(2π) this compares to (21.9) with
r fixed, and you discover how the pull back algebra works for

(θ, φ)→ (x(θ, φ), y(θ, φ), z(θ, φ) (21.10)

and 2-forms in x, y, z.

Exercise 21.5. Pull f(x, y, z)dx + g(x, y, z)dy + h(x, y, z)dz back to a 2-form in
θ and φ.

Remark 21.6. Note the notational8 space that separates dx and dy in the
common notation with dx dy = dy dx. With x1 and x2 replacing x and y the
notation ∫

Ω

vx1 =

∫
Ω

vx1 dx =

∫∫
Ω

vx1(x1, x2) d(x1, x2),

and likewise for the other integral, would be more to my liking but everybody
writes dx1 dx2 and dx dy, rather than dx = d(x1, x2) and d(x, y). Without
the notational space we have forms dxdy = −dydx that are usually written
with wedges, namely dx ∧ dy = −dy ∧ dx.

8Section 21 introduced notation with dx and dy not separated and dxdy = −dydx.
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22 Parameterisations and integrals

Part of this chapter was already done in Chapter 27. Let us recall the main
result, which concerns a bounded open set Ω ⊂ IRN with ∂Ω ∈ C1 and a
function v ∈ C1(Ω)∩C(Ω). In the proof of Theorem 27.17 we explained how∫

Ω

vxi =

∫
∂Ω

νi v (22.1)

follows from local calculations, in which the boundary integrals are actually
defined using parameterisations of a very special form, in the notation of
most of this chapter, u → Φ(u) = (u, f(u)), with f : [a, b] → IR. The local
statements led to the global statement via arguments which involved cut-off
functions1 and partitions of unity, which will be discussed as an independent
topic in Section 27.3.

22.1 The length of a curve

In the 1-dimensional case I now follow Edwards2 and write x = γ(t) with
t ∈ [a, b] and γ : [a, b] → IRN. For any such γ the natural definition of the
length would be the smallest upper bound on the set of numbers obtained
via

m∑
j=1

|γ(tj)− γ(tj−1)|
2

with
a = t0 < t1 < · · · < tm = b.

Clearly this definition of length is invariant under reparameterisation of γ via
strictly monotone bijections φ : [a, b]→ [c, d] as in Section 8.5. It’s not a very
hard exercise to show that for continuously differentiable γ : [a, b]→ IRN the
length is given by

s(γ) =

∫ b

a

|γ′(t)|
2
dt,

and the change of variables formula applied to u = φ(t) with φ ∈ C1([a, b])
with φ′(t) 6= 0 confirms that

Φ : u→ γ(φ−1(u)) (22.2)

1I called them fading functions.
2This was written while teaching from his book Advanced Calculus of Several Variables.
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is in C1([c, d]) with [c, d] = φ([a, b]), and has the same length3. Also, if
f = f(x) is continuous on γ([a, b]) = Φ([c, d]), it follows that∫

γ

f =

∫
γ

fds =

∫ b

a

f(γ(t))|γ′(t)|
2
dt =

∫ d

c

f(Φ(u))|Φ′(u)|
2
du =

∫
Φ

fds.

(22.3)
As a special case we have that

s = φ(t) =

∫ t

a

|γ′(τ)|
2
dτ

defines a reparameterisation for which γ̂ = Φ defined by γ(t) = γ̂(s) = Φ(s)
has

|γ̂′(s)|
2

= |Φ′(s)|
2

= 1.

Such a reparametrised γ̃ is called a unit speed path.

22.2 Line integrals of vector fields along curves

Besides (22.3) as a 1-dimensional example of what is to come in (22.13) we
can also define an integral for F = F (x) ∈ IRn continuous on γ([a, b]), namely

∫
γ

F · ds =

∫ b

a

F (γ(t)) · γ′(t) dt =

∫ b

a

F (γ(t)) · γ′(t)

|γ′(t)|
2︸ ︷︷ ︸

T (t)

|γ′(t)|
2
dt, (22.4)

but Edwards avoids the commonly used notation in the left hand side of
(22.4). Instead he writes ∫

γ

F · T ds,

with T the unit tangent vector4 defined by

T (t) =
γ′(t)

|γ′(t)|
2

.

For reparametrisations u = φ(t) with φ ∈ C1([a, b]) and φ′(t) > 0 and Φ
defined as in (22.2) above you easily verify that the work

W =

∫
γ

F · ds =

∫
γ

F · T ds =

∫
Φ

F · T ds =

∫
Φ

F · ds.

3The condition that γ′(t) 6= 0 also carries over to Φ′(u) 6= 0.
4I will use τ = T .
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done by the force field F does not change under reparametrisations u = φ(t)
with φ′(t) > 0. Of course

W =

∫
γ

F · ds =

∫
γ

F · T ds =

∫ b

a

(F1(γ(t))γ′1(t) + · · ·+ FN(γ(t))γ′N(t))) dt

=

∫ b

a

F1(γ(t)) γ′1(t) dt︸ ︷︷ ︸
dx1

+ · · ·+
∫ b

a

FN(γ(t)) γ′N(t) dt︸ ︷︷ ︸
dxN

leads to the notational convention∫
γ

F · ds =

∫
γ

F1dx1 + · · ·+
∫
γ

FNdxN =

∫
γ

F1dx1 + · · ·+ FNdxN . (22.5)

If F = ∇f it is common to write∫
γ

df =

∫
γ

∂f

∂x1

dx1 + · · ·+ ∂f

∂xN
dxN︸ ︷︷ ︸

df

=

∫
γ

∇f · ds =

∫ b

a

∇f(γ(t)) · γ′(t) dt = f(γ(t))|b
a
= f(γ(b))− f(γ(a)),

a notation which generalises (10.6), after which d was seen5 as acting on f
to produce df = f ′(x)dx. Here we have d acting on f as6

df =
∂f

∂x1

dx1 + · · ·+ ∂f

∂xN
dxN . (22.6)

These 1-forms act on vectors. Whereas the x-dependent vector7

F (x) = F1(x)e1 + · · ·+ FN(x)eN (22.7)

The vector
v = v1e1 + · · ·+ vNeN

have and x-dependent inner product

F (x) · v = F1(x)v1 + · · ·+ FN(x)vN .

the 1-form
ω = F1(x)dx1 + · · ·+ FN(x)dxN (22.8)

5Writing f instead of F again.
6Compare to (21.3) in Section 21.1.
7As in Section 17.2 we consider the ei as column vectors.
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assigns to the same vector v the same x-dependent scalar

F1(x)v1 + · · ·+ FN(x)vN ,

in which we can insert x = γ(t) and vi = γ′i(t) to get a t-dependent quantity
that we can integrate from t = a to t = b to define∫ b

a

(F1(γ(t))γ′1(t) + · · ·+ FN(γ(t))γ′N(t)) dt =

∫
γ

ω.

Thus, ω evaluated in x = γ(t) acts on γ′(t) and is integrated from t = a to
t = b to define

∫
γ
ω. Note that a reparameterisation of γ with u = φ(t) and

φ′(t) < 0 changes the sign of the integral.
The notation for ω hides the x-dependence, just like the abuse of notation

in f = f(x). In conclusion we have
∫
γ
f =

∫
γ
f ds defined for continuous

scalar functions f = f(x) and
∫
γ
ω for 1-forms ω = F1(x)dx1+· · ·+F (x)dxN .

22.3 Surface area

We need some linear algebra8 for integrals over more general surface patches
then the ones encountered in Section 27.5. We now understand a surface
patch to be a set in IR3 parameterised by a continuously differentiable injec-
tive map

Φ : [0, 1]× [0, 1]→ IR3, (22.9)

with

∇Φ = (∇Φ1 ∇Φ2 ∇Φ3) =

(∂Φ1

∂u1

∂Φ2

∂u1

∂Φ3

∂u1

∂Φ1

∂u2

∂Φ2

∂u2

∂Φ3

∂u2

)
denoting the matrix of which the columns are the gradients of the N = 3
components Φ1,Φ2,Φ3 of Φ with respect to the n = 2 variables9 u1, u2 in
Φ = Φ(u) = Φ(u1, u2), consistent with the notation in Section (17).

Momentarily switching to a notation with Φ1,Φ2,Φ3 as functions of u, v,
∇Φ is the transpose of the Jacobian matrix

(
∂Φ

∂u

∂Φ

∂v
),

which has column vectors ∂Φ
∂u

, ∂Φ
∂v

. In the special linear case with

Φi(u, v) = aiu+ biv (22.10)

8Theorem 18.8.
9Everything that follows should generalise or trivialise to 1 ≤ n ≤ N .
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the Jacobian matrix is the transpose of

∇Φ = AT =

(
a1 a2 a3

b1 b2 b3

)
,

the matrix example in (18.14) starting the discussion in Section 18.5 below
on

the area M2(a, b) of a parallelogram spanned by two vectors a and b

with entries a1, a2, a3 and b1, b2, b3 respectively. This parallelogram is then
the image of [0, 1] × [0, 1] under Φ defined by (22.10), and its area is then
equal to ∫ 1

0

∫ 1

0

M2(
∂Φ

∂u
,
∂Φ

∂v
) du dv, (22.11)

the integrand being independent of u, v, as a = ∂Φ
∂u

and b = ∂Φ
∂v

are constant
vectors is the linear case (22.10).

It will be no surprise that (22.11) will also be used to define the area of
the surface patch defined by Φ if Φ is not a linear map from [0, 1]2 to IR3,
and that everything generalises to Φ : [0, 1]n → IRN with 1 ≤ n < N . We
expand on the linear case of this generalisation next.

22.4 Surface integrals

I now return to (22.11). Generalising to 1 ≤ n ≤ N we consider∫
[0,1]n
Mn(

∂Φ

∂u
) du =

∫ 1

0

· · ·
∫ 1

0

Mn(
∂Φ

∂u1

, . . . ,
∂Φ

∂un
) du1 · · · dun (22.12)

in which

Mn(
∂Φ

∂u1

, . . . ,
∂Φ

∂un
) =Mn(Φu1 , . . . ,Φun)

is given by Theorem 18.8. Here du = du1 · · · dun and
∫

[0,1]n
=
∫ 1

0
· · ·
∫ 1

0
are

just notational conventions.
In the special case that n = 1 we have

M1(Φu) =
√

Φ′1(u)2 + · · ·+ Φ′n(u)2,

and
ds =M1(Φu) du =

√
Φ′1(u)2 + · · ·+ Φ′n(u)2 du

is a common notation, introduced10 after a change of coordinates defined by

ds

du
=
√

Φ′1(u)2 + · · ·+ Φ′n(u)2.

10In Edwards Section V.1, his γ(t) would correspond Φ(u).
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While not corresponding to a change of coordinates the notation

dS =M2(Φu,Φv) du dv,

with the S of surface, is also common. Here I will use dSn for

dSn =Mn(
∂Φ

∂u
) du =Mn(Φu1 , . . . ,Φun) du1 · · · dun

in (22.12), i.e.∫
Φ

dSn =

∫ 1

0

· · ·
∫ 1

0

Mn(
∂Φ

∂u1

, . . . ,
∂Φ

∂un
) du1 · · · dun.

For a function f = f(x) = f(x1, · · · , xn) which is continuous on

{x = Φ(u) : u ∈ [0, 1]n},

we write ∫
Φ

fdSn =

∫
[0,1]n

f(Φ(u))Mn(
∂Φ

∂u
) du = (22.13)∫ 1

0

· · ·
∫ 1

0

f(Φ(u1, . . . , un))Mn(
∂Φ

∂u1

, . . . ,
∂Φ

∂un
) du1 · · · dun.

The subscript Φ on the integral is consistent with the case n = 1 and ds =
dS1, and coincides with the notation in the second part of (22.3). Personally
I often drop the dSn from the notation and just write

∫
Φ
f instead of

∫
Φ
fdSn,

and
∫
γ
f if n = 1 and γ = Φ is a path in IRN. Af course we can also allow

general closed blocks

[a, b] = [a1, b1]× · · · × [an, bn]

in stead of [0, 1]n.
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23 Varieties in Euclidean space

In this chapter we think of manifolds as solution sets of systems of equations
in IRN . In Chapter 24 this will bother us a when we get the topology on
M only from the topology on IRN . Think of lines and planes as nontrivial
examples in IR3 of linear varieties M. Along M something varies, and the
variations are linear: by definition linear varieties in IRN are solution sets of
systems1 of linear equations, which upon solving these systems are described
as graphs of linear functions2. The typical example3 of M is the graph
defined by4

y = Ax+ b, (23.1)

in which x ∈ IRn, y ∈ IRm, A : IRn → IRm linear, b ∈ IRm, and N = n + m
with n,m ∈ IN.

Exercise 23.1. Use your knowledge of linear algebra to show that a linear variety
M is always the graph of a linear function, unless M is a singleton, and then there is
no reason to call it a variety. After relabelling the variables M is given by (23.1).

If we see x and y as column vectors then (23.1) reads as

(A − I)

(
x

y

)
= b ∈ IRm,

with C = (A − I) a somewhat special matrix with m rows and N columns.
The first n columns form the matrix A, the last m columns the diagonal
matrix with entries −1. The matrix C acts on column vectors

z =

(
x

y

)
in IRN. Thus (23.1) is a system ofm linear equation forNunknowns z1, z2, . . . , zN :

C11z1 + C12z2 + · · ·+ C1NzN = b1;

C21z1 + C22z2 + · · ·+ C2NzN = b2;

...

1That is, Ax = b with A a given matrix, b a given vector, and x the unknown vector.
2You may prefer to call them maps.
3Unless they are empty, a singleton or the whole space, you must have seen this.
4For some other matrix A and some other vector b of course.
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Cm1z1 + Cm2z2 + · · ·+ CmNzN = bm.

In the example the coefficient matrix C has maximale rank, which means
that you can choose m column of C which together form an invertible square
matrix, in this example the last m columns. More generally, if C = (A B)
with B invertible, then the system is solved for y via y = B−1(b−Ax), which
defines a graph, just like (23.1). We have

Cz = b ⇐⇒ y = Ax+ b (23.2)

as equivalent descriptions of non-trivial linear varieties in IRN, under the
assumption that C hax maximal rank.

23.1 Implicit function theorem in Euclidean spaces

Referring to Theorem 14.4 we use the notation

x ∈ X = IRn, y ∈ Y = IRm, (x, y) ∈ Z = X × Y = IRn+m

to formulate the implicit function theorem in the neighbourhood of a point
(x, y) = (a, b). Aiming for a vector version of (14.25) we assume that (x, y)→
Fx(x, y) and (x, y) → Fy(x, y) are continuous near (x, y) = (a, b). Equiva-
lently: F is continuously differentiable in a neighbourhood of (x, y) = (a, b).

Theorem 23.2. (Implicit function theorem) For r > 0 let the IRm-valued
function F be continuously differentiable on Br(a) × Br(b). If Fy(a, b) is
invertible then there exist δ0 > 0 and ε0 > 0, and a continuously differentiable
function

f : B̄δ0(a)→ Bε0(b),

such that

{(x, y) ∈ B̄δ0(a)× B̄ε0(b) : F (x, y) = F (a, b)} = {(x, f(x)) : x ∈ B̄δ0(a)}.

It holds that

f ′(x) = −(Fy(x, f(x)))−1Fx(x, f(x)) for all x ∈ B̄δ0(a).

The proof can be copied from the proofs of Theorems 14.1 and 14.2.
Recall that the function x→ F (x, f(x)) is never differentiated tot derive the
expression for f ′(x) but differentiation of this function does help to remember
the result. The construction of y = f(x) requires first a choice of 0 < ε0 ≤ r
and then a choice of δ0 > 0 sufficiently small, which in the end has to be
chosen even smaller to also have f ′(x) = −(Fy(x, f(x)))−1Fx(x, f(x)) for
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|x| ≤ δ0. In general it will not be the case that δ0 > ε. Thus Theorem
23.2 can be read as stating the existence of 0 < δ0 ≤ ε0 ≤ r for which the
assertions hold.

Applying Theorem 23.2 to

F (x, y) = x− g(y)

we obtain the inverse function theorem via the statement

{(x, y) ∈ B̄δ0(a)× B̄ε0(b) : g(y) = x} = {(x, f(x)) : x ∈ B̄δ0(a)},

with f ′(x) = (g′(f(x))−1 for all x ∈ B̄δ0(a). The solution y = f(x) of
x = g(y) is constructed with the scheme

yn+1 = yn − g′(0)−1(g(yn)− x),

starting from y0 = 0. We formulate the result for X = Y = IRn en g : Y → Y .

Theorem 23.3. (Inverse function theorem) For r > 0 let g : Y → Y be
continuously differentiable on B̄r(b) and let a = g(b). If g′(b) is invertible
there exist 0 < δ0 ≤ ε0 ≤ r and a continuously differentiable injective func-
tion f : B̄δ0(a) → Bε0(b), such that for all (x, y) ∈ B̄δ0(a) × B̄ε0(b) it holds
that x = g(y) ⇐⇒ y = f(x), and f ′(x) = (g′(f(x))−1 for all x ∈ B̄δ0(a).

N.B. Theorem 23.2 gives f : B̄δ0(a) → Bε0(b) in Theorem 23.3 only as
continuously differentiable function. Because y = f(x) for x ∈ B̄δ0(a) it
follows that x = g(y) = g(f(x)), so f is injective on B̄δ0(a), and in view of
f ′(x) = (g′(f(x))−1 it must be that f ′(x) is invertible in every x ∈ B̄δ0(a).

This argument does not immediately apply to g: to insert x = g(y) in
y = f(x) we must have g(y) in the domain of f . But Theorem 23.3 can
be applied once more (interchange the roles of x and y) to obtain 0 < ε1 ≤
δ1 ≤ δ0 and a continuously differentiable g1 : B̄ε1(b) → B̄δ1(a) such that for
(x, y) ∈ B̄δ1(a)× B̄ε1(b) it holds again that x = g1(y) ⇐⇒ y = f(x). From
the earlier equivalence x = g(y) ⇐⇒ y = f(x) for all (x, y) ∈ B̄δ0(a)×B̄ε0(b)
we have that g1 = g on B̄ε1(b). Just as earlier for f : B̄δ0(a) → B̄ε0(b) it
follows that g1 and therefore g is injective on B̄ε1(b).

Summarizing we conclude that in the chain

B̄ε1(b)
g−→ B̄δ1(a)→ B̄δ0(a)

f−→ B̄ε0(b)
g−→ X = Y = IRn

not only f but also the g in te first link is injective. The second link is the
inclusion map. The keten can be extended to the left. Starting from a met
continuously differentiable

IRn ⊃ B̄δ0(a)
f→ IRn (23.3)

with f ′(a) invertible, we have with b = f(a) a diagram that goes on forever:
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B̄δ0(a)
f→ IRn

↑ ↑

B̄δ1(a)
g← B̄ε1(b)

↑ ↑

B̄δ2(a)
f→ B̄ε2(b)

↑ ↑

B̄δ3(a)
g← B̄ε3(b)

↑ ↑

Every image is contained in the open ball. Except for the first top link,
every link is injective but in general not surjective, with invertible f ′(x) and
g′(y) (because of f ′(x) = (g′(f(x))−1 and g′(y) = (f ′(g(y))−1). Going down
the epsilons and deltas get smaller.

Exercise 23.4. Derive 23.2 from Theorem 23.3. Hint: use F to construct a function
F̃ : IRN = IRn× IRm → IRn× IRm which has its last m components given by F (x, y)
and its first n components by x itself.

23.2 General subvarieties

For in general nonlinear subvarieties5 we ask about an equivalence simliar to
(23.2), starting from the nonlinear version Cz = b, written in Theorem 23.2
as6

F (z) = F (x, y) = 0,

with F : IRN → IRm continuously differentiable. We use the nonlinear version
of (23.1) to agree what we mean by a subvariety M⊂ IRN:

Definition 23.5. Let n ∈ {1, . . . , N − 1}. An n-dimensional C1-subvariety
M⊂ IRN is a set that in a neigbourhood of any of its points can be written like
the level set F (x, y) = F (a, b) in Theorem 23.2: possibly after renumbering
the coordinates it must be that every point p ∈M has

p = (a, b) ∈M ∩ B̄δ0(a)× B̄ε0(b) = {(x, f(x)) : x ∈ B̄δ0(a)}.
5Not defined yet!
6We prefer to have y to the right of x in the notation.
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for some δ0 > 0 and ε0 > 0, and some f continuously differentiable from
B̄δ0(a) to Bε0(b). If n = N − 1 then M is called a hypersurface.

Exercise 23.6. Let F : IRN → IRm be continuously differentiable. Assume that
for all z ∈ IRN with F (z) = 0 the derivative F ′(z), seen as matrix, has maximal
rank. Prove that {z ∈ IRN : F (z) = 0} is an n-dimensional subvariety of IRN, with
n+m = N .

Exercise 23.7. Give an example of an n-dimensional subvarietyM⊂ IRN which is
not given by a function F as in Exercise 23.6.

The standard example for Exercise 23.6 is the boundary of a ball in IRn with
center (a1, a2, . . . , an) and radius δ > 0:

(x1 − a1)2 + · · ·+ (xn − an)2 − δ2 = 0. (23.4)

There are three equivalent ways to say that M ⊂ IRN is an n-dimensional
subvariety:

(A) M is locally the graph of a continuously differentiable function

f : IRn → IRm (n+m = N),

given by y = f(x) after renumbering z = (x, y).

(B) M is locally the zero level set of

F : IRN → IRm (n+m = N),

a continuously differentiable function with, after renumbering,
Fy invertible in the points z = (x, y) ∈M under consideration.

(C) M is locally the image7 of a continuously differentiable function

Φ : IRn → IRN,

which is injective and has Φ′ of maximal rank.

Theorem 23.2 showed that (B) =⇒ (A), and (A) =⇒ (B) because (A) is
a special case of B with F (x, y) = g(y)− x. Likewise (A) is a special case of

7The inverse map of Φ is called a chart on M .
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C with Φ(x) = (x, f(x)). To complete the circle with a proof that (C) =⇒
(A) we use Theorem 23.3 and the chain rule.

To wit, consider Φ as

Φ : IRn → IRn × IRm,

with, after renumbering, Φ(x) = (Ψ(x), χ(x)), Ψ : B̄r(a) → IRn and χ :
B̄r(a) → IRm continuously differentiable, and Ψ′(a) invertible in a. This
is possible because we assumed that Φ′(x) is of maximal rank in x = a.
Theorem 23.3, applied to g = Ψ with y = x, provided us with a continuously
differentiable injective function f renamed here as φ, φ : B̄δ0(Ψ(a)) → IRn,
with φ′(ξ) invertible8 for all ξ ∈ B̄δ0(Ψ(a)), and Ψ(φ(ξ)) = ξ for all ξ ∈
B̄δ0(Ψ(a)). Thus

ξ → Φ(φ(ξ)) = (Ψ(φ(ξ)), χ(φ(ξ))) = (ξ, f(ξ)),

with f(ξ) = χ(f(ξ)), parameterises M in a neigbourhood of b = Ψ(a) and
hence M is locally given as the graph of f : B̄δ0(b) → IRN. The continuous
differentiability of f follows from the chain rule, the first time we use it
actually. The proof of

(A)⇐⇒ (B)⇐⇒ (C)

is now complete.

Exercise 23.8. Let M ⊂ IRn be a subvariety and f : IRn → IRn continuously
differentiable in a neighbourhood of each and very point of M. If f ′(x) is invertible
for every x ∈ M and f is injective on M , then the image of M under f is again a
subvariety. Why?

Exercise 23.9. As Exercise 23.8, but with f : IRn → IRm and f ′(x) of maximal
rank in every x ∈M.

8Not used here.
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23.3 Images of ball boundaries

With 0 < ε1 ≤ δ1 ≤ δ0 ≤ ε0 Theorem 23.3 provided us with a chain

B̄ε1(b)
g−→ B̄δ1(a)

f−→ B̄ε0(b)

in which both links are injective but not surjective as every mage is contained
in the open ball. The smaller δ1 and ε1 were needed for the injectivity of g
on the smaller closed ball B̄ε1(b).

The images of the boundaries ∂Bε1(b) and ∂Bε0(a) are the subvarieties
g(∂Bε1(b)) and f(∂Bε0(a)). In case g and f are linear maps and a = b = 0,
it is easy to see that these images are graphs over the unit sphere

Sn−1 = {x ∈ IRn : |x| = 1}.

If A : IRn → IRn is such an invertible linear map, then a height function
h : Sn−1 → IR+ can be constructed to make that the image of ∂B1(0) under
A is of the form

Sh = {h(x)x : x ∈ Sn−1}. (23.5)

The function h is contructed by intersecting the half lines

{λx : λ > 0}

through x ∈ Sn−1 with A(∂B1(0)). You may prefer to use another name for
x here if you think in terms of y = Ax.

Exercise 23.10. Let A : IRn → IRn be an invertible linear map Prove that every
ξ ∈ Sn−1 has a unique λ > 0 such that λξ ∈ A(∂B1(0)). Setting λ = hA(ξ) defines
hA : Sn−1 → IR+. Prove that the image of ∂Bδ(0) under A has heigth function
ξ → δhA(ξ).

These questions and answers about g(∂Bε1(b)) and f(∂Bε0(a)) lead to the
question if the statements in Exercise 23.10 also hold for the image of a small
ball boundery B̄δ1(0) under a continously differentiable map F : B̄δ(0) :→
IRn of the form

F (x) = Ax+R(x) with R(x) = o(|x|) for |x| → 0.

Theorem 23.3 tells us that F os injective is on a smaller ball B̄δ0(0) with
F ′(x) invertible (not only for x = 0 but also) for all x ∈ B̄δ0(0). The next
exercise is a small project that also requires Theorem 23.2, to be expanded
on.
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Exercise 23.11. Prove the statement in Exercise 23.10 for the image F (∂Bδ1(0))
of a small ball boundary B̄δ1(0). Establish the continous differentiability of the height
function h you construct in a neighbourhood of every point of Sn−1, as function of
suitable chosen local coordinates.

23.4 Coordinate transformations

If a point P on an n-dimensional subvariety M of IRN lies in the image
of a Φ and a Ψ as in (C) in Section 23.2, say with Φ(ξ) and Ψ(η), and
P = Φ(0) = Ψ(0), with 0 an interior point of the domains of Φ and Ψ, then
ξ are η are related by statements as in Theorem 23.3 in a neighbourhood of
0.

23.5 Higher order derivatives of the implicit function

Apply the implicit function theorem to

F̃ : (x, h)→ (F (x), F ′(x)h)

and obtain statements about the second derivatives of the implicit function
f constructed before or simultaneously to describe the level set of F as a
graph.
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24 Integration over manifolds

Section 23.2 and Section 25.2 below will concern 3 descriptions of what it
means for M ⊂ IRN to be an n-dimensional manifold in IRN. We now use
characterisation (C), and assume in addition that there exist finitely many
injective continuously differentiable

Φi : [ai, bi]→ IRN

defined on blocks [ai, bi] as in the elaboration on (C) in Section 25.2 above1,
such that

M = Φ1((a1, b1))∪· · ·∪Φm((an, bn)) = Φ1([a1, b1])∪· · ·∪Φm([an, bn]), (24.1)

and moreover that there exist corresponding smooth functions

ζi : IRN → [0, 1]

with
ζ1 + · · ·+ ζn ≡ 1 on M and supp ζi ◦ Φi ⊂ (ai, bi)

for every i = 1, . . . , I. Here supp ζi ◦ Φi is the support of the function
u→ ζi(Φi(u)), defined as the closure of the set

{u ∈ (ai, bi) : ζi(Φi(u)) 6= 0}.

We say that u → ζi(Φi(u)) belongs to C1
c ((ai, bi)), the class of C1-functions

with support contained in the open set (ai, bi).
You can think of each function ζi as fading the patch Φi((ai, bi)), making

it fade away completely near its boundary where ζi ≡ 0, while together the
ζi leave the whole of M as bright as it was before. Such fading functions ζi
can be chosen to vanish outside a neighbourhood in IRN of the image Φi(Ki),
and the collection ζ1, . . . , ζm is called a finite partition of unity on M , which
is then (turning2 a theorem around which says that such partitions exist if
M is compact) a closed and bounded subset of IRN.

If f : M → IR is continuous we now wish to define∫
M

fdSn =

∫
Φ1

fζ1dSn + · · ·+
∫

Φm

fζmdSn, (24.2)

which requires a theorem that says this is independent of the choice of patches
and fading functions. We leave this issue3 for now.

1The index i numbering the blocks now.
2Following Steenbrink in his exposition of the Poincaré conjecture in Noordwijkerhout.
3But see later sections.
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Of course the exposition above involves the change of variables theorem
and Section 23.4. At the end of the day every theorem that we may wish
to prove involving integrals of functions over M may be proved by restating
and proving a local form only.

Finally we note that if the blocks [ai, bi] and the injective continuously
differentiable functions Φi : [ai, bi] → IRN with Φ′(u) of maximal rank can
be chosen such that4

M = Φ1([a1, b1]) ∪ · · · ∪ Φm([an, bn]) with Φi((ai, bi)) ∩ Φj((aj, bj)) = ∅
(24.3)

for i 6= j, then ∫
M

fdSn =

∫
Φ1

f dSn + · · ·+
∫

Φm

fdSn (24.4)

is the obvious definition which Edwards uses, and which is what you do in
examples. Usually there are many ways to choose the patches.

24.1 More integration of differential forms

We look again at the right hand side of (27.17) with N = n+1, evaluated for
ṽi = ζvi with ζ a cut-off function vanishing outside and near the boundary
of some window

[a, b] = [a1, b1]× · · · × [aN , bN ],

in which we now assume a local representation of Ω ∩ [a, b] given by5

(x1, . . . , xn) ∈ [a1, b1]× · · · × [an, bn] and aN ≤ xN < f(x1, . . . , xn),

with f ∈ C1([a1, b1]× · · · × [an, bn]) taking values in (aN , bN), and

Φ(u1, . . . , un) = (u1, . . . , un, f(u1, . . . , un)) (24.5)

parameterising M ∩ [a, b] = ∂Ω ∩ [a, b]. We denote the unit basis vectors by
e1, . . . , eN .

For n = 2 the vector obtained by the formal determinant manipulation∣∣∣∣∣∣
∂Φ1

∂u1

∂Φ2

∂u1

∂Φ3

∂u1
∂Φ1

∂u2

∂Φ2

∂u2

∂Φ3

∂u2

e1 e2 e3

∣∣∣∣∣∣ =

∣∣∣∣∂Φ1

∂u1

∂Φ2

∂u1
∂Φ1

∂u2

∂Φ2

∂u2

∣∣∣∣ e3 +

∣∣∣∣∂Φ2

∂u1

∂Φ3

∂u1
∂Φ2

∂u2

∂Φ3

∂u2

∣∣∣∣ e1 +

∣∣∣∣∂Φ3

∂u1

∂Φ1

∂u1
∂Φ3

∂u2

∂Φ1

∂u2

∣∣∣∣ e2 (24.6)

4Edwards: a hard theorem says this can be done.
5Like in Section 27.5.
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is commonly called the cross product of the vectors Φu1 and Φu2 , and for
Φ(u1, u2) = (u1, u2, f(u1, u2)) it evaluates as6

e3 −
∂f

∂u1

e1 −
∂f

∂u2

e2 = − ∂f

∂u1

e1 −
∂f

∂u2

e2 + e3, (24.7)

which is a positive multiple of the unit vector ν characterised by having its
last component positive and being perpendicular to the graph defined by
u3 = f(u1, u2). For any continuously differentiable

Φ : [a1, b1]× [a2, b2]→ IR3

with Φu1 and Φu2 linearly independent, the vector defined by (24.6) is per-
pendicular to the plane spanned by Φu1 and Φu2 , and can be normalised by
dividing it by its length, which we recognise as

M2(Φu1 ,Φu2)

in view of Theorem 18.8. If we call this normalised vector ν, which in case
of (24.7) is simply7

ν =
1√

1 + f 2
u1

+ f 2
u2

(
− ∂f

∂u1

e1 −
∂f

∂u2

e2 + e3

)
, (24.8)

and consider ṽi as the ith component of a vector field ṽ = ζv defined on
M ∩ [a, b], with v a vector field on M , then∫

M

ν · ṽ dS2 =

∫∫
[a1,b1]×[a2,b2]

(
ṽ1

∣∣∣∣∂Φ2

∂u1

∂Φ3

∂u1
∂Φ2

∂u2

∂Φ3

∂u2

∣∣∣∣+ ṽ2

∣∣∣∣∂Φ3

∂u1

∂Φ1

∂u1
∂Φ3

∂u2

∂Φ1

∂u2

∣∣∣∣+ ṽ3

∣∣∣∣∂Φ1

∂u1

∂Φ2

∂u1
∂Φ1

∂u2

∂Φ2

∂u2

∣∣∣∣) du1 du2︸ ︷︷ ︸
du

,

in which we use the short hand notation du = du1 du2 = du2 du1. We may
be inclined to write this as∫

Φ

ṽ1 dx2dx3 + ṽ2 dx3dx1 + ṽ3 dx1dx2 =

∫
Φ

ω, (24.9)

with
ω = ṽ1 dx2dx3 + ṽ2 dx3dx1 + ṽ3 dx1dx2,

6Denoting the partials with subscripts u1 and u2.
7Please allow the simultaneous use of both expressions in fui

= ∂f
∂ui

.
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using formal rules such as8

dx2dx3 =

∣∣∣∣∂x2

∂u1

∂x3

∂u1
∂x2

∂u2

∂x3

∂u2

∣∣∣∣ du1du2︸ ︷︷ ︸
6=du

=

∣∣∣∣∂Φ2

∂u1

∂Φ3

∂u1
∂Φ2

∂u2

∂Φ3

∂u2

∣∣∣∣ du1du2︸ ︷︷ ︸
6=du

.

We then have that (24.9) is equal to∫
Ω

∇ · ṽ =

∫
Ω

∇ · ṽ(x) dx =

∫∫∫
Ω

(
∂ṽ1

∂x1

+
∂ṽ2

∂x2

+
∂ṽ3

∂x3

)
dx1 dx2 dx3︸ ︷︷ ︸

dx

,

which we will wish to write as an integral of the differential form

dω =

(
∂ṽ1

∂x1

+
∂ṽ2

∂x2

+
∂ṽ3

∂x3

)
dx1dx2dx3︸ ︷︷ ︸

6= dx

,

in which dx1dx2dx3 is part of a 3-form and not to be read as dx = dx1 dx2 dx3.
All of the above generalises9 to arbitrary N = n+ 1, e.g. we also have∫

Ω

(
∂ṽ1

∂x1

+
∂ṽ2

∂x2

+
∂ṽ3

∂x3

+
∂ṽ4

∂x4

)
dx (24.10)

=

∫
Φ

ṽ1 dx2dx3dx4 + · · · (cyclicly permutated terms) · · · =
∫

Φ

ω,

using rules like

dx2dx3dx4 =

∣∣∣∣∣∣
∂x2

∂u1

∂x3

∂u1

∂x4

∂u1
∂x2

∂u2

∂x3

∂u2

∂x4

∂u2
∂x2

∂u3

∂x3

∂u3

∂x4

∂u3

∣∣∣∣∣∣ du1du2du3︸ ︷︷ ︸
6=du

,

and (24.10) should be the integral of the 4-form

dω =

(
∂ṽ1

∂x1

+
∂ṽ2

∂x2

+
∂ṽ3

∂x3

+
∂ṽ4

∂x4

)
dx1dx2dx3dx4.

Clearly such a d-calculus requires rules such as dxidxj = −dxjdxi. I played
with the formal rules that one might like to have in Chapter 21, see also the
discussion after Theorem 10.12. The notation, used in Edwards, is cumber-
some as the difference between spaces or no spaces between dxi and dxj is
hardly visible, which is a reason to write dxi ∧ dxj instead of dxidxj.

8Compare this to (21.9) in Section 21.2.
9This is why we put the unit vectors in the last row of the determinant in (24.6).
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We conclude with the simplest but slightly confusing case, n = 1 and
N = 2, when (24.6) should be replaced by∣∣∣∣∂Φ1

∂u
∂Φ2

∂u

e1 e2

∣∣∣∣ =
∂Φ2

∂u
e1 −

∂Φ1

∂u
e2, (24.11)

which for
Φ(u) = (u, f(u))

e2 − f ′(u)e1,

and leads to∫
M

ν · ṽ dS1 =

∫
[a,b]

(
−ṽ1

∂Φ2

∂u
+ ṽ2

∂Φ1

∂u

)
du =

∫∫
Ω

(
∂ṽ1

∂x1

+
∂ṽ2

∂x2

)
dx1 dx2,

in which we dropped the subscripts in a1, b1, u1. Here we have

ω = −ṽ1 dx2 + ṽ2 dx1 with dω =

(
∂ṽ1

∂x1

+
∂ṽ2

∂x2

)
dx1dx2,

and ∫
∂Ω

ω =

∫
Ω

dω.

In x, y notation for ω = p(x, y)dx + q(x, y)dy we have dω = (qx − py)dxdy
and ∫

∂Ω

p(x, y)dx+ q(x, y)dy =

∫
Ω

(qx − py)dxdy, (24.12)

which should make you wonder about∫
γ

p(x, y, z)dx+ q(x, y, z)dy + r(x, y, z)dz,

for γ : [a, b] → IR3 as in Section 22.2. Section 24.2 below explores what’s
going on here.

Note that in all these examples the N -form ω = f(x)dx1 · · · dxN inte-
grated over the domain Ω should sensibly be agreed to give10∫

Ω

ω =

∫
Ω

f(x)dx1 · · · dxN =

∫
Ω

f.

10Don’t confuse this f with f in the local description of the boundary of a domain.
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24.2 From Green’s to Stokes’ curl theorem

Now consider (24.5) as a local description of a manifold M and forget about
Ω as being a domain with M = ∂Ω. Instead let Ω be as in (22.1) with
N = 2 and let M be the graph of f : Ω → IR. Assume for simplicity
that ∂Ω is parameterised by a 1-periodic continuously differentiable function
t→ u(t) = (u1(t), u2(t)). Then

t
γ−→ (u1(t), u2(t), f(u1(t), u2(t))) (24.1)

parameterises the “boundary”

∂M = {(u, f(u))︸ ︷︷ ︸
Φ(u)

: u ∈ ∂Ω},

and
u

Φ−→ (u, f(u)) (24.2)

parameterises M , with u = (u1, u2) ∈ Ω.
For

F (x) = F1(x)e1 + F2(x)e2 + F3(x)e3

we introduce
ω = F1(x)dx1 + F2(x)dx2 + F3(x)dx3

as in (22.7) and (22.8) and consider the integral∫
∂M

ω

as in (22.5). It evaluates as∫
∂M

ω =

∫ 1

0

(F1(γ(t))γ′1(t) + F2(γ(t))γ′2(t)) + F3(γ(t))γ′3(t))) dt

=

∫ 1

0

(F1(u(t), f(u(t))u′1(t) + F3(u(t), f(u(t)))fu1(u(t)u′1(t)) dt

+

∫ 1

0

(F2(u(t), f(u(t))u′2(t) + F3(u(t), f(u(t)))fu2(u(t)u′2(t)) dt =∫
∂Ω

ζ =

∫
Ω

dζ, (24.3)

in which

ζ =

(
F1 + F3

∂f

∂u1

)
du1 +

(
F2 + F3

∂f

∂u2

)
du2
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Next we compute

dζ =

(
∂F1

∂x2

+
∂F1

∂x3

∂f

∂u2

+
∂F3

∂x2

∂f

∂u1

+
∂F3

∂x3

∂f

∂u2

∂f

∂u1

+ F3
∂2f

∂u2∂u1

)
du2du1

+

(
∂F2

∂x1

+
∂F2

∂x3

∂f

∂u1

+
∂F3

∂x1

∂f

∂u2

+
∂F3

∂x3

∂f

∂u1

∂f

∂u2

+ F3
∂2f

∂u1∂u2

)
du1du2,

which in view of du2du1 = −du1du2 reduces to

dζ = φ(u1, u2)du1du2 (24.4)

with φ(u1, u2) given by

φ = −
(
∂F3

∂x2

− ∂F2

∂x3

)
︸ ︷︷ ︸

G1

∂f

∂u1

−
(
∂F1

∂x3

− ∂F3

∂x1

)
︸ ︷︷ ︸

G2

∂f

∂u2

+

(
∂F2

∂x1

− ∂F1

∂x2

)
︸ ︷︷ ︸

G3

(24.5)

= −G1
∂f

∂u1

−G2
∂f

∂u2

+G3.

You should note that the second order derivatives of (24.2) are dropouts in
the calculations that lead to (24.5).

Now compare (24.5) to ν in (24.8) and recall that for Φ given by (24.2)
we know that

M2(Φu1 ,Φu2) =
√

1 + f 2
u1

+ f 2
u2
.

Summing up we thus have ∫
∂M

(F · τ) dS1 =

(hello forms)∫
∂M

ω =

∫
∂Ω

ζ =

∫
Ω

dζ =

∫
Ω

φ du1du2︸ ︷︷ ︸
dζ

=

(goodbye forms)∫
Ω

φ =

∫
Ω

(G · ν)M2(Φu1 ,Φu2) =

∫
M

(G · ν) dS2,

with G derived from F as indicated in (24.5), and commonly denoted as
G = ∇× F , i.e.∫

∂M

(F · τ) dS1 =

∫
M

(G · ν) dS2 with G = ∇× F, (24.6)
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using the parameterisations as indicated11. But don’t say goodbye:

24.3 Pullbacks and the action of d

We already saw in the reasoning from (22.5) to (22.6) that d acting on a
C1-function f = f(x1, . . . , xN) produces a 1-form

df =
∂f

∂x1

dx1 + · · ·+ ∂f

∂xN
dxN =

∂f

∂xi
dxi, (24.7)

using the convention that we sum over repeated indices. With f(x1, . . . , xN)
replaced by u(x, y) this is (21.3) in Section 21.1. There I played with the
d-algebra that emerges whenever you do integration using formal notations
such as (10.6), which is just (24.7) with n = 1 and f(x1, · · · , xN) replaced
by F (x).

Now consider a parameterisation x = Φ(u) as in (C) in Section 23.2. We
use Φ to pull back expressions with x and dx1, . . . , dxN back to expressions
with u and du1, . . . , dun, in a way that is consistent with the discussion
leading to (24.9) and the formal rules that emerge in the calculations to do
so. Thus we certainly want to deal with

f(x) = φ(u) via x = Φ(u). (24.8)

A mathematician’s way to do so is to introduce

φ = Φ∗(f) = f ◦ Φ, (24.9)

the pullback of f via Φ, which then also provides us with

dφ =
∂φ

∂u1

du1 + · · ·+ ∂φ

∂un
dun. (24.10)

If g is another function of x then clearly

Φ∗(f + g) = Φ∗(f) + Φ∗(g), Φ∗(fg) = Φ∗(f)Φ∗(g),

which suggests as a definition of the pullback of a 1-form ω = fidxi that

Φ∗(fidxi) = Φ∗(fi)︸ ︷︷ ︸
φi

Φ∗(dxi), (24.11)

11Figure out that annoying ± afterwards? We have, depending on the parameterisation:∫
∂M

(F · τ) dS1 = ±
∫
M

(G · ν) dS2.
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in which φi(u) = fi(Φ(u)) as before. This definition would imply that

Φ∗(df) =
∂f

∂xi
((Φ(u))︸ ︷︷ ︸

Φ∗(Dif)(u)

Φ∗(dxi). (24.12)

Note that Dif as notation for the ith first order partial derivative of f has
the advantage of not using the variable x in the notation.

On the other hand (24.10) implies via the chain rule that

d(Φ∗(f)) =
∂

∂uj
(f(Φ(u)) duj =

∂f

∂xi
(Φ(u))

∂Φi

∂uj
duj, (24.13)

and comparing to (24.12) we see that, if we define the pullback of dxi under
Φ to be

Φ∗(dxi) =
∂Φi

∂uj
duj, (24.14)

it follows that
Φ∗(df) = Φ∗(df). (24.15)

The definition of Φ∗(dxi) by (24.14) is just a formalisation of the familiar
“rule”

dxi =
∂xi
∂uj

duj

for expressing dxi in u, du1, . . . , dun, just like expressing f(x) in u via (24.8)
is formalised by (24.9). It implies that the pullback of the 1-form in (24.11)
evaluates as

Φ∗(fidxi) = φi
∂Φi

∂uj
duj︸ ︷︷ ︸

with φi(u)=fi(Φ(u))

= fi(Φ(u))
∂Φi

∂uj
duj = fi(Φ(u))DjΦi(u) duj. (24.16)

Next we observe that d acting on the resulting 1-form in (24.16) may be
evaluated, using the chain rule and dukduj = −dujduk, as

d(Φ∗(fidxi)) = d(fi(Φ(u))
∂Φi

∂uj
duj) =

∂

∂uk
(fi(Φ(u))

∂Φi

∂uj
) dukduj

= (
∂

∂uk
(fi(Φ(u)))

∂Φi

∂uj
dukduj + fi(Φ(u))

∂2Φi

∂uk∂uj
dukduj︸ ︷︷ ︸

zero the hero!

=

∂fi
∂xk

(Φ(u))
∂Φk

∂uk

∂Φi

∂uj
duk duj = Φ∗(Dkfi)

∂Φk

∂uk

∂Φi

∂uj
duk duj, (24.17)
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in which we used

d(fidxi) =
∂fi
∂xk

dxk dxi (24.18)

in the u-variables. Recall that this was the definition12 in Section 21.1 of the
action of d on 1-forms. With

Φ∗(fijdxidxj) = Φ∗(fij)︸ ︷︷ ︸
φij

Φ∗(dxidxj) (24.19)

as the obvious defining analog of (24.11), we have that

Φ∗(d(fidxi)) = Φ∗(
∂fi
∂xk

dxkdxi) = Φ∗(Dkfi) Φ∗(dxkdxi). (24.20)

Comparing to (24.20) to (24.17) it follows that

Φ∗(d(fidxi)) = d(Φ∗(fidxi)), (24.21)

provided we define

Φ∗(dxkdxi) =
∂Φk

∂uk

∂Φi

∂uj
duk duj︸ ︷︷ ︸

sum over 1≤k,j≤n

= (
∂Φk

∂uk

∂Φi

∂uj
− ∂Φk

∂uk

∂Φi

∂uj
) duk duj︸ ︷︷ ︸

sum over 1≤k<j≤n

=
∂(Φk,Φi)

∂uk∂uj
duk duj, (24.22)

in which the underline indicates that we sum over all k, j with 1 ≤ k < j ≤ n.
Just as in (24.15) we see that the actions of d and Φ∗ commute.

Note that the second order derivatives have disapperared in (24.17). The
derivation is typically done under the assumption that Φ ∈ C2, also in Ed-
wards, and an additional analysis argument is needed13 to give meaning to
the results if Φ is only in C1, because the determinants in (24.22) are exactly
the determinants that showed up in (24.6) and the subsequent derivation
of (24.9), where effectively dx = dx1 dx2 dx3 is first replaced by a 3-form
dx1dx2dx3 pulled back to a 2-form du1du2, which in turn is replaced by
du = du1 du2 again.

The step by step generalisation to the action of d and Φ∗ on k-forms of
any order k is easily made once the reasoning above is understood. For any
k-form

ω = fi1,...,ikdxi1 · · · dxik
12Recall the choice to set ddxi = 0, leading to ddω = 0 for any form ω.
13Using approximation arguments.
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we have
Φ∗(dω) = d(Φ∗(ω)) (24.23)

Every such form may be written as

ω = fi1,...,ikdxi1 · · · dxik = f̃i1,...,ik dxi1 · · · dxik , (24.24)

where in the second expression we sum only over those i1, . . . , ik for which
1 ≤ i1 < · · · < ik ≤ N . For instance

ω = fij dxidxj = (fij − fji)︸ ︷︷ ︸
f̃ij

dxidxj,

but this is not compulsory, as the examples

ω = f1 dx1 + f2 dx2 + f3 dx3

with cyclic notation for

dω = (
∂f3

∂x2

− ∂f2

∂x3

)︸ ︷︷ ︸
g1

dx2dx3 + (
∂f1

∂x3

− ∂f3

∂x1

)︸ ︷︷ ︸
g2

dx3dx1 + (
∂f2

∂x1

− ∂f1

∂x2

)︸ ︷︷ ︸
g3

dx1dx2

and
ζ = g1 dx2dx3 + g2 dx3dx1 + g3 dx1dx2

with

dζ = (
∂g1

∂x1

+
∂g2

∂x2

+
∂g3

∂x3

) dxdydz

in Section 24.4 show.
Finally we observe that if we put the coefficients f1, f2, f3 of this ω in

a vector F = f1e1 + f2e2 + f3e3 and the coefficients g1, g2, g3 in this cyclic
representation of dω in a vector G = g1e1 + g2e2 + g3e3, we obtain that

G = ∇× F,

the curl of F , whereas with the coefficients of η we obtain the coefficient of
dζ as

∂g1

∂x1

+
∂g2

∂x2

+
∂g3

∂x3

= ∇ ·G,

the divergence of G. These appear in the Gauss divergence and the Stokes
curl theorems for vectorfields in IR3 in Section 24.4 below14. The general
statement is also called Stokes Theorem. It has both theorems in IR3 and
Green’s Theorem in IR3 as special cases.

14The statement that ddω = 0 corresponds to the div of a curl being always zero:

∇ · ∇ × F = 0.
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24.4 From Gauss’ to general Stokes’ Theorem

From Section 24.1 and partitions of unity arguments we have that for Ω ⊂
IRN = IRn+1 open and bounded, with ∂Ω a compact (N − 1)-dimensional
C1-manifold, and in every p ∈ M , after renumbering, a local description of
Ω ∩ [a, b] given by

aN ≤ xN < f(x1, . . . , xn) < bN

or
aN < f(x1, . . . , xn) ≤ xN < bN ,

with f ∈ C1 and p ∈ (a, b), that there exists a globally defined normal
vectorfield ν : ∂Ω → IRN with ν(p) pointing out of Ω in every patch as
above. For every continuously differentiable V : Ω→ IRN it now holds that∫

Ω

∇ · V =

∫
∂Ω

ν · V dSN−1, (24.25)

and this statement is called the Gauss Divergence Theorem.
We now use the reformulation with differential forms and pullbacks of

forms with Φ : IRn+1 → IRN with N > n + 1 to formulate Stokes’ Theorem
for integral n-forms over Φ(M) considered as the boundary of Φ(Ω), first for
n+ 1 = 2 and N = 3. So let

ω = f1(x)dx1 + f2(x)dx2 + f3(x)dx3 (24.26)

and Φ : IR2 → IR3. Then

Φ∗(dx1) =
∂Φ1

∂u1

du1 +
∂Φ1

∂u2

du2; Φ∗(dx2) =
∂Φ2

∂u1

du1 +
∂Φ2

∂u2

du2;

Φ∗(dx3) =
∂Φ3

∂u1

du1 +
∂Φ3

∂u2

du2,

and with φ1 = Φ∗f1, φ2 = Φ∗f2, φ3 = Φ∗f3 we have

Φ∗(F ) = (φ1
∂Φ1

∂u1

+ φ2
∂Φ2

∂u1

+ φ3
∂Φ3

∂u1

) du1 + (φ1
∂Φ1

∂u2

+ φ2
∂Φ2

∂u2

+ φ3
∂Φ3

∂u2

) du2

= p1(u1, u2)du1 + p2(u1, u2)du2 = ζ,

a 1-form that can be integrated over M = ∂Ω, and to which (24.12) applies,
whence∫
∂Ω

ζ =

∫
∂Ω

p1(u1, u2)du1 + p2(u1, u2)du2 =

∫
Ω

(
∂p2

∂u1

− ∂p1

∂u2

)du1du2 =

∫
Ω

dζ.

(24.27)
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Observe that the second equality in (24.27) holds in view of (24.12), which
is a rewritten version of (24.25) with N = 2, while the first and the third
merely substitute ω = p1du1 + p2du2 and evaluate dω according to (24.18).

We need ∫
∂Ω

ζ =

∫
∂Ω

Φ∗ω =

∫
Φ(∂Ω)

ω, (24.28)

and ∫
Ω

dζ =

∫
Ω

dΦ∗ω =

∫
Ω

Φ∗(dω) =

∫
φ(Ω)

dω (24.29)

to conclude for ω given by (24.26) that∫
dS

ω =

∫
dS

f1dx1 + f2dx2 + f3dx3 =

∫
S

dω, (24.30)

in which S = Φ(Ω). It is the last equality in each of (24.28) and (24.29)
that has to be checked, the other equalities follow from our d-algebra and
the commutation of d and Φ∗.

Let us once more spell out the d-algebra by which (24.18) evaluates as

dω = (
∂f1

∂x1

dx1 +
∂f1

∂x2

dx2 +
∂f1

∂x3

dx3)dx1

+(
∂f2

∂x1

dx1 +
∂f2

∂x2

dx2 +
∂f2

∂x3

dx3)dx2

+(
∂f3

∂x1

dx1 +
∂f3

∂x2

dx2 +
∂f3

∂x3

dx3)dx3 =

∂f1

∂x2

dx2dx1 +
∂f2

∂x1

dx1dx2 +
∂f1

∂x3

dx3dx1 +
∂f3

∂x1

dx1dx3 +
∂f2

∂x3

dx2 +
∂f3

∂x2

dx2dx3

= (
∂f2

∂x1

− ∂f1

∂x2

)dx1dx2 + (
∂f3

∂x2

− ∂f2

∂x3

)dx2dx3 + (
∂f1

∂x3

− ∂f3

∂x1

)dx3dx1

(
∂f3

∂x2

− ∂f2

∂x3

)dx2dx3 + (
∂f1

∂x3

− ∂f3

∂x1

)dx3dx1 + (
∂f2

∂x1

− ∂f1

∂x2

)dx1dx2

= g1dx2dx3 + g2dx3dx1 + g3dx1dx2.

Comparing to (24.9) we recognise for F (x) = f1(x)e1 +f2(x)e2 +f3(x)e3 that∫
dS

f1dx1 + f2dx2 + f3dx3 =

∫
S

(
∂f3

∂x2

− ∂f2

∂x3

)dx2dx3 + (
∂f1

∂x3

− ∂f3

∂x1

)dx3dx1 + (
∂f2

∂x1

− ∂f1

∂x2

)dx1dx2
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=

∫
S

G · ν =

∫
S

(∇× F ) · ν, (24.31)

in which g1(x)e1 + g2(x)e2 + g3(x)e3 = G(x) = ∇ × F and ν is the normal
vector on S = Φ(Ω) defined by (24.6).

It thus remains to check the two analytical statements∫
∂Ω

Φ∗ω =

∫
Φ(∂Ω)

ω and

∫
Ω

Φ∗(dω) =

∫
Φ(Ω)

dω, (24.32)

which complement the d-algebra presented above, and which are both of the
form ∫

M

Φ∗ω =

∫
Φ(M)

ω, (24.33)

with respectively M = ∂Ω and M = Ω. For this we need again Section 19
combined with the usual localisations via partitions of unity. Not very hard
but still to be done.

It will be convenient here to have Φ(M) described by compositions of Φ
and patches of M , see the remark at the end of Section 25.3. Also, we still
have to deal with integrals over manifolds with boundaries, to obtain∫

Φ(∂Ω)

ω =

∫
Φ(Ω)

dω, (24.34)

as the final result in which M = Φ(Ω) is a manifold with boundary ∂M =
Φ(∂Ω), with Ω ∈ IRn as described at the beginning of this section, Φ a
continuously differentiable injective map from Ω to IRN with Jacobian matrix
of rank n throughout Ω, and ω an n-form with continuously differentiable
coefficients. Generalisations to piecewise C1-boundaries then still have to be
discussed.

24.5 More exercises

Let Ω be the open unit disk. Then its boundary ∂Ω is the circle defined by

x2 + y2 = 1.

Graph parameterisations such as

x→ (x,
√

1− x2), x→ (x,−
√

1− x2), (24.35)

y → (
√

1− y2, y), y → (−
√

1− y2, y)
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are ugly for calculations. Much nicer and more in common is of course

φ→ (cosφ, sinφ), (24.36)

but parameterisations obtained from substitutions like y = tx in the defining
equation x2 + y2 = 1 for ∂Ω are also handy: from x2 + t2x2 = 1 we have

x =
1√

1 + t2
, y =

t√
1 + t2

and x = − 1√
1 + t2

, y = − t√
1 + t2

parameterising two semicircles if we let t run from −∞ to +∞. With

t =
s

1− s
(24.37)

this gives

x =
1− s√

1− 2s+ 2s2
, y =

s√
1− 2s+ 2s2

parameterising {(x, y) ∈ IR2 : x ≥ 0, y ≥ 0, x2 + y2 = 1} with s ∈ [0, 1].

Exercise 24.1. Use the t-parameterisations above to calculate the area of the unit
disk via integrals such as

∫
xdy of

∫
ydx over ∂Ω. You should get and evaluate

integrands15 like
t2

(1 + t2)2
=

1

1 + t2
− 1

(1 + t2)2
.

Exercise 24.2. Referring to line integral notation with 1-forms, consider the form

ω = (a20x
2 + a11xy + a02y

2)dx+ (b20x
2 + b11xy + b02y

2)dy

and evaluate
∫
∂Ω ω for Ω = {(x, y) ∈ IR2 : x2 + y2 < 1} with ∂Ω parameterised such

that (24.11) defines a vector pointing out of Ω.

Exercise 24.3. Same as Exercise 24.2 but with

ω = (a30x
3 + a21x

2y + a12xy
2 + a03y

3)dx+ (b30x
3 + b21x

2y + b12xy
2 + b03y

3)dy

Which coefficients disappear in the calculations? Generalise to the obvious nth order
case.

15Recall
∫∞
−∞

1
1+t2 dt = π,

∫∞
−∞

1
(1+t2)2 dt = π

2 ,
∫∞
−∞

1
(1+t2)3 dt = 3π

8 , . . .
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Edwards has a nice exercise about Descartes’ Folium from which I lifted
the y = tx-trick above. It allows to find the solutions of

F (x, y) = x3 + y3 − 3xy = 0, (24.38)

in the form

x = x(t) =
3t

1 + t3
; y = y(t) =

3t2

1 + t3
, (24.39)

with t ∈ (0,∞), t ∈ (−1, 0) and t ∈ (−∞,−1) giving the smooth parts of the
curve. The origin (0, 0) is the intersection of two solution curves, one given
by (24.39) with t ∈ (−1, 1), the other by (24.39) with x and y interchanged.
Exercise 2.3 in Chapter V of Edwards is about

Ω = {(x, y) ∈ IR2 : x > 0, y > 0, F (x, y) = x3 + y3 − 3xy < 0}. (24.40)

with ∂Ω given by (24.39) and t ∈ [0,∞). You should examine the graphs of
x and y as functions of t in (24.39). You can get the area of Ω as

−
∫ ∞

0

y(t)x′(t) dt =

∫ ∞
0

x(t)y′(t) dt, (24.41)

or the average of the two integrals, which may turn out to be easier, using
Green’s Theorem the way we derived it. Edwards tells you to cut the folium
along the diagonal y = x, in which case you have the boundary consisting of
two curves, the part described by (24.39) with 0 ≤ t ≤ 1, and the diagonal
part given by y = x = t with 0 ≤ t ≤ 3

2
, which you should parameterise as

y = x = 3
2
− t if you think about it. Still, I wonder whether Edwards actually

did the exercise:

Exercise 24.4. Substitute y = t
1
3x in the equation for the folium to get x and

y in terms of t and evaluate (24.41) above to obtain the value 3
2 for the area of

{(x, y) ∈ IR2 : x > 0, y > 0, x3 + y3 − 3xy < 0}.

Exercise 24.5. As Exercise 24.4 but use (24.37) to get the boundary parameterised
with 0 ≤ s ≤ 1.

In the last exercise you see that the boundary of (24.40) is actually given
by one single parameterisation with the parameter s in the unit interval [0, 1],
with s = 0 and s = 1 both mapped to the origin where the condition for the
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local description as used in Section 23.2 fails. The same issue occurs in the
trivial case of Exercise 27.11.

Note that (24.40) is a special case of an obvious general question with two
parameters, these being p = 3 and n = 2 here16. Dropping the coefficient of
xy we have for general p > 2 that

x = s
1

p(p−2) (1− s)
p−1
p(p−2) ; y = s

p−1
p(p−2) (1− s)

1
p(p−2) , (24.42)

parameterises the loop in the solution set of xp + yp = xy, with

x
dy

ds
− ydx

ds
=

1

p
s

1
p−2
−1(1− s)

1
p−2
−1, (24.43)

which looks much better than the individual terms xdy
ds

and y dx
ds

. With the
β-function17 defined by

B(x, y) =

∫ 1

0

sx−1(1− s)y−1 ds,

the area surrounded by [0, 1] 3 s→ (x(s), y(s)), the loop in

xp + yp = xy (24.44)

is thus equal to

Ap =
1

2p
B(

1

p− 2
,

1

p− 2
), (24.45)

which gives 1
6

for p = 3 and differs from Exercise 24.4 by a factor 32, consistent
with (24.39).

Note that in deriving (24.43) from (24.42) you may get lost if you don’t
introduce

α =
1

p(p− 2)
and β =

p− 1

p(p− 2)
= (p− 1)α

and continue your calculations with α and β. I also suggest to write deriva-
tives such as

d

ds
sα(1− s)β = (

α

s
− β

1− s
) sα(1− s)β = (α− (α + β)s) sα−1(1− s)β−1,

which will help you to factor out common factors when such expressions have
to be combined later on, as you will notice if you tackle this question: how
about the volume Vp in {(x, y, z) ∈ IR3 : x ≥ 0, y ≥ 0, z ≥ 0} surrounded
by xp + yp + zp = xyz when p > 3?

16See Exercise 24.12.
17More on the β-function in [HM].
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Exercise 24.6. Substitute y = s
1
px and z = t

1
px in xp + yp + zp = xyz to obtain

a parameterisation of the solutions with x, y, z > 0 in the form

x = sαtα(1+s+ t)−pα, y = s(p−2)αtα(1+s+ t)−pα, z = sαt(p−2)α(1+s+ t)−pα,

and evaluate

xdydz = x(
∂y

∂s

∂z

∂t
− ∂y

∂t

∂z

∂s
)

as xyz times a factor that you have to computer carefully, to find the correct double
integral in s and t that gives the desired volume. The integral is the difference of two
similar terms each of which is st to some power times (1 + s + t) to some power.
Substituting t = (1 + s)x both integrals reduce to products of single integrals that
reduce to β-functions again.

Just in case, I arrived via

xyz =
(st)

1
p−3

(1 + s+ t)
3
p−3

and
1

yz
(
∂y

∂s

∂z

∂t
− ∂y

∂t

∂z

∂s
) =

1

p2(p− 3)st

(
p

1 + s+ t
− 1

)
at

1

p(p− 3)

∫ ∞
0

∫ ∞
0

(st)
1
p−3
−1 dsdt

(1 + s+ t)
p
p−3︸ ︷︷ ︸

S( 1
p−3

, p
p−3

)

− 1

p2(p− 3)

∫ ∞
0

∫ ∞
0

(st)
1
p−3
−1 dsdt

(1 + s+ t)
3
p−3︸ ︷︷ ︸

S( 1
p−3

, 3
p−3

)

.

These integrals are known. With

B(a, b) =

∫ 1

0

sa−1(1− s)b−1 ds

we have18

T (a, b) =

∫ ∞
0

sa−1 ds

(1 + s)b
= B(a, b− a)

and19

S(a, b) =

∫ ∞
0

∫ ∞
0

(st)a−1 dsdt

(1 + s+ t)b
= T (a, b)T (a, b− a),

so Vp can be expressed in p via β-functions. It should lead to what we get in
Exercise 24.11, which is really nice20.

18Via s = t
1−t , a substitution I avoided for (24.6).

19Via t = (1 + s)τ .
20There were mistakes in an earlier version and then it did not, but now it does.
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Exercise 24.7. How general is the y = tx-trick in IR2? Let F : IR2 → IR be
continuously differentiable, and suppose that F (x0, y0) for some (x0, y0) ∈ IR2 with
x0 6= 0. Define t0 by y0 = t0x0 and apply the implicit function theorem to derive
a condition that guarantees the existence of a C1-solution curve of the form t →
(x(t), y(t) = (x(t), tx(t)) defined on an t-interval which has t0 as an interior point.

Don’t forget you want to have nonzero speed, which is a second condition on top
of the usual condition from the the implicit function theorem. The latter condition
will involve a simple combination of x, y, Fx, Fy in (x0, y0) with a clear (but local)
geometric interpretation.

Verify that in the end the nonzero speed condition follows from x 6= 0 and the
condition from the implicit function theorem. Note that if (x0, y0) 6= (0, 0) you always
realise at least one of t→ (x(t), y(t) = (x(t), tx(t)) and t→ (x(t), y(t) = (ty(t), y(t))
if this condition is satisfied. Relate your results to polar coordinates.

Exercise 24.8. Verify that computing the area of (24.40) using polar coordinates
is even a bigger pain than using the y = tx-trick.

Exercise 24.9. In Exercise 24.7 you must have computed the time derivatives of
x(t) and y(t) = tx(t). Verify21 that the derivative of

y(t)

x(t)

is what it should be, and that the area of such a curve parameterised by t ∈ IR with
(x(t), y(t)→ (0, 0) as t→ 0 and t→∞ is given by22

1

2

∫ ∞
0

x(t)2 dt,

and compute again the area in Exercise 24.4 from the formula for x(t) in (24.39).

Exercise 24.10. Verify (24.45) by putting y = tx in (24.44), solve for x, and set
tp = s in the integral you get from Exercise 24.9 and convert to β-functions.

21You should have got ẋ = − x2Fy

xFx+yFy
, ẏ = x2Fx

xFx+yFy
22Compare this to a similar formula with polar coordinates.
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Exercise 24.11. See Exercise 24.9. How would F (x, y, z) = 0 lead to

1

3

∫ ∞
0

∫ ∞
0

x(s, t)3 dsdt?

Hint: in relation to
xp + yp + zp = xyz

and for

x = x(s, t) =

(
st

1 + sp + tp

) 1
p−3

this integral is equal to23

Vp =
1

3p2
B(

1

p− 3
,

1

p− 3
)B(

1

p− 3
,

2

p− 3
),

and you might see a pattern emerge.

Exercise 24.12. Let p > 4. The 4-dimensional measure of the bounded open set
in IR4 with all coordinates positive and bounded by

xp1 + xp2 + xp3 + xp4 = x1x2x3x4

is
1

4p3
B(

1

p− 4
,

1

p− 4
)B(

1

p− 4
,

2

p− 4
)B(

1

p− 4
,

3

p− 4
),

and likewise for
n∑
j=1

xpj = Πn
j=1 xj

in IRn for p > n.

23Earlier mistakes have have been corrected....
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25 Partitions of compact manifolds and.....

We apply the techniques in Section 27.3 to a non-empty compact setM ⊂ IRN

for which (C) in Section 23.2 applies in a sense we make more precise in
Section 25.2. In that section we specify blocks [ã, b̃] ⊂ IRN in which the
description (A) of Section 23.2 can be given, see (25.8). Below we rather
choose blocks [ãi, b̃i] ⊂ IRn, given Φi as in (24.1).

Thus for each p ∈M there exists a continuously differentiable injective

Φi : [a, b] = [a1, b1]× · · · × [an, bn]→ IRN

with M(∂Φ
∂u

) > 0 such that p ∈ Φ((ã, b̃)) for some [ã, b̃] ⊂ (a, b), and in some

open neighbourhood O of the compact set K = Φ([ã, b̃]) it holds that

x ∈M ⇐⇒ x ∈ Φ((a, b)) (25.1)

We would now like to consider the sets Φ((ã, b̃)) as open sets covering M ,
so that by compactness

M ⊂ Φ1((ã1, b̃1)) ∪ · · · ∪ Φm((ãm, b̃m)), (25.2)

for some finite collection Φj, but clearly the sets Φ((ã, b̃)) are not open24 in
IRN, unless n = N . Nevertheless such a finite subcover exists.

To see this first choose [a, b] ⊂ (ã, b̃) with p ∈ Φ((a, b)) and a suitable open
neighbourhood O of K = Φ([a, b]) with O ⊂ O to have the characterisation
in (25.1) hold for all x ∈ O as well, and such that O does not intersect the
(compact) image under Φ of the compact set [a, b]\(ã, b̃). It then follows that
M ∩O ⊂ Φ((ã, b̃)) because Φ is injective.

Varying p ∈M the open sets O cover M and by compactness there exists
a finite collection O1, . . . , Om such that

M ⊂ O1 ∪ · · · ∪Om ⊂ Φ1((ã1, b̃1)) ∪ · · · ∪ Φm((ãm, b̃m)),

which is the desired finite covering (25.2) consisting of patches.
We can now put Kj = Φj([ãj, b̃j]) and the corresponding open neigh-

bourhoods Oj of Kj in which (25.1) characterises the elements of M . The
description following (24.1) in Section 24 with unit blocks then results from
Section 27.3.

We note that we can also have our partition of unity defined using cut-off
functions χ = χ(u) for [ã, b̃] ⊂ (a, b), such as the blocks appearing in (25.2),
but it is then slightly more complicated to formulate (27.11), because each

24Of course they should be open in M .
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χj is then a function of u. This allows us to deal with manifolds which are
not necessarily embedded in IRN.

Finally we observe that any Ω andM = ∂Ω as in Chapter 24 allow a choice
of functions ζ1, . . . , ζn ∈ C∞c ((ai, bi)) with 0 ≤ ζi ≤ 1 and ζ1 + · · · + ζn ≡ 1
on a neighbourhood of Ω such that every for every i either [ai, bi] ⊂ Ω holds,
or Pi = M ∩ (ai, bi) is a patch such as in Chapter 24.

25.1 Changing partitions

We still have to check that the integrals do not depend on the choice of the
partitioning functions ζ1, . . . , ζn. We observe that (24.2) defines a linear map

f
L−→
∫
M

f dSn (25.3)

from X = C(M), the space of continuous real valued functions on M , to IR.
Note that L is bounded in the sense that |Lf | ≤ C|f |∞ , just as in Section
7.4, but we will not be using this below25.

The partition naturally defines linear subspaces

Xi = {ζif : f ∈ C(M)},

and the same holds for any other partition of M , given by say η1, . . . , ηJ ,
which also defines a linear map

f
K−→
∫
M

f dSn (25.4)

via (24.2), and corresponding linear subspaces Yj. Now let ζ
ij

= ζiηj, with

i = 1, . . . , I and j = 1, . . . , J . Then

f = f

I∑
i=1

ζi =
I∑
i=1

ζif =
I∑
i=1

ζif

J∑
j=1

ηj =
I∑
i=1

J∑
j=1

ζiηjf, (25.5)

whence

Lf = L(
I∑
i=1

ζif) =
I∑
i=1

∫
Φi

ζif dSn =
I∑
i=1

J∑
j=1

∫
Φi

ζiηjf dSn,

and likewise

Kf =
J∑
j=1

I∑
i=1

∫
Ψj

ηjζif dSn,

25But we will need it to get rid of the annoying assumption Φ ∈ C2 in Section 24.3.
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and thus it remains to show that∫
Φi

ζiηjf dSn =

∫
Ψj

ηjζif dSn (25.6)

The integral on the left is defined via (22.13) as∫
Φi

ζiηjfdSn =

∫ b1

a1

· · ·
∫ bn

an

ζi(Φi(u))ηj(Ψj(v))f(Φi(u))Mn(
∂Φi

∂u
) du1 · · · dun.

It should be equal to the integral on the right which is defined via (22.13) as∫
Ψj

ηjζifdSn =

∫ d1

c1

· · ·
∫ dn

cn

ηj(Ψj(v))ζi(Φi(u))f(Ψj(v))Mn(
∂Ψj

∂v
) dv1 · · · dvn.

The coordinates v have to be expressed in u and vice versa via coordinate
transformations such as the ones in Section 25.3. These were defined in
neighbourhoods of a given points p ∈ Φi((a, b)) ∩ Ψj((c, d)) only. Therefore
we need another localisation argument26 before we can apply Section 19 to
conclude that the two integrals are the same.

25.2 Again: local descriptions of a manifold

Let us be very precise in what we established for the local descriptions as
in (A), (B) and (C) of Section 23.2, which correspond to (a,b,c) in III.4 of
Edwards. Writing z = (x, y) we take as a starting point that F = F (z) is
continuously differentiable on a block

[a, b] = [a1, b1]× · · · × [an, bn]× [aN , bN ]× · · · × [aN , bN ] ⊂ IRN

and that for some p ∈ (a, b) the derivative F ′(p) is of maximal rank. Re-
naming and relabeling the variables in z = (x, y) we can then arrange for the
“partial” derivative Fy(p) to be invertible. Theorem 23.2 then implies that
there exists (ã, b̃) ⊂ (a, b) with p ∈ (ã, b̃) and a continuously differentiable
function

f : [ãx, b̃x]→ (ãy, b̃y)

such that p = (px, py) ∈ (ã, b̃) and

F−1(p) ∩ [ã, b̃] = {(x, f(x)) : x ∈ [ãx, b̃x]} ⊂ [ãx, b̃x]× (ãy, b̃y), (25.7)

with subscripts indicating the x and the y-parts of p, ã and b̃. Thus in the
smaller block [ã, b̃] the level set of F (p) coincides with the graph of f , and

26Try this one by yourself.
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in the same block [ã, b̃] this graph then coincides with the zero-level set of
F̃ (z) = F̃ (x, y) = y − f(x).

As for (C), if we have, with subscripts denoting the x and the y-parts
of Φ, that Φ(u) = (Φx(u),Φy(u)) is continuously differentiable on [a, b] with
0 ∈ (a, b) and p = Φ(0), then via Theorem 23.3 the invertibility of Φ′x(0) is
sufficient for the existence of [ax, bx] with px ∈ (ax, bx) and a continuously
differentiable function φ : [ax, bx] → (a, b) such that Φx(φ(x)) = x for all
x ∈ [ax, bx]. Moreover27, we can choose [ax, bx] such that φ((ax, bx)) is an
open set as the inverse image of (ax, bx) under Φx.

The function f defined by f(x) = Φy(φ(x)) now defines a graph

{(x, f(x)) : x ∈ [ax, bx]}

which is a subset of Φ([a, b]). If in addition Φ is injective on [a, b] then the
image under Φ of the closed bounded set [a, b]\φ((ax, bx)) is bounded and
closed, and does not contain p. Thus there exists a block [ã, b̃] with p ∈ (ã, b̃)
such that [ãx, b̃x] ⊂ (ax, bx) with

Φ([a, b]\φ((ax, bx))) ∩ [ã, b̃] = ∅.

The continuity of f implies that we can restrict ãx and b̃x a bit further to
ensure that f([ãx, b̃x]) ⊂ (ãy, b̃y). We note we also have that

Φ([a, b]\φ((ãx, b̃x))) ∩ [ã, b̃] = ∅,

since the additional points in the larger image Φ([a, b]\φ((ãx, b̃x))) are on the
graph of f outside [ãx, b̃x]. Thus we have arrived from (C) to exactly the
same formulation of (A) as above starting from (B): p ∈ (ã, b̃) and

Φ([a, b] ∩ [ã, b̃] = {(x, f(x)) : x ∈ [ãx, b̃x]} ⊂ [ãx, b̃x]× (ãy, b̃y). (25.8)

The two statements (25.7) and (25.8) should be compared to the definition
Edwards gives in Section 4 of his Chapter III for M ⊂ IRN to be an n-
dimensional manifold. Every p ∈ M should, after relabeling and renaming
in z = (x, y), be contained in an open set O in which

P = O ∩M = {(x, f(x)) : x ∈ U},

with U ⊂ IRn open and f : U → IRm continuously differentiable, is called
a C1-patch of M . Of course it is then clear that U ⊃ [ãx, b̃x] ⊃ (ãx, b̃x) and

27See the discussion after Theorem 23.3.
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O ⊃ [ã, b̃] ⊃ (ã, b̃) for some (ã, b̃) 3 p, and thus it is completely equivalent to
ask that p ∈ (ã, b̃) and

p ∈M ∩ [ã, b̃] = {(x, f(x)) : x ∈ [ãx, b̃x]} ⊂ [ãx, b̃x]× (ãy, b̃y) (25.9)

for some closed block [ã, b̃] with (ãx, b̃x) 3 px, and some continuously dif-
ferentiable f : [ãx, b̃x] → (ãy, b̃y), exactly as in (25.7,25.8), the patch being

M ∩ (ã, b̃) = {(x, f(x)) : x ∈ (ãx, b̃x)} 3 p = (px, f(px)). (25.10)

In the closed N -block [ã, b̃] there are no other points of M than the points
on the graph of f : [ãx, b̃x]→ (ãy, b̃y).

25.3 Coordinate transformations

By definition every p ∈M is in such a patch as above and typically patches
overlap. If p is in two such patches, say with functions f and g, it may happen
that f and g are functions of the x-part of z. In that case the patches are
parameterised by

u→ Φ(u) = (u, f(u)) and v → Ψ(v) = (v, g(v)) (25.11)

defined on overlapping blocks with px in the interior of the intersection of
the blocks, which is an open block itself. The common part of M is then
contained in the intersection of the two N -blocks.

Viewing the n-tuples u and v as local coordinates on M near p, a trans-
formation of these coordinates is simply given by v = u. In all other cases,
we may renumber the variables of IRN to have the patches parameterised as

u→ Φ(u) = (u1, u2, f3(u1, u2), f4(u1, u2));

v → Ψ(v) = (v1, g2(v1, v3), v3, g4(v1, v3)),

with (u1, u2) and (v1, v3) in some open block in IRn, or as

u→ Φ(u) = (u1, f2(u1), f3(u1));

v → Ψ(v) = (g1(v2), v2, g3(v2)),

with u1 and v3 in some open block in IRn. Note that the first case above
cannot occur if N = n+ 1.

To rewrite Ψ in the form Φ we need the invertibility of respectively

∂g2

∂v3

and
∂g1

∂v2

, (25.12)
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in which case we we obtain respectively

w → Φ̃(w) = (w1, w2, h3(w1, w2), h4(w1, w2))

and
w → Φ̃(w) = (w1, h2(w1), h3(w1))

as local descriptions of the Ψ-patches near p. The definition of what a man-
ifold is then implies that

Φ̃ ≡ Φ

on an open block containing (p1, p2) in the first case and p1 in the second case.
It then follows as above that u = w is a coordinate transformation just as
u = v for (25.11) while w is obtained from v via a coordinate transformation
just as x from u in the proof of (A) from (C) above.

It thus remains to establish the invertibility of the partial Jacobian ma-
trices in (25.12) in p to conclude there exists a local C1-transformation from
u to v near p. Note that these are also the conditions for solving part28 of
Φ(u) = Ψ(v) via

v1 = u1, v3 = f3(u1, u2) and u1 = v1, u2 = g2(v1, v3) (25.13)

in the first case, and

u1 = g1(v2) and v2 = f2(u1) (25.14)

in the second case. The invertiblity of the partial Jacobian matrices in (25.12)
in p follows because otherwise the Ψ-patch cannot achieve all respectively
(u1, u2)-directions and u1-directions that occur in the Φ-patch, contradicting
the assumption that the Ψ-patch covers all of M in its defining neighbour-
hood.

The restriction to patches of the form (25.10) looks like an obvious choice
for simplicity, but may bother us later when dealing with (24.33), we’ll see.

28All equations but the last one, which then requires some argument to hold as well.
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26 Functional calculus

This chapter aims to present precisely that part of complex function theory
needed for operational calculus. We also play a bit with the definition of line
integrals. To be translated and modified.

26.1 Lijnintegralen over polygonen en Goursat

We beginnen met formule (12.1) uit Sectie 10.1, al of niet via de “verboden”
operaties daarboven, geschreven als

F (x1)− F (x0) =

∫ 1

0

F ′((1− t)x0 + tx1)︸ ︷︷ ︸
f(x(t))

(x1 − x0)dt︸ ︷︷ ︸
dx

=

∫ x1

x0

f(x) dx,

waarin, met x, x(t), x0, x1, f(x) vervangen door z, z(t), z0, z1, f(z),

t→ z(t) = (1− t)z0 + tz1 (26.1)

het interval [z0, z1] parametriseert, en∫ 1

0

f(z(t))z′(t)dt =

∫ 1

0

f((1− t)z0 + tz1)dt (z1 − z0) =

∫ z1

z0

f(z) dz. (26.2)

Dit is een formule die we, zonder dat (12.1) daarvoor nog nodig is, nu kun-
nen lezen met z0, z1 ∈ IC en f : IC→ IC, met het linkerlid als ondubbelzinnige
definitie van het rechterlid: de lijnintegraal∫ z1

z0

f(z) dz

over het rechte lijnstuk van z0 naar z1, van de functie z → f(z). Niet
meer praten over andere parametervoorstellingen van [z0, z1] dan (26.1), ten-
zij het nodig1 is zou ik zeggen. Merk op dat [z0, z1] voor alle z0, z1 ∈ IC is
gedefinieerd, dus [1, 0] heeft nu ook betekenis. Je moet er even aan wennen
maar het spreekt vanzelf. Het ligt voor de hand om aan z0 als het begin- en
z1 als het eindpunt van [z0, z1] te denken. Daarmee wordt [z0, z1] meer dan
alleen een verzameling: [z0, z1] is zo een georienteerd lijnstuk.

1Quod non.
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Exercise 26.1. Laat zien dat∫ z1

z0

z dz =
1

2
(z2

1 − z2
0).

Evalueer vervolgens
∫ z1
z0
zn dz voor alle n ∈ IN.

Exercise 26.2. Evalueer
∫ z1
z0
zn dz voor alle n ∈ −IN = {−1,−2,−3, · · · }. Doe

n = −1 als laatste2. Welke voorwaarde moet je leggen op z0 en z1?

Exercise 26.3. Laat zien dat

|
∫ z1

z0

f(z) dz| ≤ |z0 − z1| max
z∈[z0,z1]

|f(z)|.

Integralen gedefinieerd als hierboven door (26.2) kunnen we rijgen tot een
integraal over een polygonaal pad

z0 → z1 → · · · → zn

middels∫ z1

z0

f(z) dz +

∫ z2

z1

f(z) dz + · · ·+
∫ zn

zn−1

f(z) dz =

∫
z0,...,zn

f(z) dz, (26.3)

als z → f(z) een continue functie

[z0, z1] ∪ · · · ∪ [zn−1, zn]
f−→ IC

definieert. In het bijzondere geval dat z0 = zn is eenvoudig na te gaan dat
hier NUL uitkomt als n = 2.

Exercise 26.4. Ga dit na. Hint: neem eerst z0 = z2, z1 ∈ IR om te zien hoe het
moet werken.

2De eersten zullen de laatsten zijn.
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Wat deze opgave zegt is dat heen en weer lopen geen bijdrage aan een
keten als in (26.3) geeft omdat vrijwel per definitie∫

z0,z1,z0

f(z) dz =

∫ z1

z0

f(z) dz +

∫ z0

z1

f(z) dz = 0,

voor iedere [z0, z1]
f−→ IC continu. We kunnen integralen dus vereenvoudigen

door heen en weer stukjes weg te laten, ook als die niet achter elkaar zitten
in het polygonale pad.

Neem nu in je complexe vlak z0, z1, z2, not all on a line3, en neem aan dat

∆ = ∆z0,z1,z2 = {t0z0 + t1z1 + t2z2 : t0, t1, t2 ≥ 0, t0 + t1 + t2 = 1} f−→ IC

continu is. De verzameling ∆ bestaat dus uit alle convexe combinaties van
z0, z1, z2 gezien als punten in het complexe vlak. Dat is een driehoekige tegel
waarvan de rand een driehoek4 is. Teken

plaatje!
Laat z3, z4, z5 de middens zijn van [z0, z1], [z1, z2], [z2, z0], die je krijgt door

achtereenvolgens t2, t0, t1 nul, en steeds de andere twee t-tjes 1
2

te kiezen. Dan
is ∫

z0,z1,z2,z0

f(z) dz =

∫
z0,z3,z5,z4,z3,z1,z4,z2,z5,z0

f(z) dz =∫
z0,z3,z5,z0

f(z) dz +

∫
z3,z4,z5,z3

f(z) dz +

∫
z3,z1,z4,z3

f(z) dz +

∫
z5,z4,z2,z5

f(z) dz.

De integraal over het gesloten5 pad

z0 → z3 → z5 → z4 → z3 → z1 → z4 → z2 → z5 → z0

is zo enerzijds gelijk aan de integraal over het gesloten pad

z0 → z1 → z2 → z0

rond de grote driehoek, en anderzijds de som van vier integralen over de vier
gesloten paden

z0 → z3 → z5 → z0, z3 → z4 → z5 → z3,

z3 → z1 → z4 → z3, z5 → z4 → z2 → z5

rond de vier kleinere driehoeken.

3Sommigen horen hierbij de stem van Erdös.
4Vereniging van 3 lijnstukjes: [z0, z1] ∪ [z1, z2] ∪ [z2, z0], met zo gewenst een orientatie.
5Teken het in je plaatje.
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Als de oorspronkelijke integraal niet nul was, zeg gelijk6 aan 1, dan is
tenminste één van de vier integralen in absolute waarde minstens gelijk aan
1
4
, en kan daarna met die integraal het argument herhaald worden om een rij

geneste driehoeken

∆ = ∆z0,z1,z2 ⊃ ∆
z

(1)
0 ,z

(1)
1 ,z

(1)
2
⊃ ∆

z
(2)
0 ,z

(2)
1 ,z

(2)
2
⊃ ∆

z
(3)
0 ,z

(3)
1 ,z

(3)
2
⊃ · · ·

te maken met

|
∫
z

(k)
0 ,z

(k)
1 ,z

(k)
2 ,z

(k)
0

f(z) dz| ≥ 1

4k

voor k = 0, 1, 2, 3, . . . .

Exercise 26.5. Bewijs dat de rijen z
(k)
0 , z

(k)
1 , z

(k)
2 convergeren naar een limiet in

∆z0,z1,z2 als k →∞.

Zonder beperking der algemeenheid mogen we nu wel aannemen7 dat deze
limiet gelijk is aan 0, i.e.

z
(k)
0 , z

(k)
1 , z

(k)
2 → 0.

Kan het zo zijn dat f complex differentieerbaar is in 0? Zo ja, dan geldt voor
z ∈ ∆ dat

f(z) = f ′(0)z +R(z)

met R(z) = o(|z|) als |z| → 0.
Maar dan is∫
z

(k)
0 ,z

(k)
1 ,z

(k)
2 ,z

(k)
0

f(z) dz =

∫
z

(k)
0 ,z

(k)
1 ,z

(k)
2 ,z

(k)
0

f ′(0)z dz +

∫
z

(k)
0 ,z

(k)
1 ,z

(k)
2 ,z

(k)
0

R(z) dz

=

∫
z

(k)
0 ,z

(k)
1 ,z

(k)
2 ,z

(k)
0

R(z) dz,

omdat de eerste integraal nul is vanwege (26.1) toegepast op
∫ z1
z0
z dz,

∫ z2
z1
z dz,∫ z0

z2
z dz. Dus volgt

1

4k
≤ |
∫
z

(k)
0 ,z

(k)
1 ,z

(k)
2 ,z

(k)
0

R(z) dz| ≤ |z0 − z1|+ |z1 − z2|+ |z2 − z0|
2k

max
z∈δ∆(k)

|R(z)|,

6Door f(z) te delen door zijn integraal over de rand van ∆z0,z1,z2 .
7Schuif de boel anders op.
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waarin δ∆(k) de rand is van

∆(k) = ∆
z

(k)
0 ,z

(k)
1 ,z

(k)
2 ,z

(k)
0
3 0.

Omdat |z| op zijn hoogste gelijk is aan de grootste afstand tussen twee
punten in ∆(k) geldt

|z| ≤ d

2k
met d = max

z,w∈∆
|z − w|,

en samen met de 2k die we al hadden krijgen nu ook een bovengrens voor de
integraal, met een 4k in de noemer en een ε > 0 naar keuze in de teller:

Exercise 26.6. Gebruik (de definitie van) |R(z)| = o(|z|) als |z| → 0 om met de
laatste twee ongelijkheden een tegenspraak te forceren.

Theorem 26.7. Voor iedere f : ∆z0,z1,z2 → IC die complex differentieerbaar
is op de gesloten8 driehoek ∆z0,z1,z2 met hoekpunten z0, z1, z2 ∈ IC geldt dat∮

z012

f(z) dz =

∫
z0,z1,z2,z0

f(z) dz = 0,

nu ook met een notatie9 die wellicht hierboven al voor de hand lag.

Eenzelfde uitspraak geldt voor iedere n-hoek (n > 3) gemaakt uit n
driehoeken

∆w0,z0,z1 ,∆w0,z1,z2 , . . . ,∆w0,zn−1,z0 ,

met

∆w0,z0,z1 ∩∆w0,z1,z2 = [w0, z1], ∆w0,z1,z2 ∩∆w0,z2,z3 = [w0, z2],

. . .

∆w0,zn−2,zn−1 ∩∆w0,zn−1,zn = [w0, zn−1], ∆w0,zn−1,z0 ∩∆w0,z0,z1 = [w0, z0].

Als de lijnstukjes waarmee (26.3) is gemaakt de zijden zijn van zo’n door

zn = z0, . . . , zn−1 (26.4)

8Voor w op de rand f(z) = f(w) + f ′(w)(z − w) +R(z;w) met z ∈ ∆z0,z1,z2 lezen.
9Zie het rondje door de integraalslang heen maar als driehoekje.
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gemaakte n-hoek met een punt w0 in de n-hoek waarvoor alle [w0, zk] in de
veelhoek liggen10, dan is∮

z0,...,zn

f(z) dz =
n∑
k=1

∮
w0,zk−1,zk,w0

f(z) dz.

Als z → f(z) complex differentieerbaar is in elk punt van

Pz0,...,zn−1 = ∪nk=1∆w0,zk−1,zk ,

dan volgt zo dat ∮
zn=z0,...,zn

f(z) dz = 0. (26.5)

Bovendien kan ieder punt zk dan met de andere punten vastgehouden naar
binnen geschoven worden naar een z̃k in de door (26.4) gemaakte veelhoek,
waarbij (26.5) niet verandert met eenzelfde argument waarin driehoeken met
hoekpunten zk−1, zk, z̃k, zk+1 voorkomen. Kortom, (26.5) geldt voor iedere
complex differentieerbare

f : Pz0,...,zn−1 → IC

op ieder domein Pz0,...,zn−1 begrensd door lijnstukjes [zk−1, zk] ⊂ Pz0,...,zn−1 .
Merk op dat we op een vanzelfsprekende manier kunnen praten over het

links- of rechtsom genummerd zijn van de hoekpunten (26.4), ook als de n-
hoek niet gemaakt is zoals boven (26.4) beschreven is. Als er er (maar) eindig
veel punten ζ1, . . . , ζp zijn in Pz0,...,zn−1 (maar niet op de rand van) waar f niet
complex differentieerbaar is, dan het niet moeilijk om na te gaan dat (26.5)
gelijk is aan de som van de integralen over de randen van kleine driehoekjes

∆(j) = ∆
z

(j)
0 ,z

(j)
1 ,z

(j)
2 ,z

(j)
0

in Pz0,...,zn−1 waar ζj echt in ligt, als die allemaal maar met dezelfde orientatie
genomen worden. In dat geval is dus∮

zn=z0,...,zn

f(z) dz =

p∑
j=1

∮
z

(j)
2 =z

(j)
0 ,z

(j)
1 ,z

(j)
2 ,

f(z) dz, (26.6)

en we werken dat idee in het geval dat p = 1 met een hele bijzondere integrand
nu uit in de volgende sectie, teneinde uiteindelijk ook te zien dat de termen
in het rechterlid van (26.6) een verrassend simpele vorm krijgen.

10De veelhoek is dan convex.
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26.2 De Cauchy integraalformule

Neem nu aan dat
D = {z ∈ IC : |z| < 1} f−→ IC

een complex differentieerbare functie is op de open eenheidsdisk. Neem een
ζ ∈ IC met |ζ| = ρ < 1. We laten nu rechtstreeks zien dat

f(ζ) =
∞∑
n=0

anζ
n,

met integraalformules voor de coëfficiënten an ∈ IC. De integralen zijn daarbij
over regelmatige polygonen in D, met hoekpunten dicht bij de cirkelvormige11

rand van D.
We leiden de formules of door Stelling 26.7 toe te passen op integralen

van

z → f(z)− f(ζ)

z − ζ
over geschikt gekozen driehoeken. Voor iedere r ∈ (0, 1) en n ∈ IN met n ≥ 3
definiëren de punten

zk = r exp(2πi
k

n
)

de hoekpunten van een regelmatig n-hoek Cr,n in D met middelpunt 0. Maak
een plaatje met 0 < |ζ| < r en n = 8 of zo. Laat k van 0 tot en met n lopen Teken

plaatje!

om het kringetje rond12 te maken.
Op dezelfde manier maken

wk = ζ + ρ exp(2πi
k

n
)

de hoekpunten van een regelmatig n-hoek ζ + Cρ,n, met middelpunt ζ dat
binnen Cr,n ligt als ρ < r− |ζ|. Teken beide polygonen in je plaatje en merk
op dat voor iedere complex differentieerbare functie

{z ∈ D : z 6= ζ} g−→ IC

nu geldt dat ∮
z0−n

g(z) dz =∫
z0,z1,...,zn=z0

g(z) dz =

∫
w0,w1,...,wn=w0

g(z) dz (26.7)

11Denk aan deze contouren: http://www.fi.uu.nl/publicaties/literatuur/7244.pdf
12Nou ja, rond...
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=

∮
w0−n

g(z) dz,

voor elke n ≥ 3, waarbij we ook hier de voor de hand liggende notatie13

met
∮

gebruiken voor de integralen van g(z) over de linksom14 doorlopen
n-hoeken.

Exercise 26.8. Bewijs (26.7) door de zigzagintegraal∫
w0,z0,w1,z1,...,wn,zn

g(z) dz

mee te nemen in de beschouwingen en de stelling van Goursat toe te passen op in
totaal 2n driehoekjes.

Nu nemen we voor g(z) het differentiaalquotiënt

f(z)− f(ζ)

z − ζ
en concluderen dat∮

w0−n

f(z)− f(ζ)

z − ζ
dz =

∮
z0−n

f(z)− f(ζ)

z − ζ
dz. (26.8)

Exercise 26.9. De integraal in het linkerlid van (26.8) hangt van ρ af. Gebruik de
differentieerbaarheid van f in ζ om te laten zien dat∮

w0−n

f(z)− f(ζ)

z − ζ
dz → 0

als ρ→ 0.

Maar de integraal in het linkerlid van (26.8) is gelijk aan de integraal in
het rechterlid en hing niet van ρ af als ρ < r − |ζ|. Hij ging15 dus niet naar
0 want hij was al 0. Zo reduceert (26.8) tot

0 =

∮
z0−n

f(z)

z − ζ
dz −

∮
z0−n

f(ζ)

z − ζ
dz,

en volgt

f(ζ)

∮
z0−n

1

z − ζ
dz =

∮
z0−n

f(z)

z − ζ
dz.

13Voor grote n is de veelhoek bijna een rondje.
14Dat is maar een woord hier, de punten bepalen de richting.
15Letterlijk gesproken.
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Exercise 26.10. Laat zien dat∮
z0−n

1

z − ζ
dz =

∮
w0−n

1

z − ζ
dz = 2πi.

Hint: de eerste gelijkheid volgt als in Opgave 26.8 en de tweede integraal hangt niet
van ζ of ρ af. In het linkerlid kan dus ζ = 0 genomen worden. Op elke [zk−1, zk] heeft
1
z een primitieve: de meerwaardige functie gedefinieerd in Opgave 16.9 die je als het
goed is in Opgave 26.2 als laatste hebt gebruikt.

Theorem 26.11. Als ζ ligt binnen een n-hoek zoals hierboven in de open
eenheidsdisk D, en f : D → IC complex differentieerbaar is, dan is

f(ζ) =
1

2πi

∮
z0−n

f(z)

z − ζ
dz.

This is the Cauchy Integral Formula, maar dan met n-hoeken in plaats van
de gebruikelijke cirkels met middelpunt 0 en straal r < 1 groot genoeg.

Tenslotte volgt na het invullen van16 de meetkundige reeksontwikkeling

1

z − ζ
=

1

z

1

1− ζ
z

=
1

z
+

ζ

z2
+
ζ2

z3
+
ζ3

z4
+ · · ·

de machtreeksontwikkeling in de vorm als aangekondigd, via

f(ζ) =
1

2πi

∮
z0−n

f(z)(
1

z
+

ζ

z2
+
ζ2

z3
+
ζ3

z4
+ · · · ) dz =

1

2πi

∮
z0−n

f(z)

z
dz +

1

2πi

∮
z0−n

f(z)

z2
dz ζ +

1

2πi

∮
z0−n

f(z)

z3
dz ζ2 + · · · ,

met

aj =
1

2πi

∮
z0−n

f(z)

zj+1
dz (26.9)

voor alle j ∈ IN0.

Theorem 26.12. Als f : D → IC complex differentieerbaar is, dan geldt

f(z) =
∞∑
j=0

anz
n

met aj gegeven door (26.9), waarin de integraal nu door zk = r exp(2πi k
n
)

(k = 0, 1, . . . , n) wordt gedefinieerd. En achteraf zijn dan zowel r ∈ (0, 1) als
n ≥ 3 arbitrair.

16We prefereren weer de notatie met puntjes natuurlijk.
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Het rechtvaardigen van het verwisselen van
∮

en
∑

is wezen niets anders
dan opmerken dat voor elke α en β in IC de verzameling

{f : [α, β]→ IC : f is continu}

een (complexe) Banachruimte is, net zoals C([a, b]) een reële Banachruimte
is. Het wordt dus tijd voor het volgende hoofdstuk.

Voor hier is het nog de vraag of we de limiet n → ∞ willen nemen in
Stelling 26.11 en (26.9) teneinde de

∮
te nemen over de cirkel geparametriseerd

door
z = r exp(iθ) met dz = ir exp(iθ)dθ (26.10)

und so weiter.
Dat laatste kan komen na de observatie dat voor 0 ≤ ρ < R en complex

differentieerbare

Aρ,R = {z ∈ IC : ρ < |z| < R} f−→ IC

geldt dat f(z) te schrijven is als een zogenaamde Laurentreeks, i.e.

f(z) =
∞∑

j=−∞

ajz
j =

∞∑
j=0

ajz
j +

∞∑
j=1

a−j
zj
, (26.11)

met aj gegeven door (26.9) voor alle j ∈ IZ, maar n ≥ 3 en r ∈ (ρ,R) wel zo
gekozen dat met de punten zk = r exp(2πi k

n
) de n-hoek in de annulus Aρ,R

ligt.
Je bewijst dit met drie veelhoeken in Aρ,R, waar ζ dan tussen twee van

de drie in moet liggen, en in de kleinste. Als je eenmaal op het idee17 bent
gekomen wijst het zich vanzelf. De integraal over de nieuwe veelhoek wordt
ook weer via een net iets andere meetkundige reeks in een machtreeks ver-
taald, nu met 1

ζ
die naar buiten gehaald wordt uit 1

z−ζ .
Deze zo verkregen spectaculaire uitspraak wordt gewoonlijk bewezen na

het invoeren van lijnintegralen over echte krommen18 zoals gegeven door
(26.10) en de hele machinerie die nodig is om netjes te beschrijven wat krom-
men19 eigenlijk zijn, waarbij vaak ook de continuiteit van z → f ′(z) wordt
gebruikt om de nog te bespreken stellingen van Green te kunnen gebruiken.

Die laatste stellingen zijn dus hier niet nodig. En de veelhoeken bieden
veel meer mogelijkheden. Bijvoorbeeld voor functies die gedefinieerd en com-
plex differentieerbaar zijn op gebieden ingesloten door twee geneste veel-
hoeken. Dat is misschien nog leuk om uit te zoeken.

17Gauss en Cauchy gingen ons voor.....
18Denk aan die goal van nummer 14 in het Zuiderpark en de enige echte Kromme.
19Denk ook aan hoe Murre dit woord uitspreekt.
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Exercise 26.13. Natuurlijk geldt Stelling 26.12 niet alleen voor de eenheidsdisk, en
kan r zowel zo klein als zo groot mogelijk gekozen worden voor het polygon waarmee de
coefficienten worden berekend. Gebruik dit om te bewijzen dat er geen niet-constante
begrensde complex differentieerbare functies f : IC→ IC zijn.

De formule in Stelling 26.11 herschrijven we nu met 1 = I en ζ = A als

f(A) =
1

2πi

∮
z0−n

f(z)(zI − A)−1 dz, (26.12)

nu voor een willekeurig polygon waar A binnen ligt en waarop

z → (zI − A)−1 (26.13)

dus bestaat als zeker een continue functie. Het polygon hoeft ook niet per se
in de eenheidsdisk te liggen. Van de functie z → f(z) hoeven we bij nadere
beschouwing alleen maar aan te nemen dat f complex differentieerbaar is op
het gebied begrensd door een polygon, inclusief het polygon20 zelf.

Let op, de hoekpunten van het polygon moeten wel “linksom” genummerd
worden, hetgeen ondubbelzinnig gedefinieerd kan worden aan de hand van de
vergelijkingen voor de lijnen door de opeenvolgende hoekpunten, met iedere
zk = xk + iyk opgevat als (xk, yk) ∈ IR2, waarbij je wil formuleren dat het
binnengebied van het polygon steeds links van ieder georienteerde interval
[zk−1, zk] ligt.

Met deze notatie kunnen we (26.12) nu ook lezen lezen metA een vierkante
eerst nog reële matrix gezien als een continue lineaire afbeelding van X = IRn

naar zichzelf, afbeeldingen die een algebra21 vormen. Hier is nog het een en
ander mee te doen, met behulp ook van

(zI − A)−1 =
1

z
(I +

1

z
A+ · · · )

als |z| voldoende groot is, misschien beter meteen maar voor algemene X in
Sectie 26.4.

De vraag is natuurlijk wel eerst wat we precies onder A binnen het polygon
gedefinieerd door

z0 → z1 → · · · → zn = z0

moeten verstaan, als we (26.12) zomaar overschrijven met ζ vervangen door
een lineaire operator A : X → X. Voor de hand ligt dat A zo moet zijn

20Via een zigzagintegraal als in Opgave 26.8 volgt de geldigheid van (26.12).
21Een Banachalgebra zelfs, zie Charlie’s teleurstelling in Flowers for Algernon.
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dat met een groter polygon de zigzagtruc weer werkt, en de integrand als
L(X)-waardige functie complex differentieerbaar is op het gebied tussen de
twee polygonen, en ook op de twee polygonen zelf, en dat weer voor ieder
groter polygon.

Daartoe moeten X en ook L(X) zelf eerst complex uitgebreid worden,
hetgeen abstract een constructie vereist maar in voorbeelden automatisch22

gaat. En daarna is dan de natuurlijke eis dat (26.13) op het polygon en zijn
buitengebied moet bestaan in de complexe versie van L(X). Lees wat dit
betreft verder in Sectie 26.4.

26.3 Kromme lijnintegralen

Met behulp van (26.2) is in (26.3)∫
z0,...,zn

f(z) dz =
n∑
k=1

∫ zk

zk−1

f(z) dz (26.14)

gedefinieerd voor een rij punten die we (nog) niet als partitie zien, waarvoor
we ook (nog) niet Riemanntussensommen als

n∑
k=1

f(ζk)(zk − zk−1) met ζk ∈ [zk−1, zk] (26.15)

hebben ingevoerd. Maar als de “incrementen” zk− zk−1 klein zijn ligt gezien
(26.2) iedere term in (26.15) voor de hand als benadering voor de overeenkom-
stige term in het rechterlid van (26.14) via∫ zk

zk−1

f(z) dz =

∫ 1

0

f((1− t)zk−1 + tzk)dt (zk − zk−1) ≈ f(ζk)(zk − zk−1).

De vraag wat er gebeurt als n→∞ is echter nog niet goed gesteld, want de
rij “partities” kan in principe willekeurig zijn.

In iedere schatting die het limietgedrag onder controle moet krijgen zal,
behalve het klein worden van de incrementen, ook het gedrag van

n∑
k=1

|zk − zk−1|

een rol spelen, met
zk = z

(n)
k

22Denk hier even over na.
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zinvol afhankelijk van n gekozen, maar wat is zinvol? Hieronder wat over-
wegingen en een aanzet tot een uitgewerkt antwoord.

Het stuksgewijs lineaire pad Pn van z
(n)
0 via z

(n)
1 , . . . , z

(n)
n−1, naar z

(n)
n voor

n → ∞ moet een nog te formuleren limietgedrag hebben, waarmee in ieder
geval voor continue z → f(z) volgt dat∫

Pn

f(z) dz =
n∑
k=1

∫ z
(n)
k

z
(n)
k−1

f(z) dz en
n∑
k=1

f(ζ
(n)
k )(z

(n)
k − z

(n)
k−1) (26.16)

convergeren naar een limiet die we
∫
P
f(z) dz zouden willen noemen.

Voor het verschil van deze sommen geldt

|
n∑
k=1

∫ z
(n)
k

z
(n)
k−1

f(z) dz −
n∑
k=1

f(ζ
(n)
k )(z

(n)
k − z

(n)
k−1)| =

|
n∑
k=1

∫ 1

0

f((1− t)z(n)
k−1 + tz

(n)
k )dt (z

(n)
k − z

(n)
k−1)−

n∑
k=1

f(ζ
(n)
k )(z

(n)
k − z

(n)
k−1)| ==

|
n∑
k=1

∫ 1

0

(f((1− t)z(n)
k−1 + tz

(n)
k )− f(ζ

(n)
k ))dt (z

(n)
k − z

(n)
k−1)| ≤

max
k=1,...,n

|f((1− t)z(n)
k−1 + tz

(n)
k )− f(ζ

(n)
k )|

n∑
k=1

|z(n)
k − z

(n)
k−1| ≤

max
k=1,...,n

sup
z,w∈[z

(n)
k−1,z

(n)
k ]

|f(z)− f(w)|
n∑
k=1

|z(n)
k − z

(n)
k−1|,

en dat zou klein moeten zijn als f uniform continu is op een geschikt gekozen
domein dat alle paden Pn bevat. In dat geval zijn de aannames dat

µn = max
k=1,...,n

|z(n)
k − z

(n)
k−1| → 0 (26.17)

en

Ln =
n∑
k=1

|z(n)
k − z

(n)
k−1| begrensd (26.18)

is als n → ∞ voldoende om het verschil tussen de termen in (26.16) naar 0
te doen gaan als n→∞.

Voor we een definitie geven bekijken we wat we langs deelrijen sowieso
kunnen bereiken kwa convergentie van Pn onder de aanname dat (26.17) en
(26.18) gelden, en

z
(n)
0 = a en z(n)

n = b (26.19)
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vastgehouden worden in IC. We kijken dus naar mogelijke limieten van stuks-
gewijs lineaire paden van a naar b.

Het ligt voor de hand meteen een deelrij te nemen waarlangs Ln conver-
gent is, zeg Lnk → L ≥ |b − a| met nk een stijgende rij in IN. Vanaf zekere
zulke n is er dan steeds een eerste j = jn waarvoor geldt dat de totale lengte
langs Pn van a tot z

(n)
jn

minstens L
2

is, en langs een verdere deelrij convergeren

dan zowel z
(n)
jn

als z
(n)
jn−1 naar een limiet z 1

2
.

Maar dit argument werkt niet alleen voor 1
2
. Voor elke t ∈ (0, 1) kunnen

we vanaf zekere n een eerste j = jtn vinden waarvoor de totale lengte langs

Pn van a tot z
(n)
jtn

minstens tL is. Doen we dit voor

t =
1

2
,

1

4
,

3

4
,

1

8
,

3

8
,

5

8
,

7

8
, . . . ,

dan geeft een diagonaalrijargument dat, voor elke rationale t ∈ (0, 1) met
een noemer die een pure macht van 2 is, dat langs de geconstrueerde deelrij
geldt dat

z
(n)
jtn

convergeert naar een limiet zt voor al zulke t. Dit definieert een afbeelding

t→ z(t) = zt,

waarvoor per constructie geldt23 dat

|z(t1)− z(t2)| ≤ |t1 − t2|L, (26.20)

en die uniek uitbreidt tot een afbeelding z : [0, 1] → IC met dezelfde eigen-
schap.

Onze eerste geparametriseerde kromme die niet per se van de vorm (26.1)
is. Een kromme waarvan de lengte nog niet gedefinieerd maar wel gelijk
aan L is, als alles goed is24, en waarlangs we kunnen integreren, middels
benaderingen met Riemannsommen van de vorm∑

j

f((z(τj))(z(tj)− z(tj−1).

Wat we van dit alles hier willen uitwerken is nog de vraag, maar voor
continu differentieerbare zulke t→ z(t) is∫

P

f(z) dz =

∫ 1

0

f(z(t))z′(t) dt

23Wel even nagaan!
24En de lengte van het stuk tussen t1 en t2 gelijk aan |t1 − t2|L.
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een uitspraak die we willen hebben, waarbij het linkerlid gedefinieerd is als

lim
n→∞

∫
Pn

f(z) dz

en de limiet langs de deelrij wordt genomen en moet bestaan. Dat vergt nog
een stelling voor bijvoorbeeld continue z → f(z).

26.4 Calculus in Banachalgebras van operatoren

Deze sectie is nog wat schetsmatig maar niettemin precies. We willen (26.12)
uitwerken voor A ∈ L(X) en schrijven met z vervangen door λ

f(A) =
1

2πi

∮
P

f(λ)(λ− A)−1 dλ, (26.21)

nu voor een willekeurig polygon25 met hoekpunten λ1, . . . , λn = λ0, waarop
en waarbuiten26

λ→ (λ− A)−1 = (λI − A)−1 (26.22)

gedefinieerd is. Het complement van het domein van (26.22) in IC heet het
spectrum van A, notatie σ(A). Het domein zelf heet de resolvente verzamel-
ing, notatie ρ(A), en de afbeelding in (26.22) heet de resolvente van A.

Exercise 26.14. Gebruik berekeningen met meetkundige reeksen om te laten zien
dat iedere λ ∈ IC met λ > |A| in ρ(A) ligt en dat ρ(A) open is. Bewijs ook dat
(26.22) complex differentieerbaar is op ρ(A). Wat is de afgeleide?

Exercise 26.15. Kan het zijn dat ρ(A) = IC? Het antwoord is nee, maar dat vergt
nog een argument dat we weer zo licht mogelijk willen houden. Uit het ongerijmde,
we zouden dan hebben dat (26.22) een L(X)-waardige functie definieert die naar
0 ∈ L(X) gaat als λ → ∞ en dat moet niet kunnen, met een argument dat over te
schrijven zou moeten zijn van wat we voor gewone complexwaardige functies weten,
zie Opgave 26.13.

In deze opgaven heb je niet gebruikt dat met AB = BA = I en A ∈ L(X)
ook volgt dat B ∈ L(X), een wat diepere stelling voor Banachruimten, die
ook maar eens heel kort en clean moet worden uitgelegd. Dat komt nog wel

25Of een vereniging daarvan.
26Wat bedoelen we daarmee?
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een keer. Denk in het vervolg voorlopig bijvoorbeeld eerst aan X = IC2 als
complexe uitbreiding van IR2 en A een lineaire afbeelding gegeven door een
2×2 matrix, met complexe of reële entries. In dat geval bestaat σ(A) meestal
uit 2 punten, en met twee disjuncte driehoekjes ∆1 en ∆2 om die punten heen
kunnen we al aan de slag met ieder paar complex differentieerbare functies

f1 : ∆1 → IC en f1 : ∆1 → IC

die samen één functie
f : ∆1 ∪∆2 → IC

maken waarvan de twee stukken elkaar niet zien. Maar ook het rechterlid van
(13.8) gezien als afbeelding van een gecomplexificeerde X = C([0, 1]) naar
zichzelf is een voorbeeld.

In het algemeen kan σ(A) van alles zijn en daarom kijken we nu eerst wat
voor gebieden we met eindig veel disjuncte polygonen kunnen maken. Elk
polygon P heeft op natuurlijke manier een binnengebied C en een buitenge-
bied U , waar we steeds de rand bijnemen, dus

P = U ∩ C.

Als binnen een polygon P0 een aantal kleinere polygonen P1, . . . , Pn ligt, wier
binnengebieden onderling disjunct zijn, dus

Ci ∩ Cj = ∅ als i 6= j voor i, j = 1, . . . , n,

dan kan het zijn dat

σ(A) ⊂ Kint ⊂ K = C0 ∩ U1 ∩ · · · ∩ Un, (26.23)

waarbij we K zien als begrensd door de buitenkant P0 naarbuiten en door
binnenkanten P1, . . . , Pn naar binnen, en

Kint = K ∩ P c
0 ∩ · · · ∩ P c

n

de doorsnijding van K met de complementen van de polygonen P0, . . . , Pn is,
dus alles in K dat niet op de rand ligt. Als we polygonen altijd als linksom
doorlopen zien dan schrijven we in dit geval

f(A) =
1

2πi

∮
δK

f(λ)(λ− A)−1 dλ =

1

2πi

(∮
P0

f(λ)(λ− A)−1 dλ−
n∑
j=1

∮
Pj

f(λ)(λ− A)−1 dλ

)
(26.24)
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voor f : K → IC complex differentieerbaar.
Ligt σ(A) in een disjuncte eindige vereniging

K1 ∪ · · · ∪Km

van zulke Kj, en zijn

fj : Kj → IC (j = 1, . . . ,m)

complex differentieerbaar, dan vormen die samen weer een complex differen-
tieerbare functie

f : K = K1 ∪ · · · ∪Kn → IC

waarvoor we

f(A) =
1

2πi

m∑
j=1

∮
δKj

f(λ)(λ− A)−1 dλ (26.25)

met iedere term in de som gedefinieerd als in (26.24) als definitie van f(A)
gebruiken.

Elk van de Kj kan van de vorm alleen maar Kj = Cj zijn, en één K = C is
altijd mogelijk om dat σ(A) begrensd is, maar hoe kleiner K gekozen wordt,
hoe meer speelruimte er is. De mogelijk steeds grotere27 uitdrukkingen voor
K moet daarbij graag op de koop toe worden genomen, en als Kj 6= Cj
kunnen de bijbehorende buitenkanten ook genest liggen. In het simpele geval
dat σ(A) een eindige discrete puntverzameling is kunnen we natuurlijk toe
met K = Cj = ∆j, met de driehoekjes ∆j zo klein als we maar willen en

σ(A) ⊂ Kint ⊂ K = ∆1 ∪ · · · ∪∆m.

Wat we nu sowieso in alle gevallen willen is dat, als we de hoekpunten
van de polygonen een beetje naar binnen schuiven, K in dus, de integralen
die in (26.24) en (26.25) de nieuwe lineaire afbeelding f(A) : X → X moeten
maken, niet veranderen. En hetzelfde als we K groter maken door de punten
naar buiten te schuiven, zolang we maar niet uit het definitiegebied van de
continu differentieerbare complexwaardige f lopen. Bij het verder kleiner of
groter maken kan de structuur van K versimpelen als twee polygonen elkaar
ontmoeten en vervolgens samen één polygon vormen. Strict genomen hebben
we niet nodig hoe dat precies kan gaan, maar het is toch aardig om daar even
over na te denken.

27Als we alle zijden van alle poygonen dicht bij σ(A) willen hebben.
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Exercise 26.16. Het is een aardige project om dat versimpelen precies te maken. Bij
het groter maken van K kunnen twee buitenkanten van twee Kj-tjes elkaar ontmoeten
waarna verder groter maken tot één nieuwe buitenkant leidt waarmee de bijbehorende
binnenkanten dan samen de nieuwe binnenkanten van een nieuwe Kj worden. Ook
kan uit een groeiende buitenkant die binnen een krimpende binnenkant ligt meteen
na het eerste contact één nieuwe binnenkant ontstaan. Bij kleiner maken kunnen een
binnen- en een buitenkant van eenzelfde Kj-tje elkaar ontmoeten en daarna een nieuwe
buitenkant vormen, en ook kunnen twee binnenkanten elkaar ontmoeten en een nieuwe
binnenkant vormen. Ga in alle gevallen na wat de nieuwe structuur wordt en welke
andere scenarios er nog zijn, zoals ondermeer polygonen tot een punt laten krimpen
en verdwijnen.

Via de inmiddels vertrouwde zigzagkrommen vernandert bij het geschuif
met de hoekpunten (26.25) niet, mits de Stelling van Goursat geldt voor
driehoekjes waarop en waarbinnen (26.22) complex differentieerbaar is. De
betreffende integralen bestaan weer uit integralen over lijnstukjes. Continue
L(X)-waardige functies van t ∈ [0, 1] zijn integreerbaar via de tussensommen
van Riemann, en

t→ f((1− t)λk−1 + tλk)((1− t)λk−1 + tλk − A)−1

is zo’n functie waarmee L(X)-waardige integralen als∫ λk

λk−1

f(λ)(λ− A)−1 dλ

nu gedefinieerd zijn.
Mooi, dan kan voor

λ→ f(λ)(λ− A)−1

de Stelling van Goursat met bewijs en al worden overgeschreven28 en is
(26.24) een goede definitie van f(A). Voorlopig houden we nu A vast en
kijken naar nog zo’n f , een g dus, waarbij we eerst aannemen dat we het
allersimpelste geval hebben, één polygon rond σ(A) waarmee de berekenin-
gen gedaan worden. In dat geval is de samenstelling van de afbeeldingen
f(A) en g(A) te schrijven als

f(A)g(A) =
1

2πi

∮
λ0−n

f(λ)(λ− A)−1 dλ
1

2πi

∮
µ0−n

g(µ)(µ− A)−1 dµ,

met in de Cauchyintegraal voor g(A) de hoekpunten µl een klein beetje naar
binnen geschoven hebben, niet omdat het moet, maar omdat het kan, iets

28Op detail nog te bespreken.
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minder ver naar binnen dan de hoekpunten λk. Het µ-polygon komt zo
binnen het λ-polygon te liggen.

Omdat

f(A) =
1

2πi

n∑
k=1

∫ λk

λk−1

f(λ)(λ− A)−1 dλ,

g(A) =
1

2πi

n∑
l=1

∫ µl

µl−1

g(µ)(µ− A)−1 dµ,

wordt f(A)g(A) afgezien van de voorfactoren dankzij overwegingen als bij
(27.4) een som van produkten∫ λk

λk−1

f(λ)(λ− A)−1 dλ

∫ µl

µl−1

g(µ)(µ− A)−1 dµ =

∫ µl

µl−1

∫ λk

λk−1

f(λ)g(µ)(λ− A)−1(µ− A)−1 dλ dµ =

∫ λk

λk−1

∫ µl

µl−1

f(λ)g(µ)(λ− A)−1(µ− A)−1 dµ dλ.

Dankzij wat fraaie algebra, te weten

(λ− A)−1(µ− A)−1 =
1

µ− λ
(λ− A)−1 +

1

λ− µ
(µ− A)−1,

kunnen de integralen gesplitst worden in∫ λk

λk−1

f(λ)(λ− A)−1

∫ µl

µl−1

g(µ)

µ− λ
dµ dλ

en ∫ µl

µl−1

g(µ)(µ− A)−1

∫ λk

λk−1

f(λ)

λ− µ
dλ dµ,

en in beide herhaalde integralen zien we een bij sommeren over de index in
de binnenste integraal een gewone complexwaardige lijnintegraal verschijnen
waar nul uit komt als de noemer niet nul is in het binnengebied, en een
functiewaarde anders, kijk maar naar de Cauchy integraalformule. Sommeren
over l in de eerste geeft derhalve 0, en sommeren over k in de tweede∫ µl

µl−1

g(µ)(µ− A)−1 2πi f(µ) dµ = 2πi

∫ µl

µl−1

f(µ) g(µ)(µ− A)−1 dµ,
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en nog een keer sommeren vervolgens (2πi)2(fg)(A). We concluderen dat

(fg)(A) =
1

2πi

∮
λ0−n

f(λ)g(λ)(λ− A)−1 dλ = f(A)g(A) = g(A)f(A),

(26.26)
en daar is nog veel mee te spelen.

Exercise 26.17. Ga na dat in het algemene geval (26.25), wanneer f(A) en g(A)
de som zijn van een eindig aantal integralen over links- dan wel rechtsom29 door-
lopen polygonen Pj , er in de compositie alleen bijdragen zijn van de vorm zoals juist
behandeld en dat ook in dat geval volgt dat (fg)(A) = f(A)g(A).

De tweede gelijkheid in (26.26) is een gelijkheid in de niet-commutatieve
Banachalgebra L(X) van continue lineaire afbeeldingen van X naar zichzelf,
en f → f(A) is een afbeelding die gedefinieerd is voor een klasse van func-
ties gedefinieerd op een omgeving van het σ(A). Die omgeving mag van f
afhangen, dus met f en g moeten we ons beperken tot de doorsnede van de
twee definitiegebieden. Wat we nog willen laten zien is dat een schrijfwi-
jze met (26.24) en (26.25) altijd mogelijk is met alle polygonen zo dicht bij
σ(A) als we maar willen. Daarmee bewijzen we dan ook meteen de volgende
stelling.

Theorem 26.18. Laat voor A ∈ L(X) en een complexwaardige f de operator
f(A) gedefinieerd zijn via (26.24) en (26.25). Dan geldt

σ(f(A)) = f(σ(A)).

Om deze stelling te bewijzen maken we nu precies hoe we K kiezen. Kies
daartoe een triangulatie van het complexe vlak opgespannen door ρ > 0 en
ρ exp(πi

6
). De verzameling van al deze driehoekjes noemen we I. Voor elke

∆ ∈ I maken we onderscheid tussen

∆ ∩ σ(A) = ∅, ∆ ∩ σ(A) 6= ∅ = δ∆ ∩ σ(A), δ∆ ∩ σ(A) 6= ∅,

waarmee I = I0∪I1∪J , met I0, I1, J de onderling disjuncte deelverzamelingen
waarvoor respectievelijk de eerste, tweede dan wel derde karakterisatie geldt.
Zowel I1 als J hebben maar eindig veel elementen omdat σ(A) begrensd is.
Iedere ∆ ∈ I1 kan als een Kj genomen worden in (26.25).

29Lees: linksom, maar met een min voor het integraalteken.
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De driehoekjes in I0 zijn niet relevant voor (26.25), maar iedere ∆ ∈ J
heeft 12 buren30 waarvan er tenminste één ook in J ligt, zeg ∆̃, gekarak-
teriseerd door

δ∆̃ ∩ δ∆ ∩ σ(A) 6= ∅,

en in dat geval noemen we ∆ en ∆̃ fijne buren in J . Twee zulke fijne buren die
verder geen andere fijne buren hebben vormen samen een fijn duo verenigd
in

∆ ∪ ∆̃,

en I2 is per definitie de verzameling van zulke verder geisoleerde fijne buren,
die verenigd steeds een ruit vormen, een ruit die als een Kj kan worden
meegenomen in (26.25).

Een paar niet geisoleerde fijne buren kan nog 1 of meerdere fijne buren
hebben, en als het maar 1 is, zeg ∆̂, dan kan het zijn dat die verder zelf geen
fijne buren meer heeft. Dan vormen ze een fijn triootje waarbij verschillende
standjes denkbaar zijn. Dit definieert de verzameling I3, alle driehoeken ∆
die onderdeel vormen van een fijn trio verenigd in

∆ ∪ ∆̃ ∪ ∆̂,

dat een parallelogram of een halve zeshoek is.
En zo gaat dat door met fijne quatrootjes, fijne quintootjes, etc totdat J

op is, waarbij het aantal standjes flink maar niet oneindig toe kan nemen.
Kortom, met I gepartioneerd als

I = I0 ∪ I1 ∪ I2 ∪ · · · ∪ Ip

is het nu nog de vraag wat de mogelijke onderlinge standjes zijn: als ∆1 ∈ Ik
met k−1 andere driehoeken in Ik een fijn k-stel vormt hoe kan de vereniging

∆1 ∪∆2 ∪ · · · ∪∆k

er dan uitzien?
Antwoord: als een binnengebied van een polygon, of als het rechterlid

van (26.23). Dat moet dus nog door iemand31 bewezen worden, als dat niet
al eens gebeurd is. Maar verder zijn we nu wel klaar met de beschrijving van
f(A). Dat kan altijd met eindig veel polygonen die willekeurig dicht bij σ(A)
liggen door ρ klein te kiezen. Hoe dichter bij σ(A) hoe meer je er nodig hebt
en hoe wilder de standjes kunnen worden.

30Waarvan er drie een zijde met ∆ gemeen hebben en de rest alleen een hoekpunt.
31Ik pas, maar dat is voor even.
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We zijn nu klaar voor het bewijs van Stelling 26.18. Neem een µ 6∈
f(σ(A)) en definieer g door

λ
g−→ 1

µ− f(λ)
,

met f complex differentieerbaar op een omgeving van σ(A). Kies een mogelijk
kleinere omgeving waarop f(λ) 6= µ. Uit de functional calculus volgt nu dat
g(A) gedefinieerd is en de algebra geeft

g(A)(µ− f(A) = (µ− f(A)g(A) = I,

waarmee µ ∈ ρ(f(A)). Dus σ(f(A)) ⊂ f(σ(A)).
Kan de inclusie strict zijn? In dat geval is er een µ0 = f(λ0) ∈ σ(f(A))

waarvoor µ0−f(A) inverteerbaar is terwijl λ0−A het niet is. Door schuiven
en schalen van f , en schuiven van A en λ kunnen we zonder beperking der
algemeenheid wel aannemen dat λ0 = 0 = µ0 en dat de machtreeks van f
begint met λn voor zekere n ∈ IN omdat f(0) = 0. In dat geval is

f(λ) = λng(λ) met g(λ) = 1 + b1λ+ b2λ
2 + · · ·

en dus is g(A) inverteerbaar, net als f(A). Maar de algebra geeft

f(A) = Ang(A).

Voor n = 1 is de tegenspraak onmiddellijk. Voor n > 1 niet helemaal.
Pas daarom het argument hierboven aan en concludeer eerst dat µ0 = f(λ0)
zo gekozen kan worden dat f ′(λ0) 6= 0. Hiermee is het bewijs van de stelling
wel klaar. Als g een andere functie is die complex differentieerbaar is op een
omgeving van σ(f(A)) = f(σ(A)) dan volgt ook vrij direct uit de definities
dat

g(f(A)) = (g ◦ f)(A).

Exercise 26.19. Bewijs dit.

Nog een expliciet voorbeeld. Als

λ = λ

N∑
j=1

χj(λ) =
N∑
j=1

λχj(λ),

met
χj(λ) = δij voor λ ∈ Ki,
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dan

I =
N∑
j=1

Iχj.

Definieer de “spectraalprojecties”

Pj = χj(A).

Exercise 26.20. Laat zien dat PiPj = δijPj , APj = PjA, σ(APj) = σ(A) ∩Kj ,

I =
N∑
j=1

Pj en A =
N∑
j=1

APj =
N∑
j=1

PjA.

Zo wordt
X = R(P1)⊕ · · · ⊕R(Pn),

en beeld A iedere Xi = R(Pi)) op zich zelf af, en volgt voor

Aj : Xi
APj−−→ Xi

dat σ(Aj) = σ(A) ∩Kj.
Zo, en dat alles met een beetje lijnintegreren.
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27 Elementary multi-variate integral calculus

We want to integrate continuous functions and partial derivatives of continu-
ously differentiable functions over bounded sufficiently nice domains Ω. The
goal is an early version of Green’s Theorem (and thereby the Gauss Diver-
gence Theorem), Theorem 27.7 in Section 27.5. To this end we need the
integral calculus for continuous functions of two or more variables, beginning
with integrals of u = u(x, y). Integrating partial derivatives we discover the
appropriate notion of boundary integrals. We also return to Section 13.2 and
the issue of differentiation under the integral.

We first integrate over closed rectangles [a, b] × [c, d], and over sets such
as

{(x, y) ∈ [a, b]× [c, d] : y ≤ f(x)}, in which f ∈ C1([a, b]) (27.1)

and f([a, b]) ⊂ (c, d). The integral calculus over closed blocks

[a, b] = [a1, b1]× · · · × [aN , bN ]

in IRN = IRn+1 is then completely similar, as well as integral calculus over
sets described by

aN ≤ xN ≤ f(x1, . . . , xN−1) < bN (27.2)

or
aN ≤ f(x1, . . . , xN−1) ≤ xN < bN , (27.3)

and similar sets obtained by permutation of the variables.
To also integrate over closures of bounded open sets Ω in IRN = IRn+1

with ∂Ω ∈ C1, we understand ∂Ω ∈ C1 to mean that M = ∂Ω is the union
of patches

P = M ∩W = M ∩ (a, b),

each of which, after renumbering the variables, comes with a description of
[a, b] ∩ Ω̄ as given by (27.2) or (27.3). If so we say that Ω is a bounded
C1-smooth domain. We speak of

W = (a, b) = (a1, b1)× · · · × (aN , bN)

as a window1. The boundary ∂Ω is denoted by M because it is a first example
of a manifold, see Chapter 24.

1Thus windows are open.
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Our characterisation of ∂Ω ∈ C1 implies in fact that2 there exist finitely
many such patches Pi = M ∩Wi that cover M = ∂Ω completely,

M ⊂ P1 ∪ · · · ∪ Pk, (27.4)

but in general Ω̄ is not a subset of W1 ∪ · · · ∪Wk. However, there are then3

finitely many other windows

Wk+1, . . . ,Wm, W i ⊂ Ω (i = k + 1, . . . ,m),

that cover the part of Ω not yet covered by W1, . . . ,Wk. Thus

Ω̄ ⊂ W1 ∪ · · · ∪Wm. (27.5)

This covering of Ω will allow us to integrate continuous functions u : Ω̄→ IR
over Ω̄, using what we may call fading4 functions. To do so we choose closed
blocks Ki ⊂ Wi such that

Ω̄ ⊂ K1 ∪ · · · ∪Km.

27.1 Integrals over blocks

To integrate continuous functions

u : [a, b]× [c, d]→ IR

we use partitions P as in (6.8) for [a, b], and partitions

c = y0 ≤ y1 ≤ · · · ≤ yM = b (27.6)

for [c, d]. Lower- and undersums, or better, sums of the form5

S =
N∑
k=1

M∑
l=1

u(ξk, ηl)(xk − xk−1)(yl − yl−1), (27.7)

with ξk ∈ [xk−1, xk] and ηl ∈ [yl−1, yl], then do the job. We skip the details
and formulate the obvious theorem.

2This follows from the compactness of M .
3This follows from the compactness of Ω̄.
4The less friendly terms is cut-off functions.
5See Theorem 8.15.
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Theorem 27.1. Let u : [a, b]× [c, d] → IR be continuous. Then there exists
a unique real number J such that for all ε > 0 there exists δ > 0 such that
for all sums S as in (27.7) it holds that

|S − J | < ε,

provided

xk − xk−1 < δ and yl − yl−1 < δ for all k = 1, . . . , N, l = 1, . . .M.

We define the integral of f over [a, b]× [c, d] by∫
[a,b]×[c,d]

u = J,

and we have

J =

∫ b

a

∫ d

c

u(x, y) dy︸ ︷︷ ︸
continous function of x

dx =

∫ d

c

∫ b

a

u(x, y) dx︸ ︷︷ ︸
continous function of y

dy,

with

|J | =
∣∣∣∣∫

[a,b]×[c,d]

u

∣∣∣∣ ≤ ∫
[a,b]×[c,d]

|u|.

The repeated integrals are handled by the integration techniques for con-
tinuous functions on closed bounded intervals, see Theorems 8.6 and 8.15.
Theorem 27.1 generalises to u : [a, b]→ X with

[a, b] = [a1, b1]× · · · × [aN , bN ],

a bounded closed block in IRN , and X a complete metric vector space.

Exercise 27.2. This is more or less Exercises 8.16 continued. Prove Theorem 27.1
without using lower- and upper sums for X = IR. Then explain why it is also a proof
for X.

27.2 Differentation under the integral

We use Theorem 10.10, which is part of the fundamental theorem of calculus,
for a simple proof of a theorem that was already stated6 in Section 13.2:

6And in Section 28.5 we give a version needed for integrals over the whole real line.
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Theorem 27.3. Let f and ft exist as continuous functions on I× [a, b], with
I some t-interval. Then

J(t) =

∫ b

a

f(t, x) dx

exists and J : I → IR is continuously differentiable with derivative

J ′(t) =

∫ b

a

ft(t, x) dx.

Proof. Let g(t, x) = ft(t, x), the continuous partial derivative of f . In
Exercise 13.6 we already observed that

t→ j(t) =

∫ b

a

g(t, x) dx

is continuous on I if (t, x) → g(t, x) is continuous on I × [a, b]. This is a
consequence of the uniform continuity of g on blocks of the form [a, b]× [α, β]
with [α, β] ⊂ I. It gives

|j(t)− j(s)| =
∣∣ ∫ b

a

g(t, x) dx−
∫ b

a

g(s, x) dx
∣∣ =

∣∣ ∫ b

a

(g(t, x)− g(s, x)) dx
∣∣

≤
∫ b

a

|g(t, x)− g(s, x)| dx < ε(b− a) if |t− s| < δ

for t, s ∈ [α, β], with δ provided by the uniform continuity of g on [a, b]×[α, β].
And then

J(s)− J(α) =

∫ b

a

f(s, x) dx−
∫ b

a

f(α, x) dx =

∫ b

a

(f(s, x)− f(α, x)) dx

=

∫ b

a

∫ s

α

g(t, x) dt dx =

∫ s

α

∫ b

a

g(t, x) dx dt =

∫ s

α

j(t) dt

in which we have used the fundamental theorem of calculus for every x fixed
with g = ft, and Theorem 27.1 to change the order of integration. But
now we use the fundamental theorem of calculus again to conclude that J
is a primitive of the continuous function j and thereby differentiable with
derivative f . �
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27.3 Cut-off functions and partitions of unity

Green’s Theorem 27.7 in Section 27.4 requires the introduction of integrals
over smooth bounded domains. To define these integrals we use partitions of
unity. We now first explain this basic tool for cutting up functions in smaller
parts which are localised. It involves two tricks, each of which you can play
with.

The first trick concerns an open set O ⊂ IRN and a compact subset K ⊂ O
which should be non-empty Then every a ∈ K is contained in an open ball
B centered at a such that the closed ball with the same center but twice the
radius is contained in O. We denote this larger ball by 2B. Thus we have

K 3 a ∈ B ⊂ 2B ⊂ O.

These balls cover K and the compactness of K implies7 that K is covered
bij finitely many of such balls, i.e.

K ⊂ B1 ∪ · · · ∪Bk ⊂ 2B1 ∪ · · · ∪ 2Bk ⊂ O.

On each such ball 2Bi we choose a smooth function ηi ∈ C∞c (2B) with
0 ≤ ηi ≤ 1 and ηi ≡ 1 on Bi, and we extend these functions to the whole of
IRN by setting ηi ≡ 0 outside 2Bi. Then ηi ∈ C∞c (IRN) for i = 1, . . . , k and a
new function χ ∈ C∞c (IRN) may be defined by8

1− χ(x) = (1− η1(x)) · · · (1− ηk(x)). (27.8)

Indeed, if x is not contained in the union of the supports of η1, . . . , ηk then all
factors in the right hand side of (27.8) are equal to 1 and hence χ(x) = 0. On
the other hand, if x is contained in one of the balls Bi then the corresponding
factor in the right hand side of (27.8) is equal to zero making the right hand
side vanish whence χ(x) = 1. In particular χ(x) ≡ 1 on K. Moreover, since
all factors take values in [0, 1] the same holds for χ(x), for any x ∈ IRN. We
conclude that

χ ∈ C∞c (O), ∀x ∈ Ω χ(x) ∈ [0, 1], ∀x ∈ K χ(x) = 1, (27.9)

and this is why χ is called a cut-off function for K in O.
The second trick applies the first trick to a finite collection of such sets

∅ 6= K1 ⊂ O1, . . . , ∅ 6= Km ⊂ Om with ηj ∈ C∞c (Oj) (27.10)

7See Section 5.6.
8I first saw this elegant trick in Folland’s Real Analysis book.
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cut-off functions as in (27.9). We define ζj ∈ C∞c (Oj) by

ζj(x) =
χj(x)

χ1(x) + · · ·+ χm(x)
(27.11)

and extend ζj to IRN via ζj(x) ≡ 0 outside Oi. Note that below we don’t
really use the last part of (27.9) as χj(x) > 0 for all x ∈ Ki suffices to obtain
the essential properties of the collection ζ1, . . . , ζm, which is called a partition
of unity. For every x for which one of the χj(x) > 0 it follows that

ζ1(x) + · · ·+ ζm(x) = 1. (27.12)

Certainly this holds for x in K1 ∪ · · · ∪Km. On the other hand, outside the
union of O1, . . . , Om this sum is by definition equal to zero.

Any function
f : K1 ∪ · · · ∪Km → IR

splits up via

f(x) = f1 + · · ·+ fm = ζ1(x)f(x) + · · ·+ ζm(x)f(x),

with the smaller parts fj = ζjf compactly supported in Oj, and ζj not
harming any smoothness the original function f may enjoy. Adding more
Kj to the collection changes the functions ζj only via (27.11), with (27.12)
remaining valid. This allows to have countable families of Ki with nice
properties. The first application however is to (27.5), when we choose closed
blocks Ki ⊂ Wi such that

Ω̄ ⊂ K1 ∪ · · · ∪Km, (27.13)

and open blocks Oi ⊂ Wi such that

Ki ⊂ Oi ⊂ Ōi ⊂ Wi.

27.4 Integrals over bounded smooth domains

Next we consider windows such as used in (27.4), for example (27.1). The
following theorem ties the obvious outcome to a definition via a partition
of unity. Here we only need continuity of the function f that describes the
upper boundary.

Theorem 27.4. Let f : [a, b]→ (c, d) be continuous and let

u : A = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ f(x)} → IR
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be continuous. Then ∫ b

a

∫ f(x)

c

u(x, y) dy︸ ︷︷ ︸
continuous function of x

dx

is equal to

J =

∫
A

u.

This integral J is uniquely defined as in Theorem 27.1, with approximating
sums (27.7) in which we put u(ξk, ηl) = 0 whenever ηl > f(ξk).

Again we leave the proof to the reader, and we note that the obvious gener-
alisations with

f : [a1, b1]× · · · × [aN−1, bN−1]→ (aN , bN),

and, if you like, u taking values in a complete metric vector space X hold
true.

Next we consider u : Ω̄ → IR with ∂Ω ∈ C1, and windows as in (27.5).
It is then possible to choose9 functions ζ1 ∈ C1

c (W1), . . . , ζm ∈ C1
c (Wm) with

0 ≤ ζi ≤ 1 for i = 1, . . . ,m, such that

ζ1 + · · ·+ ζm ≡ 1 on a neighbourhood of Ω̄. (27.14)

We use each ζi to fade out u towards the boundary of the corresponding
window: each function ui = ζiu has its support strictly within Wi, and as
the natural definition of the integral of ui over Ω̄ we take10∫

Ω

ui =

∫
Ω̄∩W i

ui.

Since
u = u1 + · · ·+ um,

and integrals are bound to be linear functionals on C(Ω̄), the obvious defi-
nition of the integral of u over Ω is∫

Ω

u =

∫
Ω

u1 + · · ·+
∫

Ω

um =
m∑
i=1

∫
Ω̄∩W i

ζiu. (27.15)

9Use Section 27.3, note that ζi ∈ C∞c (Wi).
10In accordance with

∫ b
a

=
∫

[a,b]
=
∫

(a,b)
we just put Ω as a subscript on

∫
.
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Exercise 27.5. Show the outcome in (27.15) does not depend on the choice of
patches and windows. Hint: given also patches M ∩ V1, . . . ,M ∩ Vl in windows
V1, . . . , Vl and additional windows Vl+1, . . . , Vr, with fading functions χj , j = 1, . . . , r,
write

u =
m∑
i=1

ζi

r∑
j=1

χju =
m∑
i=1

r∑
j=1

ζiχju =
r∑
j=1

m∑
i=1

χjζiu =
r∑
j=1

χj

m∑
i=1

ζiu,

and evaluate the individual integrals ∫
Ω
ζiχju

in two ways.

Remark 27.6. It is also possible to give such a definition if we only assume
∂Ω ∈ C, meaning that, possibly11 after a rotation, every point of the boundary
is contained in a patch described by the graph of a continuous fuction. The
windows we started with are an example.

27.5 Green’s Theorem

We now integrate partial derivatives to discover a theorem, and in particular
the right hand side in (27.17) below. It involves the outwards pointing unit
normal vector ν on ∂Ω, as we will see from the local calculations we do in
the separate boundary windows. In particular we discover12

dSn =

√
1 +

(
∂f

∂x1

)2

+ · · ·+
(
∂f

∂xn

)2

dx1 · · · dxn (27.16)

as the natural generalisation of

ds =
√

1 + f ′(x)2 dx,

which you should recognise from the high school formula∫ b

a

√
1 + f ′(x)2 dx

for the length of the graph of a function f ∈ C1([a, b]).

11This makes a bit more technical.
12More on this later: Chapter 22.
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Theorem 27.7. Let Ω be a bounded open set in IRN = IRn+1 with ∂Ω ∈ C1,
let v : Ω̄ → IR be continuously differentiable. Then the integral of every
partial derivative vxj of v evaluates as∫

Ω

vxj =

∫
∂Ω

νjv dSn. (27.17)

The integral on the right hand side will be defined in the proof, as well as νj,
the jth component of the outwards pointing unit normal vector ν on ∂Ω.

We start the proof in the case that N = 2 and n = 1. Consider a piece of
the boundary described by y = f(x), with f ∈ C1([a, b]) and c < f(x) < d
for all x ∈ [a, b], such that

Ω̃ = Ω ∩ ([a, b]× [c, d]) = {(x, y) : a ≤ x ≤ b, f(x) < y ≤ d}, (27.18)

and multiply v by a function ζ ∈ C1(IR2) which is zero outside a subset
[ã, b̃] × [c̃, d̃] of (a, b) × (c, d). Denoting the resulting product by ṽ = ζv we
have from a minor variant of Theorem 27.4 that∫

Ω̃

ṽy =

∫ b

a

(∫ d

f(x)

ṽy(x, y)dy

)
dx =

(by Theorem 10.12)

−
∫ b

a

ṽ(x, f(x)) dx

=

∫ b

a

−1√
1 + f ′(x)2︸ ︷︷ ︸

νy

ṽ(x, f(x))
√

1 + f ′(x)2dx︸ ︷︷ ︸
ds=dS1

=

∫
Φ

νyṽ ds,

in which the subscript Φ indicates that we use the parameterisation

Φ(x) = (x, f(x))

for the boundary integral. There are of course many other13 parameterisa-
tions that can be used to compute integrals over (this part of) the boundary.

In the above calculations we recognised the y-component of the (let’s call
it) normal unit vector

ν =
1√

1 + f ′(x)2

(
−f ′(x)

1

)
13With issues for later worries.

427



and
ds = |Φ′(x)|2 dx =

√
1 + f ′(x)2 dx

evaluated via the parameterisation Φ(x) = (x, f(x)).
For the integral of ṽx we use new coordinates ξ, η defined by

ξ = x, η = y − f(x), whence x = ξ, y = η − f(ξ) and dx dy = dξ dη

when transforming an integral over (x, y) ∈ Ω̃ to an integral over

(ξ, η) ∈ D = {(x, y − f(x)) : a ≤ x ≤ b, f(x) ≤ y ≤ d}.

Indeed, defining φ(ξ, η) by

φ(ξ, η) = ṽ(x, y) we have ṽx(x, y) = φξ(ξ, η)− f ′(ξ)φη(ξ, η)

via the chain rule, whence14∫
Ω̃

ṽx =

∫
D

(φξ − f ′φη) =

∫
D

φξ −
∫
D

f ′φη

=

∫
0

(∫ b

a

φξ(ξ, η) dξ

)
dη −

∫ b

a

(∫
0

f ′(ξ)φη(ξ, η) dη

)
dξ

=

∫
0

(φ(b, η)− φ(a, η)) dη −
∫ b

a

f ′(ξ)

∫
0

φη(ξ, η) dη dξ

=

∫ b

a

f ′(ξ)φ(ξ, 0) dξ =

∫ b

a

v(x, f(x))f ′(x) dx

=

∫ b

a

f ′(x)√
1 + f ′(x)2︸ ︷︷ ︸

νx

ṽ(x, f(x))
√

1 + f ′(x)2dx︸ ︷︷ ︸
ds=dS1

=

∫
Φ

νxṽ ds,

after inserting
√

1 + f ′(x)2 to get ds = dS1 and recognising the x-component
of the normal vector ν. The subscript Φ indicates again that we use the
parameterisation Φ(x) = (x, f(x)) for the boundary integral.

In conclusion we have∫
Ω

ṽx =

∫
Φ

νxṽ ds =

∫
∂Ω

νxṽ ds and

∫
Ω

ṽy =

∫
Φ

νyṽ ds =

∫
∂Ω

νyṽ ds,

in which we have taken the integrals with subscript Φ as definition of the
boundary integrals over ∂Ω.

14We drop a conveniently chosen fixed upper bound in the η-integrals from the notation.
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Likewise we have, for the general case with n ≥ 1, that∫
Ω

(ζiv)xj =

∫
∂Ω

νjζiv dSn, (27.19)

for all j = 1, . . . ,m and all i = 1, . . . , N = n+1, with expressions like (27.16)
and

ν1 =
1√

1 + |∇f |2
∂f

∂x1

, . . . , νN =
1√

1 + |∇f |2
∂f

∂xn
,

νN = νn+1 =
−1√

1 + |∇f |2

for the normal unit vector ν. Note that in (27.19) the integrals with i =
k + 1, . . . ,m all vanish.

We now use the fading functions to conclude that∫
Ω

vxj =

∫
Ω

m∑
i=1

(ζiv)xj =
m∑
i=1

∫
Ω

(ζiv)xj =
m∑
i=1

∫
∂Ω

νjζiv dSn.

This latter expression is what we take as the definition of the boundary
integral ∫

∂Ω

νjv dSn,

in much the same way as in (27.15). We can then conclude that∫
Ω

vxj =

∫
∂Ω

νjv dSn,

which is (27.17) in Theorem 27.7.

Remark 27.8. If we put a subscript j on v, and view vj as the coordinates
of a vector field V , we obtain∫

Ω

∇ · V =

∫
∂Ω

ν · V dSn, (27.20)

the statement of the Gauss Divergence Theorem.

Remark 27.9. Applying (27.17) to the product of v and some other function
ζ ∈ C1(Ω) we obtain the integration by parts formula∫

Ω

vxiζ =

∫
∂Ω

ζv νidSN−1 −
∫

Ω

ζxiv. (27.21)

For ζ we may take a function such as one of the ζi in (27.14) to have integrals
of functions supported in one single block [a, b].
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Remark 27.10. The above approach avoids reparameterisations and the use
of other parameterisations to define and compute integrals over manifolds
such as M = ∂Ω and other manifolds, see Chapter 24. Of course we need
these later too, which requires Chapters 19 and 23.

Exercise 27.11. In physics results like (27.7) are usually taken for granted in view
of the trivial case that

Ω = (a, b) = (a1, b1)× (a2, b2)

is a rectangle parallel to the axes15. Verify directly that (27.20) holds for v : [a, b]→
IR2 continuously differentiable.

Exercise 27.12. Suppose that the boundary of a bounded open set Ω ⊂ IR2 is
given by a periodic solution of a system of differential equations ẋ = P (x, y) and
ẏ = Q(x, y), with P,Q : IR2 → IR continuously differentiable on Ω. Show that∫∫

Ω
(
∂P

∂x
+
∂Q

∂y
) dxdy = 0.

27.6 Some integral equations in two variables

Have a look at Section 7.5 before you read on. The integral equations in this
section relate to partial differential equations (PDE’s).

Exercise 27.13. Let F : IR→ IR be continuous and suppose that u ∈ C2(IR2) is
a solution of

uxy = F (u) (27.22)

with u = 0 of the both the axes. Show that

u(x, y) =

∫ x

0

∫ y

0
F (u(ξ, η) dη dξ︸ ︷︷ ︸
Φ(u)(x,y)

(x, y ∈ IR). (27.23)

This is like a two variable version of (7.17) with u0 = 0 which we solved in Exercise
7.32 using weighted norms.

15https://www.quora.com/What-is-the-plural-of-axis

430



Exercise 27.14. For F : IR → IR Lipschitz continuous we solve (27.23) first in
C(B̄R) using the norm

|u|µ,R = max
x2+y2≤R2

|u(x, y)|
exp(µ(x2 + y2))

.

Show that for every R > 0 there exists µ > 0 such that Φ is a contraction. Use this
to show that (27.23) has a unique solution in C(IR2).

Remark 27.15. Did we solve (27.22)? The solution of (27.23) does have
some differentiability properties, but it is not so clear whether it is in C2(IR2).
Note that (27.22) is the nonlinear one-dimensional wave equation

vtt = vxx +G(v) (27.24)

in disguise. For the linear inhomogeneous wave equation

vtt = vxx + F (t, x) (27.25)

there exists the d’Alembert solution formula

v(t, x) =
1

2
(f(x− t) + f(x+ t)) +

1

2

∫ x+t

x−t
g +

1

2

∫∫
C(t,x)

F (27.26)

for the solution with initial data

v(0, x) = f(x), vt(0, x) = g(x) (x ∈ IR). (27.27)

In (27.26)

C(t, x) = {(τ, ξ) : 0 ≤ τ ≤ t, x+ τ − t ≤ ξ ≤ x+ t− τ}

is (part of) the backwards light cone starting from (t, x), namely the triangle
with vertices (0, x ± t) and (t, x). Its measure (area) is t2. Here we restrict
the attention to t ≥ 0. The smoothness of v defined by (27.26) depends on
the smoothness of f, g, F .

Exercise 27.16. Consider the integral equation

v(t, x) =
1

2
(f(x− t) + f(x+ t)) +

1

2

∫ x+t

x−t
g +

1

2

∫∫
C(t,x)

G(v), (27.28)

which would correspond to the solution of (27.24) with initial data given by (27.27).
Assume that G : IR → IR is Lipschitz continuous with Lipschitz constant L > 0,
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and f, g :→ IR are continuous and bounded. Let CT be the space of all continuous
bounded functions v : IR× [0, T ]→ IR equipped with the supremum norm, i.e.

|v|T = sup
x∈IR

0≤t≤T

|v(t, x)|.

Prove that (27.28) has a unique solution in CT for every T with LT 2 < 1.

Exercise 27.17. (continued) Modify the argument in the spirit of Exercise 27.13
using weighted norms

|v|µ,T = sup
x∈IR

0≤t≤T

|v(t, x)|
exp(µt)

to establish that (27.28) has a unique continuous solution v : IR× [0,∞)→ IR which
is in every CT .

Exercise 27.18. Let F : IR→ IR be Lipschitz continuous. Rewrite

uxyz = F (u) (27.29)

with u = 0 if xyz = 0 as an integral equation and show that the integral equation has
a unique continuous solution u : IR3 → IR. Generalise to IRn.
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28 Fourier theory

Consider the odd function defined by

f7(x) = sin x− sin 2x

2
+

sin 3x

3
− sin 4x

4
+

sin 5x

5
− sin 6x

6
+

sin 7x

7
,

which is periodic with period 2π. On the interval (−π, π) the graph1 of f7 is
close to the graph of f(x) = 1

2
x. Replace 7 by N , take larger and larger N ,

and conclude that apparently

x = 2
∞∑
k=1

(−1)k+1 sin kx

k
(28.1)

if |x| < π. Section 28.2 cuts that long Hilbert space story short in order
to quickly procede to Fourier integrals in Section 28.4. The novelty in this
chapter is Section 28.3 which prepares for Fourier theory in more variables
along the same lines. The two exercises below provide a link with power
series, but you may want to jump to (28.2) in Section 28.1, the sawtooth.

Exercise 28.1. Connection with power series: The right hand side of (28.1) is the
imaginairy part of

∞∑
k=1

(−1)k+1

k
ζk, ζ = eix.

Determine the sum of this power series for |ζ| < 1. Hint: differentiate with respect to
ζ, take the sum and then the primitive.

Exercise 28.2. The complex version of the Leibniz criterion says that the series in
Exercise 28.1 converges for all ζ with |ζ| = 1 except ζ = −1. Assume that the sum
you found in Exercise 28.1 is valid for all such ζ. Verify (28.1).

28.1 The sawtooth function

In the spirit of Exercise 28.2 consider

1 + ζ + ζ2 + · · ·+ ζN−1 and its primitive ζ +
1

2
ζ2 + · · ·+ 1

N
ζN ,

1Use some package.
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put
ζ = eix = cosx+ i sinx,

and take the imaginairy part multiplied by a cosmetic 2. What you get is
what we will call

ZN(x) =
N∑
n=1

2

n
sinnx, (28.2)

which looks a bit like the example that lead to (28.1), but is slightly better
as a first example for our purposes in view of its direct connection to the
Dirichlet kernel DN below.

Exercise 28.3. What you see is what you get. Plot some graphs of ZN for small
and large values of N , to examine how ZN converges to a limit function called the
sawtooth. The remaining exercises in this section lead you through a nice proof of
what you see, including the overshoot behaviour near x = 0, but you may want to
jump to Remark 28.10 which wraps it all up.

Exercise 28.4. Use eix = cosx+ i sinx to show that

ZN (x) = x−
∫ x

0
DN (s)ds = π − x+

∫ π

x
DN (s)ds,

in which2

DN (s) =
sin(N + 1

2)s

sin s
2

=

N∑
n=−N

einx.

Exercise 28.5. (continued) Prove that as

ZN (x)→ π − x as N →∞

uniformly on every interval [δ, π] with δ > 0. Then determine

Z(x) = lim
N→∞

ZN (x)

for every x ∈ IR.

2See (28.11), this is the Dirichlet kernel.
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Exercise 28.6. (continued) The integral∫ x

0
DN (s)ds

has extrema in the zero’s of DN . The first maximum MN to the right of x = 0 is in

x =
π

N + 1
2

.

Show that

MN =

∫ π

N+ 1
2

0

sin(N + 1
2)s

sin s
2

ds = 2

∫ π

0

sin t

t

t
2N+1

sin t
2N+1

dt.

Exercise 28.7. (continued) Show that
t

2N+1

sin t
2N+1

→ 1,

uniformly on t ∈ [0, π].

Exercise 28.8. (continued) Show that

MN → 2

∫ π

0

sin t

t
dt

as N →∞.

Exercise 28.9. (continued) You must have seen3 the thoroughly improper integral∫ ∞
0

sin t

t
dt =

π

2
.

So now explain why the first maximum of ZN (x) to the right of x = 0 converges to

2

∫ π

0

sin t

t
dt > π = lim

x↓0
Z(x)

as N →∞.

Remark 28.10. Conclusion: the function sequence ZN converges pointwise
to the sawtooth function Z which is defined by being 2π-periodic, odd4, and
Z(x) = π − x for x between 0 and5 π, but its maxima and minima near 0

3Computed using the complex function eiz

z .
4So odd, draw a sawtooth picture of its graph.
5And thus also for 0 < x < 2π.
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and multiples of 2π over- and undershoot the values Z(0±) = ±π by a factor
of about 1.178979744.

28.2 Fourier series

We consider complex valued 2π-periodic continuous functions. The (com-
plex) vector space of all such functions is denoted by C2π. Piecewise contin-
uous functions as usually considered in this context are de facto functions of
the form

g(x) = f(x) +
m∑
k=1

AkZ(x− ξk) with f ∈ C2π and Ak ∈ IC, ξk ∈ (0, π),

and since we already understand Z and its Fourier series we may just as well
restrict our attention to f ∈ C2π.

Theorem 28.11. The space C2π of all 2π-periodic continuous f : IR→ IC is
a complete metric (complex vector) space with respect to the metric6

d(f, g) = max
x∈IR
|f(x)− g(x)|.

For f ∈ C2π we consider the Fourier series of f , namely the right hand
side of the ∼ symbol in

f(x) ∼
∞∑

n=−∞

cne
inx =

a0

2
+
∞∑
n=1

(an cosnx+ bn sinnx), (28.3)

in which

an =
1

π

∫ π

−π
f(x) cosnx dx, bn =

1

π

∫ π

−π
f(x) sinnx dx, (28.4)

cn =
1

2π

∫ π

−π
f(x)e−inx dx (28.5)

are the Fourier coefficients of f . In (28.3) we use the symbol ∼ because it is
hard to say in which sense the left and the right hand side are equal to one
another. We sometimes write

f(x) ∼
∞∑

n=−∞

f̂(n)einx, f̂(n) =
1

2π

∫ π

−π
f(x)e−inx dx, (28.6)

6Just like in Section 4.2.
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and we choose not to modify this notation.
The formulas for the coefficients contain integrals of complex valued func-

tions. At this point we may refer to Theorem 8.15 and the special case that
X = IC, but it is more effective to write f(x) = u(x) + iv(x), u, v real valued
and define ∫ π

−π
f︸ ︷︷ ︸

F

=

∫ π

−π
u︸ ︷︷ ︸

U

+i

∫ π

−π
v︸ ︷︷ ︸

V

, (28.7)

in which we momentarily use capitals for the values of the integrals. It is
easily checked that∫ π

−π
(f + g) =

∫ π

−π
f +

∫ π

−π
g and

∫ π

−π
λf = λ

∫ π

−π
f

if the f - and g-integrals exist and λ = α + iβ ∈ IC. In particular we can
choose λ ∈ IC with |λ| = 1 such that∫ π

−π
λf = λ

∫ π

−π
f = λF = (α + iβ)(U + iV ) ∈ IR

and therefore write

λF = (α + iβ)(U + iV ) =

∫ π

−π
(αu− βv).

Then∣∣ ∫ π

−π
f
∣∣ =

∣∣ ∫ π

−π
(αu− βv)

∣∣ ≤ ∫ π

−π
|αu− βv| ≤

∫ π

−π
|λf | =

∫ π

−π
|f | (28.8)

establishes the familiar triangle inequality also for complex valued integrals.
Of course you can also use n = 2 in Exercise 8.17 to come to the same
conclusion.

From here on we only use (28.5), which may be derived from considera-
tions involving complex version of the L2-inner product, but in what follows
we choose to take (28.5) for granted. Thus we forget about the Hilbert space
perspective and see what we can say about the N -th partial sum

S
N
f(x) =

N∑
n=−N

cne
inx =

a0

2
+

N∑
n=1

(an cosnx+ bn sinnx) (28.9)

of the Fourier series of f in (28.3). A calculation7 with complex exponential
geometric series then first tells us that

S
N
f(x) =

1

2π

∫ π

−π
D
N

(y)f(x− y) dy =
1

2π

∫ π

−π
D
N

(y)f(x+ y) dy, (28.10)

7You did it in Exercise 28.4, we’ll do it below for Fourier series of functions f(x, y).
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in which

D
N

(x) =
sin(N + 1

2
)x

sin 1
2
x

=
N∑

k=−N

eikx (28.11)

is called the Dirichlet kernel. We say that 2π S
N
f is the convolution of D

N

and f because of the first equality in (28.9), notation

2π S
N
f = D

N
∗ f.

The 2π-periodic function D
N

is called the Dirichlet kernel. For larger and
larger N it concentrates near 0, with a narrower and narrower peak, while
its integral remains constant and equal to 2π. That’s good. What’s bad is
that away from 0 it oscillates between maxima and minima which in absolute
value remain larger than 1 as N gets large. These properties will only allow
S
N
f(x) converge to f(x) if f is nicer than just being in the space C2π.
The average of D0, . . . , DN

however, which via another miraculous calcu-
lation with complex exponentials is equal to

F
N

(x) =
1

N + 1
(D0(x) + · · ·+D

N
(x)) =

1

N + 1

sin2 (N+1)x
2

sin2 x
2

, (28.12)

the 2π-periodic Féjer kernel, is much nicer. It is nonnegative, has integral
2π, and concentrates in 0 as N gets large, thereby forcing it to be small away
from multiples of 2π. Such functions are called good kernels. The following
not so very hard theorem explains why.

Theorem 28.12. Define

σ
N
f =

1

N + 1
(S0f + S1f + · · ·+ S

N
f) =

1

N + 1

N∑
n=0

Sn(f),

the so-called Cesàro sums of Snf . Then

σ
N
f(x) =

1

2π

∫ π

−π
F
N

(ξ)f(x− ξ)dξ, i.e. 2πσ
N
f = F

N
∗ f, (28.13)

and σ
N
f → f in C2π if f ∈ C2π. That is, the convergence is uniform.

Exercise 28.13. Let f ∈ C2π, let M = |f |
max

be the maximum of |f(x)| on IR,
and let ε > 0. Explain why there exists δ > 0 such that

|σN f(x)− f(x)| = 1

2π

∫ π

−π
FN (ξ)|f(x+ ξ)− f(x)|dξ ≤ ε+

2M

N + 1

1

sin2 δ
2

if |ξ| < δ. Hint: split the integral in 3 parts. Then prove Theorem 28.12.
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Exercise 28.14. Let ξ ∈ (0, π). Let Z(x) as in Exercise 28.5 and further be the
sawtooth function. Determine the Fourier coefficients of Z(x− ξ) and show that the
partial sums are equal to ZN (x− ξ). Describe their behaviour as N →∞.

28.3 Fourier series with multiple variables

Thanks to the multiplicative property of

exp(z) = ez

these results generalise to functions of more variables, with remarkably nice
multiplicative properties of the two convolution kernels (28.11) and (28.12)
in (28.14) and (28.16) below. To see how let f be in C2π(IR2), i.e. f(x, y) is
continuous in (x, y), and 2π-periodic in both x and y seperately . As before
we write

f(x, y) ∼
∞∑

m,n=−∞

cmne
i(mx+ny),

but now with

cmn =
1

(2π)2

∫ π

−π

∫ π

−π
f(x, y)e−i(mξ+nη) dξ dη.

We prepared for the arguments below by using dummy variables ξ and η
instead of x and y.

It follows that

S
MN
f(x, y) =

M∑
m=−M

N∑
n=−N

cmne
i(mx+ny) =

M∑
m=−M

N∑
n=−N

1

(2π)2

∫ π

−π

∫ π

−π
f(ξ, η)e−i(mξ+nη) dξ dη ei(mx+ny) =

1

(2π)2

∫ π

−π

∫ π

−π
f(ξ, η)

M∑
m=−M

N∑
n=−N

eim(x−ξ) eim(y−η) dξ dη =

1

(2π)2

∫ π

−π

∫ π

−π
f(ξ, η)

M∑
m=−M

eim(x−ξ)

︸ ︷︷ ︸
DM (x−ξ)

N∑
n=−N

ein(y−η)

︸ ︷︷ ︸
DN (y−η)

dξ dη,
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so

S
MN
f(x, y) =

1

(2π)2

∫ π

−π

∫ π

−π
f(x+ ξ, y + η)D

M
(ξ)D

N
(η) dξ dη, (28.14)

in which

DM(ξ) =
M∑

m=−M

eimξ =
e−iMξ − ei(M+1)ξ

1− eiξ
=

sin(M + 1
2
)ξ

sin 1
2
ξ

, (28.15)

and likewise

DN(η) =
sin(N + 1

2
)η

sin 1
2
η

.

Thus (28.14) generalises (28.10) to the 2-variable case, but it gets nicer
than just that. The averages

σ
MN
f(x, y) =

1

(M + 1)(N + 1)

M∑
m=0

N∑
n=0

Smnf(x, y) =

1

(2π)2

1

(M + 1)(N + 1)

M∑
m=0

N∑
n=0

∫ π

−π

∫ π

−π
f(x− ξ, y − η)Dm(ξ)Dn(η) dξ dη

1

(2π)2

1

(M + 1)(N + 1)

∫ π

−π

∫ π

−π
f(x− ξ, y − η)

M∑
m=0

Dm(ξ)
N∑
n=0

Dn(η) dξ dη

rewrite as

σ
MN
f(x, y) =

1

(2π)2

∫ π

−π

∫ π

−π
F
M

(ξ)F
N

(η)f(x+ ξ, y + η) dξ dη, (28.16)

in which

FM(ξ) =
1

M + 1

M∑
m=0

Dm(ξ) =
1

M + 1

sin2 (M+1)ξ
2

sin2 ξ
2

, (28.17)

as you should verify, and likewise for FN(η). Again it follows that

σ
MN
f → f in C2π(IR2) as M,N →∞,

and for sufficiently smooth f in C2π(IR2) that S
MN
f → f in C2π(IR2) because

once both limits exist8 they have to be the same. Clearly all this generalises
to f(x1, . . . , xn), f ∈ C2π(IRn):

8An easy variant of Exercise 2.58 is needed here.
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Theorem 28.15. Let f(x) = f(x1, . . . , xn) be complex valued and continuous
in x = (x1, . . . , xn), 2π-periodic in every xi. If the Fourier coeffients

cm = cm1...mn =
1

(2π)n

∫ π

−π
· · ·
∫ π

−π
f(x)e−i(m·x) dx1 · · · dxn

have the property that ∑
m

|cm| <∞,

then
f(x) =

∑
m

cme
i(m·x).

The convergence is uniform in x.

28.4 Derivation of the integral Fourier transform

I first discuss Fourier transform for functions of one variable. This starts
from the intuitive presentation in §7.1 of Olver’s PDE book, which I slightly
modify and then merge with the rigorous approach in Folland’s Real Analysis
book. It should be clear from the last part of the previous section that for
more variables the story is much the same. The arguments above and below
rely on the theory of Riemann integrals9 only.

So let f = f(x) be defined and continuous on the real line, and f(x) = 0
for |x| ≥ l. If the function F is defined by

F (y) = f(x),
x

l
=
y

π
,

we can write

F (y) ∼
∞∑

n=−∞

Cne
iny (28.18)

just as in (28.3) for f . Now assume that f and thus F is smooth. We
write the Fourier coefficients Cn = F̂ (n) of F (y) as η-integrals. It follows for
x ∈ [−l, l] that

f(x) = F (y) =
∞∑

n=−∞

1

2π

∫ π

−π
F (η)e−inηdη︸ ︷︷ ︸
F̂ (n)

einy,

in which the series is uniformly convergent, uniformly in y ∈ IR that is.

9And may come before measure theory and Lebesgue integrals.
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The Fourier series of f on the interval [−l, l] is obtained via scaling from
the uniformly convergent Fourier series of the 2π-periodic smooth extension
of the smooth function F . This gives

f(x) =
1√
2π

∞∑
n=−∞

π

l

1√
2π

∫ l

−l
f(ξ)e−i

nπ
l
ξ dξ︸ ︷︷ ︸

this is f̂(nπ
l

) if suppf ⊂ [−l,l].

ei
nπ
l
x (28.19)

for x ∈ [−l, l]. The underbraced term is de facto equal to10

1√
2π

∫∞
−∞ f(ξ)e−i

nπ
l
ξ dξ
↑

n∆k

for l sufficiently large. Here ξ is just a convenient dummy variable, and as
indicated we recognised

nπ

l
= n∆k as an integer multiple of

π

l
= ∆k.

Introducing the Fourier integral transform11 f̂ of f by

f̂(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikx dx =
1√
2π

∫ ∞
−∞

f(ξ)e−ikx dξ, (28.20)

the terms in the sum on the right hand side of (28.19) are

∆k f̂(n∆k) eixn∆k.

We now see that

f(x) =
1√
2π

∞∑
n=−∞

f̂(n∆k)eixn∆k ∆k, (28.21)

in which the sum looks like a Riemann sum12 for∫ ∞
−∞

f̂(k)eikx dk.

Note that we have changed the prefactor in order to have

f̂(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikx dx and f(x) =
1√
2π

∫ ∞
−∞

f̂(k)eikx dk

10We dealt with integrals over the whole line in Section 7.9. See Section 28.5 below.
11Note the notational difference between f̂(k) here and f̂(n) for Fourier coeffients.
12A series really.
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as the outcome of a limit argument for ∆k → 0.
Likewise it follows for l sufficiently large that∫ ∞

−∞
|f(x)|2 dx =

∞∑
n=−∞

|f̂(n∆k)|2 ∆k, (28.22)

which looks like a Riemann sum for∫ ∞
−∞
|f̂(k)|2 dk,

and the identities (28.21) and (28.22) remain valid if we increase l and thereby
decrease the step size ∆k. Both Riemann sums are independent of ∆k in the
limit ∆k → 0. Can we conclude that then both

f(x) and

∫ ∞
−∞
|f(x)|2 dx

are also equal to the corresponding k-integrals? The answer is yes if f̂(k) is
continuous and decays sufficiently fast as |k| → ∞, so as to make the tails
of both the k-integrals and the Riemann sums small. Then we can restrict
the convergence arguments13 to integrals and Riemann sums on bounded
k-intervals.

For smooth compactly supported functions f : IR→ IC such decay rates
are obtained using integration by parts. Since∫ ∞

−∞
f(x)e−ikx dx =

1

ik

∫ ∞
−∞

f ′(x)e−ikx dx =
1

(ik)2

∫ ∞
−∞

f ′′(x)e−ikx dx,

we have14

f̂(k) =
f̂ ′(k)

ik
=
f̂ ′′(k)

(ik)2
, (28.23)

and so on for the Fourier transforms of the derivatives of f . Therefore

|f̂(k)| ≤ 1√
2πk2

∫ ∞
−∞
|f ′′(x)| dx. (28.24)

For the limit ∆k → 0 in both (28.19) and (28.22) this suffices. The continuity
of f ′′ and the compact support of f thus imply all statements in the following
theorem, except for the one about the smoothness of f̂ , which follows from
Theorem 13.5 or Theorem 27.3.

13We rely on Exercise 28.2 here, and the identification of IR2 and IC.
14Because |eikx| = 1.
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Theorem 28.16. Let f : IR→ IC be in C2
c , i.e. f and f ′ are differentiable

on IR, f ′′ is continuous, and f has compact support15. Then (28.20) defines

a smooth function f̂ : IR→ IC satisfying the estimate

|f̂(k)| ≤ 1√
2π k2

∫ ∞
−∞
|f ′′(x)| dx =

|f ′′|
1√

2π k2

for every real k 6= 0, so

|f̂ |
1

=

∫ ∞
−∞
|f̂(k)| dk <∞.

Moreover,

f(x) =
1√
2π

∫ ∞
−∞

f̂(k)eikx dk and

∫ ∞
−∞
|f(x)|2 dx =

∫ ∞
−∞
|f̂(k)|2 dk.

Remark 28.17. Let C0∩L1 be the space of continuous functions f : IR→ IC
with f(x)→ 0 as |x| → ∞ and

∫∞
−∞ |f | <∞. The definition of f̂ in (28.20)

and the derivative formula’s

f̂(k) =
f̂ ′(k)

ik
=
f̂ ′′(k)

(ik)2

in (28.23), with the estimates

|f̂(k)| ≤ 1√
2π

∫ ∞
−∞
|f(x)| dx, |f̂(k)| ≤ 1√

2π|k|

∫ ∞
−∞
|f ′(x)| dx,

|f̂(k)| ≤ 1√
2πk2

∫ ∞
−∞
|f ′′(x)| dx,

are valid if f, f ′, f ′′ ∈ C0∩L1. These statements about f̂ follow via integration
by parts and the obvious estimates as before.

Exercise 28.18. Prove the statements in the Remark 28.17. What can you conclude
if also f ′′′ ∈ C0 ∩ L1?

Remark 28.19. If f is in C∞c , the class of smooth compactly supported

IC-valued functions16 on IR, it not only follows from Theorem 27.3 that f̂ is

15So f, f, f ′′ ∈ Cc.
16The test functions used in the theory of distributions.
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in C∞, but also that every derivative of f̂ is itself a Fourier transform. Along
the same lines as above we then have that

∀n∈IN0 ∀p∈IN0 ∃C>0 ∀k∈IR : |k|p |(f̂ )(n)(k)| ≤ C. (28.25)

Details will be given in Section 28.5 below, also for the stronger statement in
Theorem 28.20 about the so-called Schwarz class of functions in C∞ defined
by (28.25). In the less than optimal result

f ∈ C∞c =⇒ f̂ ∈ S

the conclusion f̂ ∈ S cannot be replaced by f̂ ∈ C∞c .

Theorem 28.20. The stronger implication

f ∈ S =⇒ f̂ ∈ S

holds for all f : IR→ IC.

28.5 Differentiation under integrals over the real line

In Section 7.9 we considered integrals over IR. It is necessary for the proof
of Theorem 28.25 to have a version of the statements in Section 27.2 for
integrals

J(t) =

∫ ∞
−∞

f(t, x) dx, t ∈ I, (28.26)

since

2π f̂(t) =

∫ ∞
−∞

f(x)e−itx dx =

∫ ∞
−∞

f(x) cos(tx) dx− i
∫ ∞
−∞

f(x) sin(tx) dx.

We discuss the real valued version of the statement we need first. It applies
to the two integrals on the right hand side just above if f is a continuous
real valued function for which ∫ ∞

∞

|xf(x)︸ ︷︷ ︸
f1(x)

| dx

exists17 as a real number via Definition 7.30. The statement then is that the
derivatives exist as integrals, namely

d

dt

∫ ∞
−∞

f(x) cos(tx) dx = −
∫ ∞
−∞

xf(x) sin(tx) dx,

17This is often sloppily formulated as
∫∞
−∞ |xf(x)| dx <∞.
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d

dt

∫ ∞
−∞

f(x) sin(tx) dx =

∫ ∞
−∞

xf(x) cos(tx) dx,

and are continuous in t. By the definition of the complex integrals in the
Fourier transforms this is equivalent

f̂
′
= −if̂1, f1(x) = xf(x), (28.27)

a formula which mirrors
f̂ ′ (k) = ikf̂(k).

Theorem 28.21. Let the improper Riemann integrals

J(t) =

∫ ∞
−∞

f(t, x) dx

be well defined for t in some interval I. Assume that g(t, x) = ft(t, x) is the
continuous partial derivative of f with respect to t and that |g(t, x)| ≤M(x)
for all ∈ IR and all t in some interval [a, b] ⊂ I. If∫ ∞

−∞
M

exists then

j(t) =

∫ ∞
−∞

g(t, x) dx

defines a function j ∈ C([a, b]), and J is a primitive function of j on [a, b].

Proof. Via Theorem 7.87 this j(t) is not only well defined as

j(t) = lim
R→∞

∫ R

−R
g(t, x) dx

for all t ∈ [a, b], but also the uniform ε-estimate

|j(t)−
∫ R

−R
g(t, x) dx| ≤ M̄ −

∫ R

−R
M(x) dx < ε (28.28)

holds for R sufficient large18. Since∫ t

s

∫ R

−R
g =

∫ R

−R

∫ t

s

g =

∫ R

−R
f(t, x) dx−

∫ R

−R
f(s, x) dx (28.29)

18Check this!
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for all s, t ∈ [a, b], we can write the difference j(t)− j(s) as

j(t)−
∫ R

−R
g(t, x) dx︸ ︷︷ ︸

<ε

+

∫ R

−R
g(t, x) dx−

∫ R

−R
g(s, x) dx+

∫ R

−R
g(s, x) dx− j(s)︸ ︷︷ ︸

<ε

.

With R already chosen via the uniform ε-estimate (28.28) the continuity
of g allows for a by now standard proof that the difference is less than 3ε
by choosing δ > 0 accordingly to have the middle term smaller than ε for
|t− s| < δ. Finish the proof by doing Exercise 28.22. �

Exercise 28.22. Use Theorem 10.10 to complete the proof. Hint: use (28.28),
(28.29) and

J(t) = lim
R→∞

∫ R

−R
f(t, x) dx

to show that ∫ t

s
j = J(t)− J(s).

Exercise 28.23. Use Exercise 8.17 and modified versions of (28.8) to formulate
and prove a version of Theorem 28.21 for complex valued functions. Use it to verify
(28.27) direclty.

28.6 The Fourier transform as a bijection

The pairing19

f̂(ξ) =
1√
2π

∫ ∞
−∞

f(x)e−iξx dx and f(x) =
1√
2π

∫ ∞
−∞

f̂(ξ)eiξx dξ (28.30)

discovered with (28.23) should of course define bijections between suitable

pairs of function spaces. Which function spaces X allow f ↔ f̂ as a bijection
between X and X itself?

To answer this question we first re-examine the definition

f̂(ξ) =
1√
2π

∫ ∞
−∞

f(x)e−iξx dx (28.31)

19I now prefer ξ as name for the Fourier variable.
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of f̂ . For f̂ to be well defined it certainly suffices that f is in C ∩ L1, i.e.

f : IR→ IC is continuous and |f |
1

=

∫
IR

|f | <∞. (28.32)

This is because

|f̂(ξ)| =
∣∣∣∣ 1√

2π

∫ ∞
−∞

f(x)e−iξx dx

∣∣∣∣ ≤ |f |1√
2π
.

Moreover, this estimate implies that if a sequence fn in C ∩ L1 is a Cauchy
sequence with respect to the 1-norm, then f̂n is a Cauchy sequence with
respect to the ∞-norm.

Theorem 28.24. The space C0 of continuous functions f : IR → IC with
f(x)→ 0 as |x| → ∞ is a Banach space with respect to the norm defined by

|f |
max

= max
x∈IR
|f(x)|.

The space C0 is a closed subspace of the space Cb of bounded continuous
functions f : IR→ IC, on which

|f |∞ = sup
x∈IR
|f(x)|

defines the norm. This space is also a Banach space, its norm reduces to the
maximum norm for f ∈ C0. The space Cb is contained in the vector space C
of all continuous functions f : IR→ IC, which is not a Banach space for any
reasonable choice of a norm. We write C0 ∩ L1 for C0 ∩C ∩ L1, the class of
functions f that satisfy (28.32).

Proposition 28.25. If f ∈ C ∩ L1 then f̂ ∈ C0. If we write

f(x) −̂→ f̂(ξ)

to say that f̂ is the Fourier transform of f , then for every y, η ∈ IR and a > 0
it holds that

eiηxf(a(x− y)) −̂→ 1

a
e−iyξf̂

(
ξ − η
a

)
, (28.33)

and
e−

1
2
x2 −̂→ e−

1
2
ξ2

.
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Proof. To prove that f̂ ∈ C0 we take a sequence of compactly supported
continuously differentiable functions fn with |fn − f |1 → 0. Then

√
2π |f̂n(ξ)− f̂(ξ)| =

∣∣∣∣∫ ∞
−∞

fn(x)e−iξx dx−
∫ ∞
−∞

f(x)e−iξx dx

∣∣∣∣ =

∣∣∣∣∫ ∞
−∞

(fn(x)− f(x))e−iξx dx

∣∣∣∣ ≤ ∫ ∞
−∞
|fn(x)− f(x))| = |fn − f |1 → 0,

so f̂n → f̂ uniformly on IR. Since for each n the integral∫ ∞
−∞

fn(x)e−iξx dx

reduces to an integral over a bounded closed interval [−Rn, Rn], the functions

f̂n are certainly continuous and thus f̂n → f̂ in Cb. Integration by parts
shows that

f̂n(ξ) =
f̂ ′n(ξ)

iξ
, whence |f̂n(ξ)| ≤

|f ′n|1
|ξ|

and f̂n ∈ C0.

Since C0 is closed in Cb it follows that f̂ ∈ C0. The statement in (28.33)
is easily checked. The exercises below deal with the statement about the
Fourier transform of the Gaussian. �

Exercise 28.26. Suppose that f has a continuous derivative f ′, and that f(x)→ 0
as |x| → ∞. Explain again that

iξf̂(ξ) =
1√
2π

lim
R→∞

∫ R

−R
f ′(x)e−iξx dx.

Thus the Fourier transform of f ′(x) is given by iξf̂(ξ) if
∫∞
−∞ |f

′| <∞.

Exercise 28.27. Show again that for f : IR→ IC with
∫∞
−∞ |f | <∞ the formula

d

dξ

∫ ∞
−∞

f(x)e−iξx dx = −i
∫ ∞
−∞

xf(x)e−iξx dx

is justified if in addition it holds that
∫∞
−∞ |xf(x)| dx <∞. Hint: use

| ∂
∂ξ
f(x)e−iξx| ≤ |xf(x)|.
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For such f the Fourier transform is thus differentiable and f̂
′

is the Fourier transform
of the function f1 defined bu

x
f1−→ −ixf(x).

Exercise 28.28. The function ua is defined by ua(x) = e−ax
2
. Use reasoning as

above to establish that the function v defined by v(a, ξ) = ûa(ξ) voor a > 0 and ξ ∈ IR
has a partial derivative with respect to a which is given by the Fourier transform of
x → −x2ua(x). Then show that v is a (smooth) solution of the partial differential
equation

∂v

∂a
=
∂2v

∂ξ2
,

a PDE that is known as the linear heat equation in space dimension 1.

Exercise 28.29. Show directly from the definition of ûa that v has the selfsimilar
form

v(a, ξ) = ûa(ξ) =
1√
a
û1(

ξ√
a

).

Exercise 28.30. Show that F = û1 satisfies the ordinary differential equation

(ODE) F ′′(η) +
1

2
ηF ′(η) +

1

2
F (η) = 0,

in which η = ξ√
a

, a so-called similarity variable .

Exercise 28.31. Show that

F (η) = F (0)e−
1
4
η2
.

Hint: F (0) and F ′(0) determine the solution of (ODE) uniquely. Why is F ′(0) = 0?

Exercise 28.32. Determine F (0) and thereby ûa for every a > 0. Verify the last
statement in Proposition 28.25.

450



Proposition 28.33. Let f, g ∈ C ∩ L1. Then f̂ , ĝ ∈ C0 and∫ ∞
−∞

f̂(ξ)g(ξ) dξ =

∫ ∞
−∞

f(x)ĝ(x) dx,

in which

ĝ(x) =
1√
2π

∫ ∞
−∞

g(ξ)e−iξx dξ.

Proof. We have that

√
2π

∫ ∞
−∞

f̂(ξ)g(ξ) dξ =

∫ ∞
−∞

∫ ∞
−∞

f(x)e−iξx dx g(ξ) dξ

exists because f̂ ∈ C0 and g ∈ C ∩ L1. But∫ ∞
−∞

∫ ∞
−∞

f(x)e−iξx dx g(ξ) dξ =

∫ ∞
−∞

∫ ∞
−∞

f(x)g(ξ)e−iξx dx dξ.

because f, g ∈ C ∩ L1. Changing the order20 of integration and using that
ĝ ∈ C0 and f ∈ C ∩L1 the statement in the proposition follows by reversing
the roles of x and ξ, and of f and g. �

Theorem 28.34. Let

X = {f ∈ C0 ∩ L1 : f̂ ∈ C0 ∩ L1}. (28.34)

Then C2
c ⊂ X, so X is nonempty. The Fourier transform is a bijection

between X and itself in the sense that

g(ξ) =
1√
2π

∫ ∞
−∞

f(x)e−iξx dx ⇐⇒ f(x) =
1√
2π

∫ ∞
−∞

g(ξ)eixξ dξ (28.35)

for all f, g ∈ X. In particular the equalities in (28.35) and (28.30) hold
pointwise for every x and every ξ when f is in X. Moreover,∫ ∞

−∞
|f̂(ξ)|2 dξ =

∫ ∞
−∞
|f(x)|2 dx ≤ |f |

max
|f |

1
,

so the bijection uniquely extends to the completion of C2
c with respect to the

2-norm, regardless of how that completion is defined: abstractly or in some
larger space constructed by other means.

20Why is this allowed? You know it for integrals of continuous functions over rectangles.
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Proof. We observe that X contains C2
c because of Theorem 28.16 in Section

28.4.This statement is independent of the rest of the theorem, which we prove
next. So let g be defined by the left hand side of (28.35). Note that f̂ ∈ C0

because of Proposition 28.25. In this context the extra assumption f̂ ∈ L1 is
equivalent to the existence of ∫ ∞

−∞
|f̂ |

as a number in IR. This is needed when we apply Proposition 28.33 with the
function g(ξ) and ĝ(x) that appear there21 replaced by the functions on both
sides of this application:

eiηξe−
1
2
a2ξ2 −̂→ 1

a
e−

1
2a2 (x−η)2

.

The left hand side of the equality Proposition 28.33 then evaluates as∫ ∞
−∞

f̂(ξ)eiηξe−
1
2
a2ξ2

dξ →
∫ ∞
−∞

f̂(ξ)eiηξ dξ

for a→ 0, the limit statement holding thanks to f̂ ∈ L1.
The right hand side of the equality in Proposition 28.33 becomes∫ ∞

−∞
f(x)

1

a
e−

1
2a2 (x−η)2

dx =

∫ ∞
−∞

1

a
e−

1
2a2 x

2

f(η − x) dx.

Exercise 28.35. Put a2 = 2t to recognise, up to a usual factor, the solution
formula for the partial differential equation ut = uxx with initial data u(0, x) = f(x)
by convolution with the (heat) kernel

Et(x) =
1

2
√
πt
e−

x2

4t .

This is very much like Exercise 28.13 for (28.13). Prove for this good kernel that
Et ∗ f → f uniformly22 as t ↓ 0 for every f ∈ C0. Get the prefactor right to conclude
that the right hand side of (28.35) holds.

This finishes the proof of =⇒ in (28.35). The proof of ⇐= in (28.35) is of
course similar. �

21Not to be confused with the g in (28.35).
22For the pointwise convergence f ∈ Cb ∩ L1 more than suffices.
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Remark 28.36. If we denote the space of measurable complex valued Lebesgue
measurable integrable functions by L1, then

f ∈ L1 =⇒ f̂ ∈ C0.

There is no point in considering possible versions of Theorem 28.34 with C0

replaced by Cb or even C in (28.34). By itself, the assumption f ∈ C ∩L1 is
sufficient to conclude

f(x) =
1√
2π

∫ ∞
−∞

f̂(ξ)eixξ dξ. (28.36)

Remark 28.37. The bijection

F : X → X, F(f) = f̂

extends to an isometry
F : L2 → L2

because X is dense in the Hilbert space L2 of complex Lebesgue measurable23

functions with finite 2-norm. Upto a reflection in x, this map is its own
inverse. For all f, g ∈ L2 we have∫ ∞

−∞
f(x) g(x) dx =

∫ ∞
−∞

f̂(ξ) ĝ(ξ) dξ, (28.37)

which you should compare to Theorem 28.33. If f ∈ L1 ∩ L2 we can copy
(28.20), replacing the integral by a Lebesgue integral.

Theorem 28.38. The space X contains the Schwarz class S. Thus (28.30)
defines a bijection on S and we have

g(ξ) =
1√
2π

∫ ∞
−∞

f(x)e−iξx dx ⇐⇒ f(x) =
1√
2π

∫ ∞
−∞

g(ξ)eixξ dξ

for all f, g in S, just as in (28.35) for f, g in X.

Proof. Theorem 28.20 implies that S itself maps to S. Therefore both f
and f̂ are in C0 ∩ L1 if f ∈ S, and (28.35) holds for f, g ∈ S. �

23In Chapter 31 we indicate how for all practical purposes this concept may be avoided.
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28.7 Connection with probability theory

Considering the Fourier transform

f → φ = f̂

on L2 we have that
|f |

2
= 1 ⇐⇒ |φ|

2
= 1,

in which case both x→ |f(x)|2 and ξ → |φ(ξ|2 are probability distributions,
say of the stochastic variables X and Ξ, with possibly great expectations

EX =

∫ ∞
−∞

x |f(x)|2 dx and E Ξ =

∫ ∞
−∞

ξ |φ(ξ)|2 dξ,

if these integrals exist. If so, then the exponential factors in

eiηxf(x− y) −̂→ e−iyξφ(ξ − η)

don’t change X and Ξ but the shifts do. They change X and Ξ in y+X and
η + Ξ and can therefore be chosen to put the expectations equal to zero.

In questions about variances we can thus restrict our attention to stochas-
tic variables X and Ξ with zero expectation. Integrating the integral for the
squared 2-norm of f by parts with the 1-trick24 to get

1 =

∫ ∞
−∞
|f(x)|2 dx =

[
x f(x)f(x)

]∞
−∞
−
∫ ∞
−∞

x
(
f ′(x)f(x) + f(x)f ′(x)

)
dx

= −(f ′, f1)− (f ′, f1) ≤ 2|f ′|
2
|f1|2 = 2 |φ1|2 |f1|2 ,

in which f1, φ1 are defined by

f1(x) = xf(x) and φ1(x) = xφ(x).

Note that with this notation the rules for the derivatives of φ ∈ S are

φ̂
′
= −i φ̂1 and φ̂′ = i φ̂ 1.

Since ∫ ∞
−∞
|f1(x)|2 dx =

∫ ∞
−∞
|x|2 |f(x)|2 dx,∫ ∞

−∞
|φ1(x)|2 dx =

∫ ∞
−∞
|x|2 |φ(x)|2 dx,

24Recall
∫ x

1
ln s ds =

∫ x
1

1 ln s ds = [s ln s]x1 −
∫ x

1
s 1
s ds = x lnx+ x− 1.
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this establishes the estimate

4EX2E Ξ2 ≥ 1

for the product of the variations of X and Ξ. For the standard deviations
the conclusion is that

2σ(X)σ(Ξ) ≥ 1, (28.38)

which corresponds to the Heisenberg Uncertainty Principle.

28.8 Convolutions and Fourier solution methods

Both Fourier series and Fourier integrals are called Fourier transforms. In
both cases we can ask about the Fourier transform of a convolution f∗g and of
a product fg. Statements about products can of course be obtained using the
inverse transform but below we discuss a more direct approach. Statements
about convolutions are somewhat easier, and in the context of solving linear
differential equations with constant coefficients they are extremely useful.

For example, the ordinary differential quation

−u′′(x) + u(x) = f(x) (28.39)

transforms to the algebraic equation

(ξ2 + 1) û(ξ) = f̂(ξ), so û(ξ) =
1

1 + ξ2
f̂(ξ).

As you will find out in Exercise 28.42 below, the solution of the ODE is found
by taking the convolution of the inverse of

1

1 + ξ2

with f itself, with some π-dependent prefactor. And likewise for problems
in which x is taken modulo 2π, which we discuss first. Indeed, if we solve
the same equation for f ∈ C2π, then the solution will have to be in C2

2π,
because differentiability of u′ implies that u′ is continuous and thereby that
u is continuous. But then25 u′′ = f−u is also continuous, so we know a priori
that the Fourier coefficients û(n) must have a quadratic decay. Indeed,

û′′(n) = n2û(n)

25This line of reasoning only works for ordinary differential equations unfortunately.
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and therefore the differential equation becomes the algebraic equation

(1 + n2) û(n) = f̂(n) whence û(n) =
1

1 + n2︸ ︷︷ ︸
=ĝ(n)?

f̂(n).

Now recall that the convolution of two 2π-periodic integrable functions is
defined by

(f ∗ g)(x) =

∫ π

−π
f(x− y)g(y) dy =

∫ π

−π
f(y)g(x− y) dy (28.40)

whenever one of these integrals has a meaning for (almost) all x, which is
certainly the case if f, g ∈ C2π. Alternatively, read the next calculation
backwards to discover why we introduce f ∗ g. Either way, we have∫ π

−π
(f ∗ g)(x) e−inx dx =

∫ π

−π

∫ π

−π
f(x− y)g(y) dy e−inx dx

=

∫ π

−π

∫ π

−π
f(x− y)g(y) e−inx dy dx

=

∫ π

−π

∫ π

−π
f(x− y)g(y) e−in(x−y) e−iny dx dy

=

∫ π

−π

∫ π

−π
f(x)g(y) e−inx e−iny dx dy =

∫ π

−π
f(x) e−inx dx︸ ︷︷ ︸

2πf̂(n)

∫ π

−π
g(y) e−iny dy︸ ︷︷ ︸

2πĝ(n)

.

Upto an annoying factor 2π the Fourier coefficients of f ∗ g are the products
of the Fourier coefficients of f and of g. This allows to conclude that the
statement in this theorem holds.

Theorem 28.39. Let f, g ∈ C2π. Then

(f ∗ g)(x) = 2π
∞∑

n=−∞

f̂(n)ĝ(n)einx for all f, g ∈ C2π, (28.41)

in which 2πf̂(n)ĝ(n) are the complex Fourier coefficients of f ∗ g. The right
hand side is uniformly convergent because

|f̂ ĝ|
1

=
∞∑

n=−∞

|f̂(n)ĝ(n)| ≤

√√√√ ∞∑
n=−∞

|f̂(n)|2

√√√√ ∞∑
n=−∞

|ĝ(n)|2 = |f̂ |
2
|ĝ|

2
.
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Summing up, the Fourier coefficients of f ∗ g were obtained by direct calcu-
lation, and the Fourier series converges uniformly because

|f̂ ĝ|
1
≤ |f̂ |

2
|ĝ|

2
.

For our above solution u all this leads to

u = G ∗ f, G(x) =
1

2π

∑
n∈ IZ

1

1 + n2
einx =

1

π

(
1

2
+
∞∑
n=1

cosnx

1 + n2

)
. (28.42)

We note that this avoids the use of solutions with f replaced by the Dirac
δ-function. In principal we can avoid distributions altogether when using
Fourier transformations to solve linear differential equations with constant
coefficients. But if we don’t we come to realise that the solutions of equations
such as −u′′(x) + u(x) = δ(x) fit nicely in the mathematical theory that
combines Fourier transformations and distributions.

We very briefly touch upon this theory in Section 28.9 and illustrate the
advantage of the use of the δ-function with an example. Usually way before
this theory is well understood, solutions of equations with δ as the inhomo-
geneous term on the right hand side are computed using smooth solutions
of the homogeneous equation with a singularity in x = 0. In the 2π-periodic
case for −u′′(x) +u(x) = δ(x) this means a negative jump in the first deriva-
tive at x = 0 (and in the other integer multiples of 2π), because u′′ = u− δ,
and the “integral” of δ(x) over any interval (−ε, ε) is equal to 1. Combined
with symmetry and 2π-periodicity this then implies that26 the solution of
(28.39) with f(x) replaced by δ(x) is given by

u(x) = G(x) =
cosh(x− π)

2 sinhπ
for 0 ≤ x ≤ 2π,

and you easily check that indeed27

u(x) = G(x) =
∑
n∈ IZ

einx

n2 + 1
for all x ∈ IR.

Apparently we have that in the class of 2π-periodic functions the solution
operator for (28.39) maps f = δ to G.

Next we consider the Fourier coefficients of fg. This is more difficult.
Again

f(x) ∼
∞∑

n=−∞

f̂(n)einx and g(x) ∼
∞∑

n=−∞

ĝ(n)einx

26You may like to compare −G′(x+ π) to the sawtooth in Z(x) in Section 28.1.
27Draw the 2π-periodic graph and compute 2πĜ(n) as

∫ 2π

0
cosh(x− π) e−inx dx.
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have a clear meaning if

|f̂ |
1

=
∞∑

n=−∞

|̂f(n)| <∞ and |ĝ|
1

=
∞∑

n=−∞

|ĝ(n)| <∞, (28.43)

because then the right hand sides in

f(x) =
∞∑

n=−∞

f̂(n)einx and g(x) =
∞∑

n=−∞

ĝ(n)einx,

are both uniformly absolutely convergent Fourier series. This justifies the
calculation f(x)g(x) =

∞∑
k=−∞

f̂(k)eikx
∞∑

m=−∞

ĝ(m)eimx =
∞∑

n=−∞

∑
k+m=n

f̂(k)ĝ(m)︸ ︷︷ ︸ e
inx, (28.44)

so if (28.43) holds it must be that the underbraced factor is the n-th Fourier
coefficient of fg. We rewrite this factor as∑

k+m=n

f̂(k)ĝ(m) =
∞∑

k=−∞

f̂(k)ĝ(n− k), (28.45)

a discrete convolution. For its partial sums we have that

(2π)2

N∑
k=−N

f̂(k)ĝ(n− k) =
N∑

k=−N

∫ π

−π
f(x)e−ikx dx

∫ π

−π
g(y)e−i(n−k)y dy

=
N∑

k=−N

∫ π

−π

∫ π

−π
f(x)e−ik(x−y) dx g(y) e−iny dy

=

∫ π

−π

∫ π

−π
f(x+ y)

N∑
k=−N

e−ikx dx︸ ︷︷ ︸
in view of (28.10) this is 2π SNf(y)

g(y) e−iny dy, (28.46)

so the conclusion should be that

N∑
k=−N

f̂(k)ĝ(n− k) =
1

2π

∫ π

−π
SNf(y)g(y) e−iny dy (28.47)

→ 1

2π

∫ π

−π
f(y)g(y) e−iny dy
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as N →∞. This only requires∫ π

−π
(SNf(y)− f(y))g(y) e−iny dy → 0 as N →∞,

which is the case if |SNf − f |
1
→ 0, which in turn is a consequence of

|SNf − f |2 ≤ |σNf − f |2 → 0. We have proved the following theorem.

Theorem 28.40. Let f, g ∈ C2π. Then the complex Fourier coefficients of
fg are given by

1

2π

∫ π

−π
f(y)g(y) e−iny dy =

∞∑
k=−∞

f̂(k)ĝ(n− k). (28.48)

Now let f, g ∈ Cb∩L1. Then for the Fourier transform of the convolution28

f ∗ g(x) =

∫ ∞
−∞

f(x− y)g(y) dy =

∫ ∞
−∞

f(y)g(x− y) dy (28.49)

we need to examine ∫ ∞
−∞

∫ ∞
−∞

f(x− y)g(y) dy e−iξx dx

=

∫ ∞
−∞

∫ ∞
−∞

f(x− y)g(y) e−iξx dy dx

=

∫ ∞
−∞

∫ ∞
−∞

f(x− y)g(y) e−iξ(x−y) e−iξy dx dy =∫ ∞
−∞

∫ ∞
−∞

f(x)g(y) e−iξx e−iξy dx dy =∫ ∞
−∞

f(x) e−iξx dx

∫ ∞
−∞

g(y) e−iξy dy = 2πf̂(ξ)ĝ(ξ).

We will need some estimates for convolutions that follow from estimates for

F (x) = Kf(x) =

∫ ∞
−∞

K(x, y)f(y) dy, (28.50)

in which K(x, y) is continuous with∫ ∞
−∞
|K(x, y)| dx ≤ C and

∫ ∞
−∞
|K(x, y)| dy ≤ C

28See Exercise 7.90.
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for all x, y ∈ IR and some fixed C > 0. For f ∈ Cb ∩ L1 we have

|F (x)| ≤
∫ ∞
−∞
|K(x, y)| |f(y)| dy ≤

∫ ∞
−∞
|K(x, y)| dy |f |∞ ≤ C |f |∞ ,

and also

|F |
1

=

∫ ∞
−∞
|
∫ ∞
−∞

K(x, y)f(y) dy| dx ≤
∫ ∞
−∞

∫ ∞
−∞
|K(x, y)f(y)| dy dx

=

∫ ∞
−∞

∫ ∞
−∞
|K(x, y)f(y)| dx dy =

∫ ∞
−∞

∫ ∞
−∞
|K(x, y)| dx |f(y)| dy

≤ C

∫ ∞
−∞
|f(y)| dy = C|f |

1
.

You should check that in fact F ∈ Cb ∩ L1. These estimates can be applied
to (28.49) with K(x, y) = f(x− y) or K(x, y) = g(x− y), all this proves the
following theorem about f ∗ g.

Theorem 28.41. Let f, g ∈ C ∩L1. Then the convolution f ∗ g, defined by

(f ∗ g)(x) =

∫ ∞
−∞

f(x− y)g(y) dy =

∫ ∞
−∞

f(y)g(x− y) dy, (28.51)

is in C ∩ L1 as well, and its Fourier transform is given by

f̂ ∗ g(ξ) =
√

2πf̂(ξ)ĝ(ξ). (28.52)

Since both f̂ and ĝ are in C0 also their product is. If g is bounded then f ∗ g
is bounded and in L1, f̂ ∗ g is integrable and

|f̂ ∗ g|
1
≤
√

2π|f̂ ĝ|
2

=
√

2π|f̂ g|
2
≤
√

2π|f̂ |
1
|g|∞ ,

and finally Remark 28.36 applies to give

f ∗ g(x) =

∫ ∞
−∞

f̂(ξ)ĝ(ξ) eixξ dξ.

Next we consider the Fourier transform of the product fg. For f, g ∈ X
as in (28.34) we have

2πf(x)g(x) =

∫ ∞
−∞

f̂(k)eikx dk

∫ ∞
−∞

ĝ(m)eimx dm

=

∫ ∞
−∞

∫ ∞
−∞

f̂(k)ĝ(m) ei(k+m)x dmdk
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=

∫ ∞
−∞

∫ ∞
−∞

f̂(k)ĝ(m− k) ei(k+m−k)x dmdk

=

∫ ∞
−∞

∫ ∞
−∞

f̂(k)ĝ(m− k) dk eimx dm

=

∫ ∞
−∞

(f̂ ∗ ĝ)(m) eimx dm,

so

f(x)g(x) =
1√
2π

∫ ∞
−∞

1√
2π

(f̂ ∗ ĝ)(m)︸ ︷︷ ︸ dm,
Let us check when the underbraced term is indeed

f̂ g(m) =
1√
2π

(f̂ ∗ ĝ)(m). (28.53)

So let f, g ∈ C ∩ L1.
A direct calculation in the spirit of what followed after (28.45) gives that

2π

∫ R

−R
f̂(k)ĝ(m− k) dk =

∫ R

−R

∫ ∞
−∞

f(x)e−ikx dx

∫ ∞
−∞

g(y)e−i(m−k)y dy dk

=

∫ R

−R

∫ ∞
−∞

∫ ∞
−∞

f(x)e−ikxg(y)e−i(m−k)y dx dy dk

=

∫ R

−R

∫ ∞
−∞

∫ ∞
−∞

f(x+ y)e−ikxg(y)e−imy dx dy dk

=

∫ ∞
−∞

∫ R

−R

∫ ∞
−∞

f(x+ y)e−ikx dx dk g(y)e−imy dy,

=

∫ ∞
−∞

∫ ∞
−∞

f(x+ y)

∫ R

−R
e−ikx dk dx︸ ︷︷ ︸ g(y)e−imy dy,

which you should compare to (28.46), in which the underbraced factor equals∫ π

−π
f(x+ y)

N∑
k=−N

eikx dx =

∫ π

−π
f(x+ y)

sin(N + 1
2
)x

sin x
2

dx with f ∈ C2π.

Here the underbraced factor equals∫ ∞
−∞

∫ R

−R
f(x+ y)eikx dk dx =

∫ ∞
−∞

f(x+ y)
sinRx

x
2

dx with f ∈ C ∩ L1.
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It’s a nice exercise to generalise the analysis of SNf , which used

1

N + 1

N∑
n=0

Dn(x)

to the analysis of ∫ ∞
−∞

f(x+ y)
sinRx

x
2

dx,

using also
1

R

∫ R

0

sin rx
x
2

dr,

and arrive at the conclusion that (28.53) holds for f, g ∈ C ∩ L1.

Exercise 28.42. Consider again (28.39), but now in the class of integrable func-
tions. Follow the same reasoning as for 2π-periodic functions, relating to Theorem
28.41 instead of Theorem 28.39. You should arrive at

u(x) = G(x) = exp(−|x|
2

)

as the solution with f = δ. What would δ̂ and Ĝ be?

28.9 Remark on Fourier transforms of distributions

This section could build on an earlier section not included here yet about
the distributional definition of generalised functions such as the δ-function29.
With Proposition 28.33 we showed that f, φ ∈ C ∩L1 implies f̂ , φ̂ ∈ C0 and

〈f̂ , φ〉 =

∫ ∞
−∞

f̂(ξ)φ(ξ) dξ =

∫ ∞
−∞

f(x)φ̂(x) dx = 〈f, φ̂〉, (28.54)

in which we use the notation

〈f, g〉 =

∫ ∞
−∞

fg. (28.55)

So certainly (28.54) holds for all φ ∈ S if f ∈ C ∩ L1. We now take (28.54)

as the defining property of f̂ : S → IC if f : S → IC is a linear functional

φ→ 〈f, φ〉
29And solutions of equations like u− u′′ = δ.
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defined for φ ∈ S. Likewise the definition of the weak derivative f ′ copies

〈f ′, φ〉 =

∫ ∞
−∞

f ′(x)φ(x) dx = −
∫ ∞
−∞

f(x)φ′(x) dx = −〈f, φ′〉 (28.56)

for e.g. f, φ ∈ C1 ∩ C0 to define the linear functional f ′ : C∞c → IC by30

〈f ′, φ〉 = −〈f, φ′〉, (28.57)

which is well defined for every linear functional f on C∞c . It may happen
that f ′ is in fact a function of course.

Exercise 28.43. Examine what the above definition of f ′ gives if f is given by the
function defined by f(x) = |x| for all x ∈ IR. Characterise f ′′ as well before your read
on.

An example of such a linear functional is δs defined by

〈δs, φ〉 = φ(s).

We note that δs is often written as (not the) function

δs(x) = δ(x− s) = δ(s− x),

with the convolution rule that∫
f(s)δ(x− s) ds = f(x),

a rule we may like to make precise as the outcome of∫
f(s)δs ds being equal to f when acting on φ.

This requires the integral to be defined in a dual31 space X∗ of some space
X for φ, via its action on the space for φ as

〈
∫
f(s)δs ds, φ〉 =

∫
〈f(s)δs, φ〉 ds =

∫
f(s)φ(s) ds = 〈f, φ〉.

If so then we have∫
f(s)δs ds = f, informally written in turn as

∫
f(s)δ(x−s) ds = f(x).

Solving equations like (28.39) with right hand side δs we obtain a Green’s
function Gs and can then actually prove that the convolution of Gs and f
solves (28.39) with right hand side f .

30For (28.54) the assumption on f is stronger, it needs to be a linear functional on S.
31A space of all Lipschitz continuous linear functions from some normed space X to IR.
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28.10 Playing with Fourier series solutions of PDE’s

Recall from (28.3) that we write

f(x) ∼
∞∑

n=−∞

cne
inx =

a0

2
+
∞∑
n=1

(an cosnx+ bn sinnx),

with

an =
1

π

∫ π

−π
f(x) cosnx dx, bn =

1

π

∫ π

−π
f(x) sinnx dx,

cn =
1

2π

∫ π

−π
f(x)e−inx dx

for 2π-periodic integrable functions. For 2π-periodic continuous functions it
is in general not true that

f(x) =
∞∑

n=−∞

cne
inx =

a0

2
+
∞∑
n=1

(an cosnx+ bn sinnx)

for every x, as we only have square summability of the coefficients, which
(therefore certainly) go to zero as n→∞.

Exercise 28.44. Let f be such a 2π-periodic continuous function. Show that

u(t, x) =
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) exp(−n2t)︸ ︷︷ ︸
e−n2t

defines a smooth solution u(t, x) of ut = uxx defined for all x ∈ IR and for all t > 0.
Use the boundedness of the Fourier coefficients.

Exercise 28.45. Let again f be a 2π-periodic continuous function. Show that polar
coordinates x = r cos θ, y = r sin θ and

u(x, y) =
a0

2
+

∞∑
n=1

(an cosnθ + bn sinnθ)rn

define a smooth solution of uxx + uyy = 0 defined for all x, y ∈ IR with x2 + y2 < 1.
Use the formula’s for the coefficients an and bn to show that

u(x, y) =
1

2π

∫ π

−π
Pr(θ − φ)f(φ) dφ,
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in which the 2π-periodic symmetric good Poisson kernel Pr is defined by

Pr(φ) = 1 + 2

∞∑
n=1

rn cos(nφ) =
1− r2

1 + r2 − 2r cosφ

and ranges between

1 + r

1− r
and

1− r
1 + r

in φ = 0 and φ = π.

Exercise 28.46. Use ∫ π

−π
Pr = 2π

and the estimate

Pr(ψ)︸ ︷︷ ︸
→0 as r↑1

≥ Pr(φ) ≥ 1− r
1 + r

> 0 for 0 < ψ ≤ φ ≤ π

to show for v defined by

v(r, φ) = 1 + 2
∞∑
n=1

rn cos(nφ)

that v(r, φ)→ f(φ0) if r → 1 and φ→ φ0. Hint: show that

|v(r, φ)− f(φ0)| =
∣∣ 1

2π

∫ π

−π
Pr(θ − φ)(f(φ)− f(φ0)) dφ

∣∣ < ε

if |φ− φ0| < δ and 0 < 1− r < δ with δ > 0 depending on ε > 0. This is a stronger
statement than in Exercise 28.13 for convolution with the good kernel FN .

Exercise 28.47. Formulate and prove that stronger statement in Exercise 28.13.

Remark 28.48. Let again f be a 2π-periodic continuous function. Is it true
that

u(t, x) =
a0

2
+
∞∑
n=1

(an cosnx+ bn sinnx)e−n
2t =

1

2π

∫ π

−π
Ht(x− y)f(y) dy
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for x ∈ IR and t > 0, with a heat kernel Ht that has properties similar to that
of Pr? Clearly Ht should be given by

Ht(x) = 1 + 2
∞∑
n=1

e−n
2t cos(nx),

but there is no complex geometric series calculation that gives an expression
for the sum of the series.

Exercise 28.49. Show that

1 + 2

N∑
n=1

rn cos(nφ) = Pr(φ) + 2rN+1 r cosNφ− cos(N + 1)φ

1 + r2 − 2r cosφ

=
1− r2 + 2rN+1(r cosNφ− cos(N + 1)φ)

1 + r2 − 2r cosφ

and examine sign and size of these partial sums for r close to 1. Check that for r = 1
this sum reduces to the Dirichlet kernel (28.11).

Remark 28.50. In view of Exercise 28.49 we cannot expect to see the good
properties of Ht in Exercise 28.48 from its partial sums. But recall that in
Exercise 28.35 we encountered32

Et(x) =
1

2
√
πt
e−

x2

4t and u(t, x) =

∫
IR

Et(x− y)f(y) dy

for ut = uxx evaluates for 2π-periodic continuous f as

u(t, x) =
∑
n∈ IZ

∫ (2n+1)π

(2n−1)π

Et(x− y)f(y) dy =
∑
n∈ IZ

∫ π

−π
Et(x− y − 2nπ)f(y) dy

=

∫ π

−π

∑
n∈ IZ

Et(x− 2nπ − y)f(y) dy,

which strongly suggests that

1

2π
Ht(x) =

∑
n∈ IZ

Et(x− 2nπ)

whence

Ht(x) = 1 + 2
∞∑
n=1

e−n
2t cos(nx) =

√
π

t

∑
n∈ IZ

e−
(x−2nπ)2

4t

would follow. How would you prove this? Plot some partial sums.
32Show that Et ∗ f → f uniformly if f is uniformly continuous.
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28.11 Fast Fourier Transform

These are rough notes for a session of JB’s numerics course I took over a few
years ago. For AUC students as I remember. My first encounter with the
subject. Consider an L-periodic function f = f(t). Write

f(t) =
∞∑

k=−∞

cke
2πkit
L , ck =

1

L

∫ L

0

f(t)e−
2πkit
L dt

If we only know f(t) in the points t = 0, L
N
, 2L
N
, 3L
N
, . . . then the obvious

approximation for ck is

c̃k =
1

L

N−1∑
j=0

L

N
f(
jL

N
)e−

2πki
jL
N

L =
1

N

N−1∑
j=0

f(
jL

N
)e−

2πjki
N

This involves precisely N samples of f .
An approximation of f(t) with ck replaced by c̃k does not make sense

since the c̃k are N -periodic in k. Therefore

f(t) 6≈
∞∑

k=−∞

c̃ke
2πkit
L

since the latter is not defined. However, the natural finite sum with ck
replaced by c̃k does a perfect job in t = mL

N
:

N−1∑
k=0

c̃ke
2πkim L

N
L =

N−1∑
k=0

1

N

N−1∑
j=0

f(
jL

N
)e−

2πjki
N e

2πkmi
N = f(

mL

N
)

This follows by changing the order of summation and the fact that

N−1∑
k=0

e−
2πjki
N e

2πkmi
N = Nδjm

NB. Summing over a sequence k symmetric around k = 0 would perhaps
look more natural in terms of the usual convergence results for

n∑
k=−n

cke
2πkit
L → f(t),

as n→∞. But for the sample points there is no difference.
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For MatLab reasons we number the values of f in t = 0, L
N
, 2L
N
, 3L
N
, . . . as

f1, f2, . . . , fN and write Fk = Nc̃k−1. The relation between the N -vectors F
and f is then given by

F = Ωf, Ωjk = ω(j−1)(k−1) (j, k = 1, . . . , N), ω = e−
2πi
N

To go from f to F thus takes N2 multiplications and additions, but this can
be improved!

First note that if N = 2n is even, we can set

ω̃ = ω2, Ω̃jk = ω̃(j−1)(k−1) (j, k = 1, . . . , n)

and decompose the vector f in fo = (f1, f3, . . . , fN−1) and fe = (f2, f4, . . . , fN).
Reshuffling the rows of Ω accordingly we find for F+ = (F1, F2, . . . , Fn) and
F− = (Fn+1, Fn+2, . . . , F2n) that

F+ = Ω̃fo +DΩ̃fe, F− = Ω̃fo −DΩ̃fe,

in which D is a diagonal matrix with entries ωj−1 with j = 1, . . . , n. We used
ωn = −1 here.

If N = 2p then we can use this reduction to recursively compute F in p
steps, each of which contains approximately 2p operations. This is because
the lenght of the vectors involved in each step times the number of vectors
involved in each step remains the same. This way the order of the number
of computations required for F is about N log2N .
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29 The Fredholm alternative

This chapter is about solutions x of Ax = y when A : X → X is linear and
continuous, X a real Banach space, y ∈ X given, X not finite-dimensional.
The Fredholm alternative1 extends what you may know2 for square matrices
A to more general A of the form A = I −K, K : X → X having a suitable
compactness property, I : X → X the identity map. Perhaps the first simple
fact to observe about such operators

A = I −K : X → X

in Section 29.1 below is that their null spaces are finite-dimensional. This
requires a simple lemma with a simple consequence.

Exercise 29.1. (Riesz’ Lemma) Let X be a real normed space, L ( X a closed
subspace. Show there exists x0 ∈ X with |x0| = 1 and3

d0 = d(x0, L) = inf
x∈L
|x− x0| >

1

2
.

Hint: choose y0 ∈ X, y1 ∈ L, d(y0, L) = 1, |y0 − y1| > 1
2 ; try x0 = µ(y0 − y1).

Exercise 29.2. Let X be a real normed space which is not finite dimensional. Use
the Riesz’ Lemma to exhibit a sequence xn with |xn| = 1 and |xn − xm| > 1

2 . if
m 6= n. Thus only4 finite-dimensional normed spaces have the5 property that every
bounded sequence has a convergent subsequence.

29.1 Injectivity implies surjectivity

For I−K that is. While reading further observe that we don’t use knowledge
about finite- versus not finite-dimensional spaces6 to prove7 Theorem 29.3,
the main result of this section.

1Compare the statement in Theorem 29.30 to the similar statement for square matrices.
2Ax = y only solvable for y perpendicular to the kernel of the transpose of A.
3In your proof the number 1

2 may be replaced by any ε ∈ (0, 1).
4See Exercise 5.31.
5The Heine-Borel property holds in finite dimension only.
6Exercise 5.28 and further classify these in terms of compactness.
7For the converse of Theorem 29.3 we do: Exercise 29.4.
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Theorem 29.3. Let X be a real Banach space, and assume that a linear
map K : X → X has the (compactness) property that for every bounded
sequence xn ∈ X the sequence K(xn) has a convergent subsequence. Then
the implication

N(I −K) = {0} =⇒ R(I −K) = X

holds true. In other words, I − K is surjective if it is injective8, i.e. if its
kernel N(I − K) is trivial. Moreover, not only I − K but also its inverse,
which then exists, are continuous if K is such an, as we say, compact linear
map.

Exercise 29.4. Much simpler, let X be a real normed space and K : X → X such
a compact linear map. Prove that N(I −K) is finite-dimensional.

Hint: every bounded sequence in N(I −K) has a convergent subsequence.

Exercise 29.5. (continued) Suppose that X0 is a closed subspace with9

X0 ∩N(I −K) = {0}.

Prove that there exists a constant γ > 0 such

γ|x| ≤ |x−K(x)| for all x ∈ X0.

Hint: otherwise there exists xn ∈ X0 with |xn| = 1 and xn −K(xn)→ 0.

Exercise 29.6. (continued) Show that the range of I −K restricted to X0, i.e.

R0 = {x−K(x) : x ∈ X0},

is closed if X is complete.
Hint: show I−K is a bijection between X0 and R0 continuous in both directions.

Proof of Theorem 29.3 . If not then X1 = R(I −K) is a closed subspace
of X1 with X1 6= X, and

X = X0
I−K−−→ X1

I−K−−→ X2
I−K−−→ X3

I−K−−→ X4
I−K−−→ X5

I−K−−→ · · · (29.1)

8Theorem 29.13: no compact linear K : X → X has I −K surjective but not injective.
9Special case: N(I −K) = {0}, X0 = X complete.
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is a chain of continuous (in both directions) bijections with Xn−1 ) Xn for
all n ∈ IN. Exercise 29.1 then provides us with a sequence xn ∈ X with
xn ∈ Xn−1, d(xn, Xn) > 1

2
and |xn| = 1. This implies that

|K(xn)−K(xm)| = |xn + (I −K)(xm)− (I −K)(xn)− xm︸ ︷︷ ︸
in Xn

| > 1

2

for m > n, contradicting the compactness of K. �

29.2 The Hahn-Banach property

To deal with I−K not injective we need a tool to get X0 as in Exercise 29.5
such that X = X0 +N(I −K), in which case we write

X = X0 ⊕N(I −K). (29.2)

We formulate this tool using the dual spaces introduced in Theorem 5.39.

Definition 29.7. A real normed space X has the Hahn-Banach property
if for every subspace L of X and every f ∈ L∗ there exists F ∈ X∗ with
|F | = |f | and F (x) = f(x) for all x ∈ X.

Remark 29.8. From here on we will always assume that every normed space
X under consideration has the Hahn-Banach property.

Remark 29.9. For what it’s worth: the Hahn-Banach property holds in all
real normed spaces by virtue of Zorn’s Lemma.

Remark 29.10. If X is a real normed space which contains a sequence such
that every point of X is a limit point of that sequence10 then X has the
Hahn-Banach property by a direct iterative construction starting from L and
f .

Exercise 29.11. The Hahn-Banach property reformulated: show that if L is a
closed subspace of a normed space X and x0 in X is not in L, there exists

F ∈ X∗ with F (x) = 0 for all x ∈ L, (29.3)

F (x0) = d0 = inf
x∈L
|x− x0| > 0 and |F | = 1.

Hint: apply Definition 29.7 to f with f(x) = 0 for all x ∈ L and f(x0) = d0.

10X is then called separable.
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Exercise 29.12. Complementing N(I −K) to get (29.2). Assume that N(I −K)
has dimension d ∈ IN. Thus, as in Exercise 5.28, there are e1, . . . , ed in N(I − K)
such that every x ∈ N(I −K) is uniquely written as

x = ξ1e1 + · · ·+ ξded, ξ1, . . . , ξd ∈ IR.

Define f1, . . . , fd ∈ N(I −K)∗ by

fiej = δij =
1 if i = j

0 if i 6= j

to obtain extensions F1, . . . , Fd ∈ X∗ via the Hahn-Banach property, and let

X0 = N(F1) ∩ · · · ∩N(Fd).

Show that every x ∈ X is uniquely written as x = x0 + x1 with x0 ∈ X0 and
x0 ∈ N(I −K) to conclude that

X = X0 ⊕N(I −K),

a decomposition of X as the direct sum of the closed subspaces X0 and N(I −K).

29.3 Surjectivity implies injectivity

For I −K that is. It’s here that we first need that the identity I itself is not
compact, unless X is finite-dimensional.

Theorem 29.13. Let X be a Banach space, and K : X → X linear and
compact. Then the implication

R(I −K) = X =⇒ N(I −K) = {0}

and thereby, with Theorem 29.3, the equivalence

R(I −K) = X ⇐⇒ N(I −K) = {0}

holds true: I −K is injective11 if and only if I −K is surjective.

Proof of Theorem 29.13. Assume that I −K is surjective and that in

X = N(I −K)⊕X0

↓ I −K
X

11We need the dual space X∗ and the adjoint of A = I −K to continue if it is not.
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the finite-dimensional kernel N(I −K) is non-trivial. Then

X0
I−K−−→ X

is a bijection, continuous in both directions by Exercise 29.5. We then obtain
a never ending chain12

· · · I−K−−→ N4
I−K−−→ N3

I−K−−→ N2
I−K−−→ N1 = N(I −K)

of bijections and a chain of surjective maps

· · · I−K−−→ N1 ⊕N2 ⊕N3
I−K−−→ N1 ⊕N2

I−K−−→ N1 (29.4)

with increasing dimensions

1 ≤ d = dim(N1) < 2d = dim(N1 ⊕N2) < 3d = dim(N1 ⊕N2 ⊕N3) < · · · ,

allowing the same reasoning as in the proof of Theorem 29.3 for (29.1), with

xn ∈ N1 ⊕ · · · ⊕Nn, |xn| = 1, d(xn, N1 ⊕ · · · ⊕Nn−1) >
1

2

to obtain a contradiction. �

29.4 Annihilators

Exercise 29.14. Annihilators. Let X be a real normed space and L ⊂ X. Show
that for every L ⊂ X the annihilator13

L0 = {f ∈ X∗ : ∀x∈L f(x) = 0}

is a closed subspace of X∗. Remember the definition of L0 also as

f ∈ L0 ⇐⇒ f(x) = 0 for all x ∈ L.

Exercise 29.15. (continued) Let X be a real normed space and let M ⊂ X∗.
Show that

0M = {x ∈ X : ∀f∈M f(x) = 0}
is a closed subspace of X, and that by definition

0M = X ⇐⇒ M = {0}.

12If the theorem were false that is.
13So F in (29.3) is in L0.
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Theorem 29.16. Let X be a real normed space, and let L ⊂ X be a subspace.
Then the closure of L is given by14

L̄ = 0(L0). (29.5)

Exercise 29.17. By definition L ⊂ 0(L0) and therefore L̄ ⊂ 0(L0) because 0(L0)
is closed. Prove Theorem 29.16 by assuming there exists x0 in 0(L0) but not in L̄.

Hint: use the Hahn-Banach property via Exercise 29.11 to get a contradiction.

Exercise 29.18. More15 about annihilators. By definition {0}0 = X∗ and X0 =
{0}. Use the Hahn-Banach property to show that

L = {0} ⇐⇒ L0 = X∗,

and also that
M = X∗ =⇒ 0M = {0}.

Remark 29.19. We note that L0 = {0} is equivalent to

∀f∈X∗ : f 6= 0 =⇒ ∃x ∈ L f(x) 6= 0,

and that 0M = {0} is equivalent to

∀x∈X : x 6= 0 =⇒ ∃f ∈M f(x) 6= 0.

These minimality statements for L0 and 0M may be interpreted as separation
statements for L with respect to X∗ and M with respect to X, but do not imply
that L or M is maximal.

Remark 29.20. Each of two minimality statements for L and M , namely
L = {0} and M = {0} trivially implies by definition the maximality of L0 or
0M .

Remark 29.21. Each of the four maximality statements for L,0M,M,L0

implies minimality of the corresponding L0,M,0M,L. When using maximal-
ity statements in X∗ the Hahn-Banach property is used in the proof. When
using maximality statements in X only the definition is used.

14You can now jump to Definition 29.22 and skip what’s next about annihilators.
15Not needed in relation to I −K.
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29.5 Adjoints and finite-rank perturbations

Definition 29.22. Let X and Y be real normed spaces, and let A : X → Y
be a linear map16. We define the adjoint operator A∗ by

A∗g = g ◦ A, i.e. (A∗g)(x) = g(A(x)) for all x ∈ X, g ∈ Y ∗.

Exercise 29.23. Let X and Y be real normed spaces and assume that A : X → Y
is linear and continuous. Explain why the kernel

N(A) = {x ∈ X : A(x) = 0}

of A is a closed linear subspace of X.

Exercise 29.24. (continued). Denoting the range A in Y by

R(A) = {Ax : x ∈ X},

explain why the kernel of A∗ is given by

N(A∗) = {g ∈ Y ∗ : A∗(g) = 0 ∈ X∗} = R(A)0.

Exercise 29.25. (continued) Use the Hahn-Banach property in Y to show that the
closure of the range R(A) is the subspace

R(A) = 0N(A∗). (29.6)

Remark 29.26. Solvability condition for x −K(x) = y. From (29.6) with
A = I −K, K : X → X compact linear, X a Banach space, we find

R(I −K) = 0N(I∗ −K∗),

so the equation
x−K(x) = y

for x is solvable if and only if y ∈ 0N(I∗ − K∗). In what follows we avoid
invoking the compactness17 of K∗ : X∗ → X∗, when we consider the different
possibilities for N(I∗ −K∗) in case N(I −K) is nontrivial18.

16Special case: X = Y , A = I −K, K compact.
17Not so easy, an easier statement we will also not use is that I∗ is the identity on X∗.
18Otherwise R(I −K) = X and thereby also N(I∗ −K∗) is trivial.
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Exercise 29.27. Modification of I − K in Exercise 29.12. Assume g1, . . . , gd+1

exist in N(I∗ − K∗) and x1, . . . , xd+1 in X such that gi(xj) = δij . In particular
xi 6∈ 0N(I∗ − K∗) = R(I − K). Modify the operator A = I − K on N(A) by
sending each ei, i = 1, . . . , n, to xi in X, rather than to 0 in X, but don’t modify A
on X0. This gives what we call a finite rank perturbation of A. This modification
Ã of A is as in Theorem 29.3, with a modification K̃, which in turn is a finite rank
perturbation of the original K. Verify that K̃ is still compact, N(I −K) = {0}, but
xd+1 6∈ 0N(I∗ − K̃∗) = R(I − K̃), in contradiction with Theorem 29.3.

Exercise 29.28. (continued) Conclude that the kernel of N(I∗ − K∗) is finite-
dimensional, and that its dimension is at most the dimension of N(I −K).

Exercise 29.29. Getting the dimension of N(I∗−K∗) right. Suppose the dimension
of the by now finite-dimensional kernel of N(I∗ −K∗) is smaller than the dimension
of N(I −K). If N(I∗−K∗) is nontrivial we have again g1, . . . , gk in N(I∗−K∗) for
some 1 ≤ k < d with x1, . . . , xk ∈ X such that gi(xj) = δij . Verify that

X = R(I −K)⊕ [x1]⊕ · · · ⊕ [xk],

and modify A by sending each ei to xi, to obtain a modification Ã = I − K̃ which
is surjective, but has a nontrivial kernel spanned by the remaining ei. We now have
a contradiction because Theorem 29.13 said there is in fact no such compact linear
K : X → X with I −K surjective but not injective. This completes the proof of the
Fredholm alternative for I −K.

Theorem 29.30. (Fredholm Alternative) Let X be a Banach space and let
K : X → X be linear and compact. Then both N(I − K) and N(I∗ − K∗)
are finite-dimensional with the same dimension d. If the kernels are trivial
then A = I−K has a continuous linear inverse. If the kernels are nontrivial
then

A(x) = x−K(x) = y

is solvable if and only if y is in 0N(A∗)= 0N(I∗ −K∗).

29.6 Fredholm operators

If we define the operator B to be the inverse of

A = I −K : X0 → R(A)
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on R(A) = R(I −K), and just 0 ∈ X on L then

N(A)⊕R(B) = X = R(A)⊕N(B),

with N(A) and N(B) of the same finite dimension, R(A) and R(B) closed.
This framework generalises to Banach spacesX, Y , operatorsA ∈ L(X, Y ),

B ∈ L(Y,X), kernels N(A), N(B) of finite dimension, closed ranges R(A),
R(B), with similar decompositions of X and Y . If in the scheme

X = N(A)︸ ︷︷ ︸
↓

0∈Y

⊕R(B)︸ ︷︷ ︸
A↓

↑B︷ ︸︸ ︷
R(A)⊕

0∈X
↑︷ ︸︸ ︷

N(B) = Y

the operators A and B are each others inverses on the closed ranges, that is,
modulo the finite-dimensional kernels, then (A,B) is called a Fredholm pair
of Fredholm operators A and B.

29.7 More on adjoints for later perhaps

Exercise 29.31. (Continuity of the adjoint) Let X and Y be real normed spaces,
and let A ∈ L(X,Y ). Prove that A∗ ∈ L(Y ∗, X∗) and |A∗| ≤ |A|.

Exercise 29.32. (continued) Show that |A∗| = |A| if the space Y has the Hahn-
Banach property.

Hint: choose xε ∈ X with |xε| = 1 such that |A(xε)| is ε-close to |A|, and then
use Definition 29.7 with L = {0} ⊂ Y and x0 = A(xε) 6∈ L.

477



30 Some real Hilbert space theory

This chapter is in part a set of more or less do it yourself notes. But first we
recall the real Banach space C([a, b]). This first function space one encounters
is not a Hilbert space, because the inner product defined by

x · y =

∫ b

a

x(t)y(t) dt

for x, y ∈ C([a, b] does not render C([a, b]) complete. In Section 30.1 the
spectral Theorem 30.10 for compact symmetric linear operators is formulated
to also apply to such spaces. It generalises the statements from linear algebra
for symmetric real n by n matrices about eigenvalues and eigenvectors. Of
course the treatment also applies to the case that the inner product space
V is just IR2. The only difference then is that the trick below with (30.9)
and the generalised Cauchy-Schwarz inequality is not needed because the
unit circle is compact. In fact you may then like to use polar coordinates to
verify the statements from a calculus perspective. The example V = IR2 is
also natural for considering projections on closed convex sets in Section 30.2.
This leads to the Riesz Representation Theorem that says that in Hilbert
spaces the continuous linear functions are all of the form x → a · x, just as
in V = IR2.

A real Hilbert space H is a real vector space with an inner product

(x, y) ∈ H ×H → (x, y)H = x · y

in which Cauchy sequences are convergent. In terms of the inner product
this completeness property says that if a sequence xn in H has the property
that

(xn − xm) · (xn − xm)→ 0

as m,n→∞, then there must exist a (unique) x ∈ H such that

(xn − x) · (xn − x)→ 0

as n→∞. Recall that the norm is given by

|x|2H = (x, x)H = x · x,

and that the distance between xn and xm is

dH(xn, xm) = |xn − xm|H =
√

(xn − xm) · (xn − xm).

The map dH : H×H → IR+ = [0,∞) is the metric1 on H. Subscripts H will
be dropped, unless they are needed to avoid confusion.

1See Chapter 5.
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Exercise 30.1. Derive and prove the Cauchy-Schwarz2 inequality

|x · y| ≤ |x| |y|,

and use it to prove the triangle inequality

|x+ y| ≤ |x|+ |y|.

Formulate and prove the Pythagoras Theorem and the parallellogram law, i.e.

|x+ y|2 + |x− y|2 = 2 |x|2 + 2 |y|2.

Exercise 30.2. Let V be a complex vector space with an complex inner product,
so w · z = z · w and (λz) · w = λ (z · w) = z · λw for all λ ∈ IC and all z, w ∈ V , we
have, assuming that |z|2 = z · z = 1, that

0 ≤ (λz + w) · (λz + w) = λλ+ λz · w + w · λz + w · w

= λ (λ+ z · w) + λw · z + w · w

= (λ+ w · z) (λ+ z · w)− w · z z · w + w · w

|λ+ w · z|2 − |z · w|2 + |w|2

Prove for all z, w ∈ V that
|z · w| ≤ |z| |w|,

with equality only if w = λz for some λ ∈ IC or z = µw for some µ ∈ IC. Also show
that

|z + w|2 + |z − w|2 = 2 |z|2 + 2 |w|2.

30.1 Compact symmetric linear operators

Let V be a real vector space with an inner product denoted by x · y for
x, y ∈ V , and let S : V → V be a continuous linear map which is symmetric
in the sense that

Sx · y = x · Sy
for all x, y ∈ V . We say that S is nonnegative if in addition

Sx · x ≥ 0

2See Exercise 30.3 below if you forgot the proof given in your linear algebra course.
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for all x ∈ V . If in addition Sx · x = 0 only occurs for x = 0 then S is called
positive. In this section we do not assume that Cauchy sequences in V are
convergent. Continuity for linear maps is equivalent to the operator norm3

|S|
op

= sup
06=x∈V

|Sx|
|x|

= sup
06=x∈V

√
Sx · Sx
x · x

= sup
x·x=1

√
Sx · Sx (30.7)

being finite. From here on we shall call S a symmetric bounded4 linear
operator.

Exercise 30.3. Derive the Cauchy-Schwarz inequality for x, y ∈ V by inspection of
the minimum of the nonnegative function

λ
q−→ (λy − x) · (λy − x),

and show that the same reasoning leads to a generalised Cauchy-Schwarz inequality,
namely

|Sx · y| ≤
√
Sx · x

√
Sy · y

for all nonnegative symmetric bounded linear operators S : V → V and all x, y ∈ V .
Don’t forget the possibility that the function q is a linear.

Exercise 30.4. Use the method in Exercise 30.2 to generalise to complex inner
product spaces V and S : V → V continuous linear, with S symmetric5 in the sense
that

Sx · y = x · Sy = Sy · x

for all x, y ∈ V , and nonnegative in the sense that

Sx · x ≥ 0

for all x ∈ V .

Exercise 30.5. Let S : V → V be a symmetric continuous linear operator. Use the
Cauchy-Schwarz inequality and the definition of the operator norm to show that

|Sx·x| ≤ |S|
op
x·x, whence M = sup

06=x∈V

|Sx · x|
x · x

= sup
x·x=1

|Sx · x| ≤ |S|
op
. (30.8)

3This terminology was introduced for matrices in Section 18.2, see also Remark 11.15.
4It is is bounded on bounded sets.
5The more common term is self-adjoint

480



Then write
4Sx · y = S(x+ y) · (x+ y)− S(x− y) · (x− y)

and estimate the right hand side using first the triangle inequality, then twice (30.8),
and finally the parallellogram law. For all x, y ∈ V with |x| = |y| = 1 this should give
that |Sx · y| ≤ M . Explain why thus |Sx · y| ≤ M |x| |y| for all x, y ∈ V and choose
y = Sx to conclude that |S|

op
= M .

Exercise 30.6. Generalise Exercise 30.5 to complex inner product spaces V and
S : V → V continuous linear and symmetric.

The map
x→ Q(x) = Sx · x

defined by S is called a quadratic form. Exercise 30.5 states the remarkable
fact that the suprema of x→ |Q(x)| and x→ |Sx| on the unit ball coincide.

Ignoring the trivial case that M = 0 we next observe6 that the generalised
Cauchy-Schwarz inequality in Exercise 30.3 also holds with S replaced by
M − S = MI − S, I being the identity map. Thus it holds that

|(M − S)x · w| ≤
√

(M − S)x · x
√

(M − S)w · w,

whence, varying w over the unit ball, we have

|(M − S)x| ≤
√

(M − S)x · x
√
|M − S|

op
. (30.9)

Now take a sequence xn ∈ V with |xn| = 1 and Sxn · xn → ±M . In case
Sxn · xn →M it follows that (M − S)xn · xn = M − Sxn · xn → 0, and thus

Mxn − Sxn → 0

by (30.9). If the sequence xn can be chosen to have Sxn converging to a limit
y ∈ V , it follows that also Mxn → y and that M = |y| > 0. But then w = y

M

is a unit eigenvector of S with eigenvalue M . In case Sxn · xn → −M we
replace S by −S and apply the same reasoning. We have thereby proved the
following theorem.

Theorem 30.7. Let V be a real inner product space and S : V → V linear,
symmetric, Sx 6= 0 for at least one x ∈ V . If for every bounded sequence xn
in V it holds that Sxn has a convergent subsequence, then

M1 = max
06=x∈V

|Sx · x|
x · x

> 0 (30.10)

6Following Evans’ treatment in one of the appendices to his PDE book.

481



exists, and M1 or −M1 (possibly both) is an eigenvalue λ1 of S. The cor-
responding eigenvectors are precisely the maximizers7 of the quotient under
consideration.

Exercise 30.8. Generalise Theorem 30.7 to the case of complex inner product
spaces V and S : V → V linear and symmetric with the same compactness property.

Remark 30.9. Let V and W be normed spaces. Then a linear operator
S : V → W is called compact if for every bounded sequence xn in V it holds
that Sxn has a convergent subsequence in W . You should have no difficulty
proving that such operators are bounded.

Given such an eigenvector v1 with |v1| = 1 it easily follows that S maps

V1 = {x ∈ V : x · v1 = 0}

to itself. Unless V1 is8 the null space of S it then follows that

M2 = max
x·v1=06=x∈V

|Sx · x|
x · x

6= 0 (30.11)

is also the absolute value of an eigenvalue λ2 of S, with eigenvector v2 with
|v2| = 1.

Repeating the argument with

V2 = {x ∈ V : x · v1 = x · v2 = 0}

we obtain a sequence of eigenvalues

|λ1| ≥ |λ2| ≥ · · · > 0,

which either terminates9, or has the property that λn → 0 as n → ∞.
The latter statement is a consequence of the compactness assumption: the
corresponding mutually perpendicular unit eigenvectors

v1, v2, . . . ,

terminating or not, have

|Svn − Svm|2
2

= λ2
n + λ2

m,

which prohibits Cauchy subsequences of Svn if the sequence |λn| > 0 does
not terminate and decreases to a positive limit. We have proved:

7Genericly only multiples of one eigenvector.
8Here we include the possibility that V1 = {0}.
9If the range of V is spanned by v1, . . . , vN for some N ∈ IN.
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Theorem 30.10. Let V be a real or complex inner product vector space.
If the null space of a compact symmetric linear operator S : V → V is
trivial then V has an orthonormal (Hilbert) basis consisting of eigenvectors
v1, v2, . . . of S, obtained as maximizers of (30.10), (30.11), .....; this state-
ment applies also to S restricted to

{x ∈ V : Sx = 0}⊥

if the null space of S is not trivial.

30.2 Projections on closed convex sets

This section is do it yourself. Take H = IR2 first and draw pictures to see
what should be true for general closed convex sets. The special case that K
is a line through the origin should be familiar. We conclude with a general
statement about parabola’s.

Exercise 30.11. Let H be a Hilbert space, K ⊂ H a non-empty closed convex10

subset, and a ∈ H. Show there exists a unique p ∈ K that realises the distance

|p− a| = inf
x∈K
|x− a| = d(a,K)

from a to K as a minimum, and show that (p− a) · (x− p) ≥ 0 for all x ∈ K. Hint:
use the parallellogram law to show that a minimizing sequence is Cauchy. Consider
first the case that a 6∈ K and verify the not so interesting case that a ∈ K.

Exercise 30.12. Also show that PK : H → K defined by PK(a) = p has the
property that |PK(a)−PK(b)| ≤ |a−b| for all a, b ∈ H. In other words, it is Lipschitz
continuous with Lipschitz constant 1. Hint: take p = PK(b) in the characterisation in
Exercise 30.11 for PK(a) and p = PK(a) for PK(b).

Exercise 30.13. Use Exercise 30.2 to generalise to complex Hilbert spaces.

Exercise 30.14. Let H be a Hilbert space, L ⊂ H a closed linear subspace. Prove
that PL : H → L linear, and that

M = N(PL) = {x ∈ H : PL(x) = 0} = L⊥ = {x ∈ H : x · y = 0 ∀ y ∈ L},
10If a, b ∈ K then [a, b] = {ta+ (1− t)b : t ∈ [0, 1]} ⊂ K.
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the null space of PL, is a closed linear subspace with M ∩ L = {0}. Show that
M + L = H and conclude that every x ∈ H is uniquely written as x = p + q with
p ∈ L and q ∈M . Notation: L⊕M = H.

Exercise 30.15. Let H be Hilbert space, K ⊂ H a non-empty closed convex
subset. For all b ∈ H the quadratic expression

|x|2 + b · x

has a unique minimizer on K. Use Exercise 30.11 to prove this statement.

30.3 Riesz representation of linear Lipschitz functions

On IR2 all linear functions are continuous. It is a remarkable fact that this
statement is11 false for every infinite-dimensional normed space. For Hilbert
spaces we have the Riesz Representation Theorem below, which is proved
and put in some pespective in the exercises that follow. Lipschitz continuity
is the natural concept here.

Theorem 30.16. Let H be a Hilbert space. The continuous linear functions
on H are precisely the functions f : H → IR of the form f(x) = a · x with
a ∈ H. Such an a is called the Riesz representation of f , notation a = RH(f).

Exercise 30.17. Let X be a normed12 vector space. The space of all Lipschitz
(continuous) functions f : X → IR is denoted by Lip(X). With

(f + g)(x) = f(x) + g(x) and (tf)(x) = tf(x)

it becomes a vector space. For every f ∈ Lip(X) let L = [f ]Lip be the smallest
Lipschitz constant for f . Why is

f → [f ]Lip

not a norm on Lip(X)? And why is it a norm on

Lip0(X) = {f ∈ Lip(X) : f(0) = 0}?

Show that with this norm every Cauchy sequence fn ∈ Lip0(X) is convergent. Hint:
first for X = IR, then copy/paste for X = X.

11In fact it is false if and only if the normed space is infinite-dimensional.
12See Exercise 5.26 for a definition.
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The result in Exercise 30.17 is only of interest if there are such Lipschitz
Lipschitz continuous functions on X. The dual space X∗ is by definition
the space of all Lipschitz continuous linear functions from X to IR. For
f : X → IR linear and x ∈ X the notation

〈f, x〉 = f(x)

is common. The brackets denote what is called the duality between X∗ and
X and are not to be confused with inner product brackets, although Theorem
30.16 does tempt us to do so.

In case of X = H a Hilbert space every a ∈ H defines a linear φa in
Lip0(H) by

φa(x) = a · x,
with smallest Lipschitz constant |a|. Thus a→ φa defines map

Φ := H → Lip0(H).

and the range of Φ is contained in H∗, the (normed) space of all Lipschitz
continuous linear functions f : H → IR.

Exercise 30.18. Verify that Φ : H → H∗ satisfies

Φ(x1 + x2) = Φ(x1) + Φ(x2) and Φ(tx) = tΦ(x)

for all t ∈ IR and all x, x1, x2 ∈ H, and that [Φ(x)]Lip = |x|. Thus Φ is linear and
norm preserving.

Is Φ surjective, i.e. is every f ∈ H∗ of the form φa? Towards a positive
answer we consider13 its null space

Nf = {x ∈ H : f(x) = 0}.

Exercise 30.19. Show that Nf ⊂ H is a closed linear subspace.

Exercise 30.20. By 30.14 the projection

PNf : H → Nf

is linear. Show that M = N(PNf ) = {te : t ∈ IR}, in which e ∈ N⊥f with |e| = 1.
Then show that f(x) = f(e)e · x.

13We write Nf instead of N(f), to distinguish between f and PL.
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Exercise 30.21. Riesz Representation Theorem restated: explain why Exercise
30.19 says that Φ : H → H∗ a linear isometry. The inverse of Φ is called the
Riesz representation of H∗. We denote the inverse of Φ by RH , and its domain is
H∗ ( Lip0(H).

Exercise 30.22. Show that there are many nonlinear functions in Lip0(H). Hint:
use 30.11.

30.4 Bilinear forms and the Lax-Milgram theorem

This section modifies the approach in Evans’ PDE book. We use u and v
to denote elements in a Hilbert space H, greek letters for elements of the
dual space H∗, and establish a generalisation of the Riesz Representation
Theorem 30.16 and its restatement in Exercise 30.21.

Theorem 30.23. Let H be a Hilbert space and B : H×H → IR be a bounded
coercive bilinear form. This means that

(a) for every u ∈ H fixed the map v → B(u, v) is linear;
(b) for every v ∈ H fixed the map u→ B(u, v) is linear;
(c) ∃α≥0 ∀u,v∈H : |B(u, v)| ≤ α |u| |v|.
(d) ∃β>0 ∀u∈H : B(u, u) ≥ β |u|2.

Then every linear continuous φ : H → IR is represented by a unique u ∈ H
via

φ(v) = 〈φ, v〉 = B(u, v)

for all v ∈ H. This defines a continuous linear map

H∗ 3 φ S−→ u ∈ H

with |S| ≤ 1
β

, which is the inverse of the continuous linear map

H 3 u A−→ φ ∈ H∗

defined by
〈φ, v〉 = 〈Au, v〉 = B(u, v) for all v ∈ H, (30.12)

which has |A| ≤ α.
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Proof. Observe that (30.12) and assumption (c) imply that

|〈Au, v〉| = |B(u, v)| ≤ α |u| |v|

for all u and v in H, and that for u fixed assumption (a) says that

Au : H → IR

is linear. It follows that Au ∈ H∗ and

|Au| ≤ α |u|.

Assumption (b) implies that the map

A : H → H∗

is linear, and assumption (d) gives

β|u|2 ≤ B(u, u) = 〈Au, u〉 ≤ |Au| |u|

for all u ∈ H, whence
|Au| ≥ β |u|.

We conclude that
H

A−→ R(A) = {Au : u ∈ H}
is a linear bijection, continuous in both directions, because

β|u| ≤ |Au| ≤ α|u| (30.13)

for all u ∈ H. Thus R(A) is complete because H is. In particular R(A) is
closed in H∗. It remains to show that R(A) = H∗.

Now let Φ be as in the Riesz Representation Theorem14 and let

L = Φ−1(R(A) ⊂ H.

If L 6= H then

M = {v ∈ H : v · w = 0 for all w ∈ L} 6= {0}.

Choose v ∈M with v 6= 0. Then

〈Φ(w), v〉 = w · v = 0

for all w ∈ R(A) = {Au : u ∈ H}, whence 〈Av, v〉 = 0, a contradiction with
assumption (d). Thus L = H, whence R(A) = H∗. This completes the proof
of Theorem 30.23.

14Exercise 30.21.
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30.5 Hilbert spaces in disguise

In Section 15.6 we mentioned that Theorem 15.10, the Morse lemma, is not
restricted to the case that X is a Hilbert space in disguise15. But if we
start the reasoning in Section 30.4 from the complete metric vector space
perspective we find ourselves forced into the Hilbert space setting. Let’s see
why, while we formulate a result which is of independent interest.

Definition 30.24. Let X be a normed space. A map (u, v)→ B(u, v) from
X ×X to IR is called a bounded bilinear form if

(a) for every u ∈ X fixed the map v
φ−→ B(u, v) is linear;

(b) for every v ∈ X fixed the map u
ψ−→ B(u, v) is linear;

(c) ∃α≥0 ∀u,v∈X : |B(u, v)| ≤ α |u| |v|.

If in addition
∃β>0 ∀u∈X : B(u, u) ≥ β |u|2,

then B is called coercive.

Remark 30.25. A bounded coercive bilinear form on a normed space X
makes that X is an inner product space, with inner product defined by

u · v =
1

2
(B(u, v) +B(v, u)).

The corresponding inner product norm, defined by

|u|
B

=
√
B(u, u),

is equivalent to the norm on X via

β |u|2 ≤ B(u, u) ≤ α |u|2.

This makes any attempts to take the Lax-Milgram theorem out of the Hilbert
space context futile. But it’s good to know the statement of Theorem 30.26
below.

Theorem 30.26. Every bounded bilinear form16 on a normed space X is of
the form

(u, v)→ B(u, v) = 〈Au, v〉 ∈ IR (30.14)

15A complete metric vector space which allows an equivalent inner product norm.
16See Section 15.2 for the second derivative as an example of the symmetric case.
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with A ∈ L(X,X∗), and17

sup
u,v∈X\{0}

|B(u, v)|
|u| |v|

= |A|. (30.15)

If X is complete and B is coercive then X is a Hilbert space in disguise, and
A is a bijection18 between X and X∗ with

β |u| ≤ |Au| ≤ α|u|

for all u ∈ X, 0 < β ≤ α, as in Definition 30.24.

Proof. We use (a) again to define A by Au = φ, so (30.14) holds by defini-
tion. In particular Au is a linear functional on X for every u ∈ X. By (c)
we have

|〈Au, v〉| = |B(u, v)| ≤ α |u| |v|

for all v ∈ X whence Au ∈ X∗ with

|Au| ≤ α |u|, (30.16)

and (b) implies that A : X → X∗ is linear. We conclude that A ∈ L(X,X∗)
and |A| ≤ α.

Exercise 30.27. Prove (30.15) by showing that

sup
u,v∈X\{0}

|〈Au, v〉|
|u| |v|

= |A|.

Hint: choose u with |u| = 1 and |Au| close to |A|, and then v with |v| = 1 and
|〈Au, v〉| close to |Au|.

Finally assume that X is complete and B is coercive. Then

β |u|2 ≤ B(u, u) = 〈Au, u〉 ≤ |〈Au, u〉| ≤ |Au|,

whence (30.13) holds and

X
A−→ R(A) = {Au : u ∈ X}

17The norms have subscripts that we omit in this section.
18Lax-Milgram: ∀φ∈X∗ ∃u∈X ∀v∈X : B(u, v) = φ(v) = 〈φ, v〉, u is unique for φ.
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is a linear bijection, continuous in both directions. Thus R(A) is a complete
metric vector space because X is. In particular R(A) is closed in X∗. Now
write

0R(A) = {v ∈ X : ∀φ∈R(A) φ(v) = 0} = {v ∈ X : ∀u∈X B(u, v) = 0}.

If we know that 0R(A) 6= {0} then some 0 6= v ∈ X has the property that

〈Au, v〉 = 0 for all u ∈ X,

impossible in view of 〈Av, v〉 ≥ β|v|2. It follows that A is a linear bijection
between X and X∗ if X has the property19 that closed subspaces M ⊂ X∗

with M 6= X∗ have 0M 6= {0}. Hilbert spaces (complete inner product spaces)
have this property, and thus so does X. This completes the proof of Theorem
30.26.

30.6 The standard Hilbert space

We review the standard example of a real Hilbert space.

Exercise 30.28. Show that

l(2) = {x = (x1, x2, x3, . . . ) : xn is a sequence in IR,
∞∑
n=1

x2
n <∞}

is a Hilbert space with respect to the inner product defined by

x · y =

∞∑
n=1

xnyn.

We wrote

x =
∞∑
n=1

xnen, e1 = (1, 0, 0, . . . ), e2 = (0, 1, 0, . . . ), . . . ,

but we often prefer a notation with column vectors instead.

Every infinite dimensional separable20 Hilbert space H can be identified
with l(2). To see why take a sequence a1, a2, a2, . . . in H such that every

19Holds for reflexive spaces, spaces X for which (X∗)∗ = {f → 〈f, x〉 : x ∈ X}.
20See Section 5.6, this means that H contains a sequence an as in what follows.
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element in H is a limit point of this sequence. We apply the Gramm-Schmidt
procedure. Let

e1 =
1

|a1|
a1

if a1 6= 0, otherwise throw a1 away, renumber the sequence. Repeat until you
have a1 6= 0 and e1 as above. Then let

y2 = a2 − (a2, e1)e1 and e2 =
1

|y2|
y2

if y2 6= 0, but throw a2 away if y2 = 0 and renumber until you get y2 6= 0 and
thereby e2. Then put

y3 = a3 − (a3, e2)e2 − (a3, e1)e1 and e3 =
1

|y3|
y3,

if y3 6= 0, but . . . , and so on. This produces e1, e2, e3, . . . with

(ei, ej) = δij,

and

H = {x =
∞∑
n=1

xnen : , xn a sequence in IR,
∞∑
n=1

x2
n <∞}.

Remark 30.29. We thus showed that every separable Hilbert space has an
orthonormal basis via the Gramm-Schmidt procedure, and is therefore isomet-
rically linearly isomorphic with H = l(2). Thus for separable Hilbert spaces
the Riesz Representation Theorem is immediate from Exercise 30.30 below.

We may view l(2) as H = l(2) = L2(IN) with the counting measure on IN.
Then elements u in H are functions

u : IN→ IR.

If we denote the values of u in n ∈ IN by un then we can put these in a
column vector

u =


u1

u2

u3
...

 .

Every such vector has length given by

|u| =
√
u · u =

√
u2

1 + u2
2 + · · ·,
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defined via the inner product

u · v =


u1

u2

u3
...

 ·


v1

v2

v3
...

 = u1v1 + u2v2 + u3v3 + · · · =
∞∑
k=1

ukvk = (u, v)
H
.

This inner product is the integral of the product function uv with respect to
the counting measure on IN. In general uv is not21 in l(2) = L2(IN).

Exercise 30.30. Give a direct proof of Riesz Representation Theorem for H = l(2).
Hint: take a fixed φ ∈ H∗ and determine what the representing u should be.

30.7 Other inner products

The examples below derive from the observation that the counting measure
is not the only measure on IN: every sequence of positive numbers

0 < λ1 ≤ λ2 ≤ λ2 ≤ · · · (30.17)

definines a measure on IN by assigning measure λn to the singleton {n}. The
corresponding integral of the product of two functions u, v : IN→ IR is

((u, v)) = (u, v)
V

=
∞∑
n=1

λnunvn,

defined on some (maximal) subspace V of our standard space H = l(2). This
subspace is not closed in H if λn →∞.

Exercise 30.31. Why not? Assume that (30.17) holds. Show that V with ((·, ·))
is a Hilbert space, and that V = H if and only if λn is a bounded sequence.

So V ⊂ H, and the norm on V is given by

|u|
V

= ||u|| =

√√√√ ∞∑
n=1

λnu2
n,

21Many function spaces are not algebra’s and this is one of them.
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whence
||u||2 ≥ λ1|u|2

for all u ∈ V . Here |u| is the standard norm of u. The map

i : u ∈ V → u ∈ H

is linear and continuous. For all u ∈ V ⊂ H we have

|i(u)|︸ ︷︷ ︸
u∈V

= |u|︸︷︷︸
u∈H

≤ 1√
λ1

||u||︸︷︷︸
u∈V

,

in which we think of u in V as lying in both V and H. It follows that

|i| = 1√
λ1

is the norm of i in L(V,H). There is no smaller constant L for which the
bound |u| ≤ L||u|| holds.

Exercise 30.32. Check that i(V ) = V = H.

30.8 Double dealing with Riesz

We say that V is dense in H because V = H. By the Riesz Representation
Theorem every continuous linear function φ : H → IR is of the form

φ(v) = (f, v)

with f = RH(φ), and of course φ(v) = (f, v) is also defined for v ∈ V . The
map

φ ◦ i : v ∈ V i−→ v ∈ H φ−→ (f, v) ∈ IR

is thus continuous and linear, and represented by u = RV (φ ◦ i) ∈ V . It
follows that

φ(v) = (f, v) = ((u, v)) ∀v ∈ V.
Thus the linear continuous functions

V 3 v f∈H−−→ (f, v)H ∈ IR

and
V 3 v u∈V−−→ (u, v)V ∈ IR

are exactly the same, but given by different (Riesz) representations: we have
two different vectors u and f representing the same map via two different
inner products.
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Exercise 30.33. Assume 0 < λ1 ≤ λ2, . . . is unbounded. Why is not every contin-
uous linear ψ : V → IR of the form φ(v) = (f, v) with f ∈ H?

If this nondecreasing sequence λn > 0 is unbounded it is easier for a linear
function on V to be continuous with respect to the norm on V than with
respect to the norm on H: there are more continuous lineair functions on V
then just the functions

v ∈ V → (f, v)H ∈ IR.

If we choose to identify H∗ with H via RH as defined in Exercise 30.21, then

V ( H = H∗ ( V ∗,

which then conflicts with an identification of V ∗ and V via RV .
Nevertheless

H 3 f
R−1
H−−→ φ ∈ H∗ i∗−→ φ ◦ i ∈ V ∗︸ ︷︷ ︸

i∗(φ)=φ◦i

RV−−→ u ∈ V,

is linear and continuous, because the first and third link in this chain are
both isometries, and the second link, which is called the adjoint i∗ of i, is
continuous.

Exercise 30.34. Prove that i∗ : H∗ → V ∗ is linear and continuous. Hint: consider
the norm of i∗(φ) = φ ◦ i.

30.9 A more general abstract perspective

For V and H Hilbert spaces with i : V → H an injective, continuous linear
map with i(V ) ( i(V ) = H the story above is much the same. We do not
need22 to assume that V ⊂ H. It is instructive to see how the injectivity of
i : V → H and the density of its range being dense come into play.

Exercise 30.35. Assume H and V are Hilbert spaces and that i : V → H is linear
and continuous. Prove that S : H → V defined by f ∈ H → u = Sf ∈ V and

(u, v)V = (f, i(v))H

22In applications to elliptic boundary values problems we do have V ⊂ H.
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for all v ∈ H is given by
S = RV ◦ i∗ ◦ (RH)−1,

and has norm |S| = |i∗|.

Remark 30.36. We think of S as a solution operator. If the inner product
on V is replaced by a nonsymmetric coercive bilinear form, the Lax-Milgram
theorem replaces the Riesz Representation theorem. In Section 30.4 we dis-
cussed why this approach still requires a Hilbert space setting. In Section 30.9
we consider the operator S in Exercise 30.35 as a solution operator as map
from H to H and as a map from V to V . Look very carefully at the four
quotients in Exercise 30.42 below and how they are used in Exercise 30.44.
They all relate to the solution operator, but one of them does not need the
solution operator.

Exercise 30.37. (continued) Show that

|i∗|
L(H∗,V ∗) = |i|

L(V,H)
.

Hint: we have that i∗ is defined by i∗(φ) = φ ◦ i for every φ ∈ H∗. This means that

〈i∗(φ), v〉 = 〈φ, i(v)〉 (30.18)

for every v ∈ V and every φ ∈ H∗. In case we identify H and H∗ this reads

〈i∗(φ), v〉 = (φ, i(v))H . (30.19)

Now
|〈i∗(φ), v〉| = |〈φ, i(v)〉| ≤ |φ|

H∗
|i(v)|

H
≤ |φ|

H∗
|i|

L(V,H)
|v|

V

means that
|〈i∗(φ)|

V ∗
≤ |φ|

H∗
|i|

L(V,H)
,

which in turn means that
|i∗|

L(H∗,V ∗) ≤ |i|L(V,H)
.

To bound |i∗| from below take suitable choices of φ ∈ H∗ and v ∈ V with |φ|
H∗

= 1
and |v|

V
= 1 in the chain

|i|
L(V,H)

≥ |〈i∗(φ)|
V ∗
≥ |〈i∗(φ), v〉| = |〈φ, i(v)〉|.

To wit, take a sequence vn ∈ V with |vn|
V

= 1 and |i(vn)|
H
→ |i|, and then φn ∈ H∗

with |φn|H∗ = 1 and φn(i(vn)) = |i(vn)|
H

. Conclude that also

|i∗|
L(H∗,V ∗) ≥ |i|L(V,H)

.
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Exercise 30.38. Prove that S is injective if i(V ) = H. Hint: this concerns the
second equivalence in S injective ⇐⇒ i∗ injective ⇐⇒ i(V ) = H. Hint: use
(30.18) to characterise the null space of i∗ in H∗. We have i∗(φ) = 0 if and only if

〈i∗(φ), v〉 = 〈φ, i(v)〉

for all v ∈ V .

Exercise 30.39. Assume H and V Hilbert spaces, i : V → H linear and continuous.
Let S : H → V be given via Exercise 30.35 and f ∈ H → u = Sf ∈ V with

(u, v)V = (f, i(v))H

for all v ∈ V . Show that

N(i) = {v ∈ V : i(v) = 0} = S(H)⊥ = {v ∈ V : (u, v)V = 0 for all u ∈ S(H)}.

Thus the range of S is dense in V if and only if i is injective. Hint: use that i(v) = 0
in H if and only if (f, i(v))H = 0 for all f ∈ H.

Exercise 30.40. Assume i : V → H linear and continuous. Prove that

S0 = i ◦ S : H → H

is symmetric, i.e.
(S0f1, f2)H = (f1, S0f2)H

for all f1, f2 ∈ H, and
(S0f, f)H = |Sf |2

V
.

Exercise 30.41. Assume i : V → H linear and continuous. Prove that

S1 = S ◦ i : V → V

is symmetric, i.e.
(S1u1, u2)V = (u1, S1u2)V

for all u1, u2 ∈ V , and
(S1u, u)V = |i(u)|2

H
.
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Exercise 30.42. Show that

(S0f, f)H
(f, f)H

=
(Sf, Sf)V

(f, f)H
and

(i(u), i(u))H
(u, u)V

=
(S1u, u)V
(u, u)V

.

At the end of Section 18.3, see also (18.12), we showed that taking suprema we obtain
the norms of S0 and S1 for the left hand sides, and the right hand sides give the squares
of norms of i and S. Thus

|S0|L(H,H)
= |S|2

L(H,V )
= |i∗|2

L(H∗,V ∗)
= |i|2

L(V,H)
= |S1|L(V,V )

via Exercises 30.35 and 30.37.

Exercise 30.43. (continued) If the first supremum is a maximum then its maximizer
φ is an eigenvector with eigenvalue λ = |S0|L(H,H)

. You should give a direct proof
of this, but see Remark 18.7. Same statement for S1 and the second supremum of
course.

Exercise 30.44. Any eigenvector φ of S0 makes for an eigenvector ψ = Sφ of S1

with the same eigenvalue, unless Sφ = 0. Likewise, any eigenvector ψ of S1 makes
for an eigenvector φ = i(ψ) of S0 with the same eigenvalue, unless i(ψ) = 0. Show
that if one of the suprema in Exercise 30.42 for the norm of S0 is a maximum, then
so is the supremum for the norm of S1 and vice versa.

Remark 30.45. Each linear, injective, continuous23 compact

i : V → H with i(V ) = H

defines via Exercises 30.35, 30.40 and 30.41 two strictly positive definite
symmetric compact linear mappings S0 : H → H and S1 : V → V with the
same eigenvalues, by dropping either the first or the last link in

V
i−→ H

(RH)−1

−−−−→ H∗
i∗−→ V ∗

RV−−→ V
i−→ H.

The triple
V ⊂ H = H∗ ⊂ V ∗

with V and H Hilbert spaces, i : V → H injective and V = i(V ) dense in H
is the standard framework in the French PDE school24.

23Follows from compactness of i.
24See the Brézis book on functional analysis.
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31 Lebesgue spaces

The definitions of Lebesgue spaces such as Lp(Ω) usually come at the end1 of a
course on measure theory and Lebesgue integration2. For p ≥ 1 and Ω ⊂ IRN

open an alternative approach3 to define Lp(Ω) is provided in Section 31.6, via
equivalence classes of Cauchy sequences of compactly supported continuous
functions, mollified as functions in Section 31.8.

In both approaches Lp(Ω) is the p-norm closure of Cc(Ω), the space of
continuous functions f : Ω → IR with compact support in Ω, and it will
be convenient to consider Cc(Ω) as being contained in Cc(IR

N). The Cauchy
sequence approach only requires the use of Riemann integrals, and properties
of the p-norm, defined by

|f |p
p

=

∫
IRN

|f |p

for f ∈ Cc(IR
N). After recalling these properties in Section 31.1 you can

therefore jump to Remark 31.17 in Section 31.3 about the mollified functions
f ε = ηε ∗ f used in Chapter 32 for the theory of Sobolev spaces.

The mollifiers ηε are introduced in Exercise 31.16 as radially symmetric
smooth nonnegative convolution kernels of the form

ηε(x) =
1

εN
η(
x

ε
),

in which η is chosen with compact support in the open unit ball B, and∫
B

η = 1.

The uniform convergence of f ε to f in Exercise 31.16 is essential for our
purposes in Chapter 32.

We combine the good behaviour of f ε for f ∈ Cc(IRN) with Remark 31.24
about integrals of equivalence classes of Cauchy sequences. This remark takes
you from the Cauchy sequences in Section 31.6 straight to Theorem 31.32:
the equivalence class F of a Cauchy sequence fn in Cc(IR

N) mollifies to a
(smooth) function Fε in4 C0(IRN) with finite p-norm. In particular

|Fε|
p

p
= lim

n→∞

∫
IRN

|f εn|p =

∫
IRN

|Fε|p <∞.
1If time permits....
2See e.g. Folland’s Real Analysis book, Chapters 2 and 6.
3Similar tot the construction of IR out of IQ.
4Recall that C0(IRN) is the space of continuous functions f : IRN → IR with

∀δ>0 ∃R>0 ∀x∈ IRN : |x| ≥ R =⇒ |f(x)| < δ.
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31.1 Hölder’s inequality

We recall from Section 17.3 that

|
n∑
i=1

aibi| ≤
n∑
i=1

|aibi| ≤ |a|p |b|q for p, q > 1 with
1

p
+

1

q
= 1. (31.1)

This is Hölder’s inequality for finite sums of real numbers. Memorise that

1

p
+

1

q
= 1 ⇐⇒ (p− 1)(q − 1) = 1 ⇐⇒ q =

p

p− 1
⇐⇒ p =

q

q − 1
.

Via any kosher definition of the integral it also holds that

|
∫

Ω

fg| ≤
∫

Ω

|fg| ≤ |f |
p
|g|

q
, (31.2)

if the norms are finite, e.g. if f, g ∈ Cc(Ω) ⊂ Cc(IR
N).

Exercise 31.1. The triangle inequality for the 1-norm is equivalent to∫
Ω
|f + g| ≤

∫
Ω
|f |+

∫
Ω
|g|.

Use this inequality to derive the triangle inequality for the p-norm from Hölder’s in-
equality applied to ∫

Ω
|f + g|p−1|f | and

∫
Ω
|f + g|p−1|g|.

Exercise 31.2. No estimate of the type

|u|
p
≤ CpqN |u|q

with p > q ≥ 1 can hold for all u ∈ Cc(IRN). Why? Hint: scale the spatial variable.

Remark 31.3. The limit case p = ∞: the ∞-norm |f |∞ of a measurable
function f is the smallest number M such that

|{x ∈ Ω : |f(x)| ≤M}| = 0.

If such M ≥ 0 exists we say that f ∈ L∞(Ω), and then (31.2) holds with
p = ∞ and q = 1 if g ∈ L1(Ω). For f ∈ C0(IRN) the ∞-norm of f is equal
to the maximum norm

|f |
max

= max
x∈IRN

|f(x)|

of f .
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Exercise 31.4. Show that

|g|
p
≤ |g|

1
p

1
|g|1−

1
p

∞
.

Hint: use (31.2) with q =∞, p = 1.

Exercise 31.5. Apply (31.2) to fa and f b to obtain

|f |a+b

a+b
≤ |f |a

ap
|f |b

bq
.

Then solve the equations 1 ≤ ap = r < a+ b = s < bq = t and (p− 1)(q− 1) = 1 to
prove the (interpolation) inequality

|f |
s
≤ |f |

r
s
t−s
t−r

r
|f |

t
s
s−r
t−r

t
.

This inequality leads to

Lr(Ω) ∩ Lt(Ω) ⊂ Ls(Ω) for r < s < t.

Check that the limit case r = 1, t =∞ is consistent with Exercise 31.4.

31.2 Lebesgue spaces as Banach spaces

In the treatment below I need that you know what measurable sets and
measurable functions are, and what it means for a measurable function to be
integrable.

Definition 31.6. Let Ω ⊂ IRN be open and p ≥ 1 a real number. A
(Lebesgue) measurable function u : Ω → IR is said to be in Lploc(Ω) if the
(Lebesgue) integral ∫

B

|f |p

is finite for every open ball B with B̄ ⊂ Ω, and in Lp(Ω) if

|f |p
p

=

∫
Ω

|f |p <∞. (31.3)

This defines the (semi)norm |f |
p
, which is called the p-norm of f in Lp(Ω).

Exercise 31.7. Explain why the spaces Lploc(Ω) are nested:

Lploc(Ω) ⊂ Lqloc(Ω) ⊂ L1
loc(Ω) if p ≥ q ≥ 1.

Hint: use (31.2) with g ≡ 1 to show that the spaces Lp(Ω) are nested if Ω is bounded.

500



We need some technicalities to deal with |f |
p

= 0 only implying that

{x ∈ Ω : f(x) 6= 0}

is a set of zero measure5. To turn Lp(Ω) into a Banach space with its norm
defined by (31.3), we consider equivalence classes in Lp(Ω) for the equivalence
relation

f ∼ g ⇐⇒ |{x ∈ Ω : f(x) 6= g(x)}| = 0 ⇐⇒
∫

Ω

|f − g|p = 0. (31.4)

For f ∈ Lp(Ω) the p-norm of [f ] is well defined by

|[f ]|p
p

=

∫
Ω

|f |p,

and makes6

{[f ] : f ∈ Lp(Ω)}
a Banach space, and the (equivalence classes of) compactly supported con-
tinuous functions form a dense subspace of this Banach space7. The density
is formulated as

∀f∈Lp(Ω) ∀ε>0 ∃g∈Cc(Ω) |f − g|p < ε. (31.5)

Equivalently, for every Lp(Ω) there exists a sequence fn ∈ Cc(Ω) such that
fn → f in Lp(Ω). There are many such sequences, and every such sequence
is a Cauchy sequence8 with respect to the p-norm.

Remark 31.8. Every f ∈ Lp(Ω) extends to f ∈ Lp(IRN) by setting f(x) = 0
for x 6∈ Ω. No such general9 statement holds for f ∈ Lploc(Ω) and Lploc(IR

N).

Remark 31.9. We note that |A| = 0 if and only if for every ε > 0 there10

exist a sequence of open balls Bn = B(xn, rn) indexed by n ∈ IN such that

A ⊂ ∪n∈INBn and
∑
n∈IN

|Bn| ≤ ε.

Recall that
|Bn| = ωNr

N
n .

5Here |A| denotes the Lebesgue measure of a Lebesgue measurable subset A ⊂ IRN.
6This is a theorem that requires the full machinery of the Lebesgue integral.
7The brackets around f are dropped from the notation in everyday practice.
8Definition 31.20 introduces the notion of equivalence.
9Example: p = N = 1, f(x) = 1

x , Ω = IR+.
10This is in fact the statement that the Lebesgue outer measure of A is at most ε > 0.
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This zero measure concept was already introduced in Section 8.4. It does not
involve the Lebesgue measure of the covering countable union of (open) balls,
but it does contain the fundamental idea that measure theory should deal with
countable unions.

Exercise 31.10. Prove that a countable union of zero measure sets is again a zero
measure set. Hint: every small ε > 0 is the sum of countably many smaller positive
epsilons.

31.3 Statement of Lebesgue’s Differentiation Theorem

In Section 31.2 we discussed the standard approach with equivalence classes
of measurable functions to define Lp(Ω). For what it’s worth we now identify
a unique and in some sense best function f̃ in every equivalence class [f ]
of measurable functions equal to f almost everywhere in Ω. Theorem 31.12
may very well be formulated and proved before the machinery of Lebesgue
integration is introduced. The proof only uses properties that any kosher
extension of the Riemann integral should have.

Since much of all this is for a PDE course we recall a theorem from
Chapter 1 of

https://www.few.vu.nl/~jhulshof/NOTES/ellpar.pdf

about harmonic functions, i.e. solutions of the partial differential equation

∆f = 0.

It says that a continuous function f : Ω→ IR defined on an open set Ω ⊂ IRN

is harmonic if and only if for every closed ball B̄(x, r) ⊂ Ω it holds that

f(x) =
1

|B(x, r)|

∫
B(x,r)

f︸ ︷︷ ︸
Af (x,r)

. (31.6)

Part of the proof of this characterising mean value property uses the much
weaker statement

Af (x0, r) =
1

|B(x0, r)|

∫
B(x0,r)

f → f(x0) as r → 0 (31.7)

for the local averages Af (x0, r). This statement holds for every locally in-
tegrable f : Ω → IR that is continuous in a given point x0 ∈ Ω, and it is
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needed for the proof of Theorem 31.12. It is in turn a special case of state-
ments about convolutions, see Exercise 31.16 and Remark 31.17, which are
essential for our purposes in Chapter 32.

Definition 31.11. The good set of a function f ∈ L1
loc(Ω) is defined by

Gf = {x ∈ Ω : lim
r↓0

Af (x, r) = f(x)}. (31.8)

For every x ∈ Ω the existence and value of the limit in (31.8) rely only on
the equivalence class11 [f ] to which f belongs. Thus the set

Nf = N[f ] = {x ∈ Ω : lim
r↓0

Af (x, r) does not exist},

may be called the bad set of the equivalence class [f ].

Theorem 31.12. (The Lebesgue Differentiation or Good Set Theorem) For
every f ∈ L1

loc(Ω) the good set Gf has a complement in Ω with zero measure.
This complement contains the set Nf , which thereby also has zero measure.
Thus there is a unique f̃ in the equivalence class [f ] for which

lim
r↓0

Af̃ (x, r) = lim
r↓0

Af (x, r) = f̃(x)

for all x 6∈ Nf̃ = Nf , and f̃(x) = 0 for all x ∈ Nf̃ . Therefore Ω is the
disjoint union of Gf̃ and Nf̃ .

Theorem 31.13. Let f ∈ L1
loc(Ω). Then for almost all x in Ω it holds that

−
∫
B(x,r)

|f − f(x)| → 0 as r → 0.

For such x this is a stronger statement than the limit statement in Theorem
31.12.

Exercise 31.14. Apply Theorem 31.12 to the function s → |f(s) − q| for every
q ∈ IQ to prove Theorem 31.13. Hint: with the integration variable in

|f(s)− f(x)| ≤ |f(s)− q|+ |q − f(x)|

being s, it follows that

−
∫
B(x,r)

|f − f(x)| ≤ −
∫
B(x,r)

|f − q|︸ ︷︷ ︸
→|f(x)−q| if x∈G|f−q|

+|q − f(x)|.

Given x you can take |q − f(x)| as small as you like. Show that the complement of
the intersection of all the good sets G|f−q| is a set of measure zero and conclude.

11The first ⇐⇒ in (31.4) defines the equivalence classes.
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Exercise 31.15. Generalise the statements in Theorems 31.12,31.14 to L1
loc(Ω).

Exercise 31.16. Prove the statements in Theorem 31.12 for f ∈ Cc(IR
N) by

showing that Gf = IRN, i.e. the limit exists for every x ∈ IRN and is what it should
be. Hint: this is very much like Exercise 28.35 if you specify a convolution kernel Kr

such that
Ax,rf = (Kr ∗ f)(x).

Show that the convergence is in fact uniform, and likewise for the smooth compactly
supported functions f ε defined by

f ε(x) = (ηε ∗ f)(x) =

∫
IRN

ηε(x− y)f(y) dy, (31.9)

with families of kernels given by

ηε(x) =
1

εN
η(
x

ε
),

in which12

η ∈ C∞c (B) ⊂ C∞c (IRN), η(x) = η(|x|) ≥ 0,

∫
IRN

η = 1.

Remark 31.17. Let ηε be convolution kernels such as in Exercise 31.16.
Hölder’s inequality with

1

p
+

1

q
= 1

applied to (31.9), i.e. to

f ε(x) = (ηε ∗ f)(x) =

∫
IRN

ηε(x− y)f(y) dy,

gives

|f ε(x)| = |
∫

IRN

ηε(x− y)f(y) dy| ≤ |ηε|q︸︷︷︸
ε
−Np |η|

q

|f |
p
,

but also

|f ε(x)| ≤
∫
|y|≤ε
|f(x+ y)| ηε(y)

1
p

+ 1
q dy

12We write B for the open unit ball.
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≤
(∫
|y|≤ε
|f(x+ y)|p ηε(y) dy

) 1
p
(∫
|y|≤ε

ηε(y) dy

) 1
q

︸ ︷︷ ︸
=1

,

whence ∫
IRN

|f ε(x)|p dx ≤
∫
x∈IRN

∫
y∈IRN

|f(x+ y)|p ηε(y) dy dx =

∫
y∈IRN

∫
x∈IRN

|f(x+ y)|p dx︸ ︷︷ ︸
=
∫
IRN |f(x)|p dx

ηε(y) dy =

∫
IRN

|f(x)|p dx.

Summing up we have

|f ε(x)| ≤ ε−
N
p |η|

q︸ ︷︷ ︸
|ηε|q

|f |
p

and |f ε|
p
≤ |ηε|1︸︷︷︸

1

|f |
p

(31.10)

for f ∈ Cc(IRN). These estimates prepare to have in Chapter 32 that f ε → f
in p-norm as ε→ 0, not only for f ∈ Cc(IRN), but for all f ∈ Lp(IRN).

31.4 Proof of Lebesgue’s Differentiation Theorem

This section is not essential for our purposes in Chapter 32, but the proof is
of independent interest. It invokes the Hardy-Littlewood function, defined
by

Hf (x) = sup
r>0

A|f |(x, r) = sup
r>0

1

ωNrN

∫
B(x,r)

|f | ∈ [0,∞], (31.11)

the supremum of all average of |f | on balls centered in x. Here we assume
that f ∈ L1(IRN) for simplicity.

We shall use in the proof of Theorem 31.12 that for every every B(x, r)
the integral ∫

B(x,r)

f,

which is independent of the choice of f in [f ], varies continuously with x and
r > 0. This continuity is combined with monotonicity properties such as

B(x, r) ⊂ B(y, s) =⇒ |
∫
B(x,r)

f | ≤
∫
B(x,r)

|f | ≤
∫
B(y,s)

|f |,
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and the finite additivity of the integral, e.g.∫
B1∪···∪Bn

f =

∫
B1

f + · · ·+
∫
Bn

f

for balls B1, . . . , Bn with Bi ∩Bj = ∅ if i 6= j.
Note that

|Af (x, r)| ≤ A|f |(x, r) ≤ Hf (x) = H|f |(x) ≤ ∞. (31.12)

In view of the decay estimate

0 ≤ A|f |(x, r) ≤
1

ωNrN

∫
IRN

|f |,

and the continuity of A|f |(x, r), the supremum Hf (x) in (31.11) is finite unless
A|f |(x, r)→∞ as r → 0.

We next examine the averages Af (x, r) via Hf−g(x) with g ∈ Cc(IR
N)

chosen to have ∫
IRN

|f − g| > 0 (31.13)

small. Writing

Af (x, r)− f(x) = Af (x, r)− Ag(x, r)︸ ︷︷ ︸
Af−g(x,r)

+ Ag(x, r)− g(x) + g(x)− f(x),

we use (31.12) with f − g. In the resulting inequality, which reads

|Af (x, r)− f(x)| ≤ Hf−g(x) + |Ag(x, r)− g(x)|︸ ︷︷ ︸
→ 0 as r→ 0

+|g(x)− f(x)|,

the dependence on r in the right hand side disappears as r → 0, thanks to
Exercise 31.16. Thus

lim sup
r→0

|Af (x, r)− f(x)| ≤ Hf−g(x) + |g(x)− f(x)|. (31.14)

If the left hand side of (31.14) is not small then the first or the third term
is not small. Or both. We therefore consider the sets13

Oε
f−g = {x ∈ IRN : Hf−g(x) > ε};

Sεf−g = {x ∈ IRN : |f(x)− g(x)| > ε},
13O is for open.

506



and let N ε
f be the set of all points x ∈ IRN for which the statement

lim sup
r→0

|Af (x, r)− f(x)| ≤ 2ε

fails. Then it must be that

N ε
f ⊂ Oε

f−g ∪ Sεf−g, (31.15)

and these sets are nested:

0 < η < ε =⇒ Oε
f−g ⊂ Oη

f−g, Sεf−g ⊂ Sηf−g and N ε
f ⊂ N

η
f .

Via14 ∫
IRN

|f − g| ≥
∫
Sεf−g

|f − g| ≥ ε|Sεf−g|

we conclude from (31.15) that

|N ε| ≤ |Oε
f−g|+

1

ε

∫
IRN

|f − g|. (31.16)

Now suppose that

|Oε
f−g| ≤

CN
ε

∫
IRN

|f − g| (31.17)

for some universal N -dependent constant CN . We can then choose g to make
the integral (31.13) as small we like to establish for every ε > 0 that

|N ε| = 0.

This will complete the proof because Gf is the complement of the union Nf
of the sets

N 1
f ⊂ N

1
2
f ⊂ N

1
3
f ⊂ N

1
4
f ⊂ N

1
5
f ⊂ N

1
6
f ⊂ . . . ,

and thereby, see Exercise 31.10, the complement of a set of measure zero.

It thus remains to estimate Hf−g(x) and establish (31.17), but this argu-
ment will not depend on the choice of g. So we take g ≡ 0 and note that the
set

Oε
f = {x ∈ IRN : Hf (x) > ε}

is open because

x ∈ Oε
f ⇐⇒ ∃r > 0 :

∫
B(x,r)

|f |︸ ︷︷ ︸
continuous in r, x

> ε|B(x, r)|. (31.18)

14This does require to have the Lebesgue measure of Sεf−g well-defined.
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The measure of this set Oε
f is the supremum of all the measures of compact

subsets K of Oε
f , and every such K is covered15 by only finite many balls as

in (31.18), say
K ⊂ B1 ∪ · · · ∪Bm.

If these balls were always disjoint it would follow that

ε|K| ≤ ε(|B1 + · · ·+ |Bm|) <
∫
B1

|f |+ · · ·+
∫
Bm

|f | =
∫
B1∪···∪Bm

|f | ≤
∫

IRN

|f |,

and we would get (31.17) with CN = 1, but of course we cannot expect this
to be the case. It does however hold that

ε|K| ≤ 3N
∫

IRN

|f |, (31.19)

which gives (31.17) with CN = 3N .

To prove (31.19) we choose the largest ball, say Bj1 , take it out of the
collection, and make it the first ball in a new collection. The balls Bi in
the old collection for which Bi ∩ Bj1 6= ∅ are all contained in 3Bj1 , the ball
with the same center as Bj1 but 3 times it radius. Take these Bi out of the
old collection and throw them away. If there are any balls left in the old
collection, let Bj2 be the largest of the remaining balls, and take it as second
ball in the new collection. Repeat the procedure until, say after choosing Bjk

and having thrown away all the remaining balls intersecting it, there are no
more balls left in the old collection. Then16 Bj1 , . . . , Bjk are disjoint, most
likely don’t cover K, but we do have

K ⊂ B1 ∪ · · · ∪Bm ⊂ 3Bj1 ∪ · · · ∪ 3Bjk .

Therefore∫
IRN

|f | ≥
∫
B1∪···∪Bm

|f | ≥
∫
Bj1∪···∪Bjk

|f | =
∫
Bj1

|f |+ · · ·+
∫
Bjk

|f |

> ε(|Bj1 |+ · · ·+ |Bjk |) = 3−Nε(|3Bj1|+ · · ·+ |3Bjk |)
≥ 3−Nε|3Bj1 ∪ · · · ∪ 3Bjk | ≥ 3−Nε|B1 ∪ · · · ∪Bm| ≥ 3−Nε|K|.

So indeed (31.19) holds for all compact K ∈ Oε
f and (31.17) with g ≡ 0

follows. This completes the proof that the complement of the good set (31.8)
has zero measure. �

Exercise 31.18. Generalise the proof to f ∈ L1
loc(Ω).

15Both compactness and measurability rely on definitions with coverings.
16The statement that follows is called Vitali’s covering lemma.
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31.5 Another proof of the Hardy-Littlewood estimate

This section is not essential for our purposes in Chapter 32. For f ∈ L1(Ω),
Ω ⊂ IRN open17, we reformulate the estimate in (31.17) with g ≡ 0 as a
separate theorem. A modified proof uses countable coverings of Ω with open
balls. This may be of some independent interest.

Theorem 31.19. For f ∈ L1(Ω) and ε > 0 let

Hf (x) = sup
r>0

B(x,r)⊂Ω

−
∫
B(x,r)

|f | and Oε
f = {x ∈ Ω : Hf (x) > ε}.

Then there exists an f -dependent family of balls Bk indexed by a subset K
of IN such that

Oε
f ⊂ ∪k∈KBk with

∑
k∈K

|Bk| ≤
6N

ε
|f |

1
.

The number 6 can be replaced by any real number larger than 3. Thus the
Lebesgue outer measure of Oε

f is at most

3N

ε
|f |

1
.

Proof. We use the continuity of A|f |(x, r) to prove the statement in Theorem
31.19 about the set Oε

f of points x which allow an average

−
∫
B(x,r)

|f | > ε

with B(x, r) ⊂ Ω. Indeed, since

x ∈ Oε
f ⇐⇒ ∃r > 0 :

∫
B(x,r)

|f |︸ ︷︷ ︸
continuous in r, x

> ε|B(x, r)|, B(x, r) ⊂ Ω,

the set Oε
f is open. Moreover, Oε

f is contained in the union of all such balls
B(x, r) and in every B(x, r) there is an open ball B with rational center and
rational radius such that∫

B

|f | > ε|B| and x ∈ B.

17Before we took Ω = IRN, now we work with open balls B(x, r) ⊂ Ω.
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We conclude that there is a countable family of open balls Bn ⊂ Ω such that

Oε
f ⊂ ∪n∈INBn with

∫
Bn

|f | > ε|Bn|.

We will show that a subcollection of enlarged balls will do the job.
To see how let rn > 0 be the corresponding sequence of radii and denote

the distances between the centers of the balls Bm and Bn by dmn ≥ 0. Since

ε|Bn| <
∫

Ω

|f |,

the sequence rn is bounded. Let R1 be its supremum, choose n1 ∈ IN with

rn1 >
R1

2
,

and let B̃1 = Bn1 . Every ball Bn with dnn1 ≤ 2R1 is contained in the ball
concentric with B̃1 with six times its radius, because the radius of this ball,
which we denote by 6B̃1, is larger than 3R1, and the distance from any point
in Bn to the center of B̃1 is at most R1 + 2R1 = 3R1. Throw all these balls
away. If there are any balls left consider the supremum R2 of the remaining
radii and choose n2 with18

rn2 >
R2

2
,

and let B̃2 = Bn2 , and throw away all Bn with dnn2 ≤ 2R2. And so on.
This gives a possibly infinite sequence of disjoint19 open balls B̃k indexed

by k, and for every finite sum indexed by a finite subset K of IN we have

ε
∑
k∈K

|Bk| <
∑
k∈K

∫
Bk

|f | =
∫
∪k∈KBk

|f | ≤
∫

Ω

|f |.

If the process to choose the balls B̃k did not stop at some k = n ∈ IN it
follows that Rk → 0, and thus every ball not chosen as a B̃k is eventually
thrown away, whence

Oε
f ⊂ ∪k∈IN6B̃k,

which we view as
n =∞ in Oε

f ⊂ ∪nk=16B̃k (31.20)

for the case that the process does stop at some k = n ∈ IN.

18The 2 > 1 in the denominator leads to 3 · 2 = 6 > 3, any other p > 1 will also do.
19Nontouching because dkl > 2Rk ≥ Rk +Rl for l > k ≥ 1.
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For every m ∈ IN with m ≤ n we then have that

ε

m∑
k=1

|6B̃k| = 6Nε
m∑
k=1

|B̃k| < 6N
m∑
k=1

∫
B̃k

|f | = 6N
∫
∪mk=1B̃k

|f | ≤ 6N
∫

Ω

|f |,

so we conclude that

Oε
f ⊂ ∪nk=16B̃k with

n∑
k=1

|6B̃k| ≤
6N

ε

∫
Ω

|f | and n ∈ IN ∪ {∞}.

(31.21)
It remains to rename these balls 6B̃k as Bk. Note that the number 6 appears
as 2 · 3. Choosing p > 1 instead of 2 the estimate is improved in that 6 is
replaced by 3p. This completes the proof of Theorem 31.19. �

31.6 Lebesgue spaces via Cauchy sequences

If you are unfamiliar with Lebesgue integration then this section will help you
to avoid it. We define Lp(Ω) as consisting of equivalence classes of Cauchy
sequences of compactly supported continuous functions fn, and explain how
to integrate them. You may have arrived here skipping Theorem 31.12 and all
that followed except Exercise 31.16 and Remark 31.17. After this section you
can jump to Section 31.8 which adapts Exercise 31.16 to our later purposes
in Chapter 32.

Definition 31.20. Let Ω ⊂ IRN be a nonempty open set. Two sequences fn
and gn in Cc(Ω) are equivalent in the p-norm if20

|fn − gn|p → 0

as n→∞. We write
F = [fn] (31.22)

for the equivalence class of a sequence Cc(Ω) with

|fn − fm|p → 0

as m,n → ∞. Such sequences are called p-Cauchy sequences, and we let
Lp(Ω) be the Banach space of all such equivalence classes F equipped with
the norm

|F |
p

= lim
n→∞

|fn|p .

This is nothing but the abstract completion procedure applied to the vector
space Cc(Ω) and the p-norm. In view of Exercise 31.16 it is no restriction to
assume that every fn in (31.22) is smooth.

20If this holds for sequences fn, gn in Cc(IR
N) we call them equivalent on Ω.
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Remark 31.21. We extend21 functions in Cc(Ω) to functions in Cc(IR
N),

and thereby automatically have that Lp(Ω) ⊂ Lp(Ω′) ⊂ Lp(IRN) for every Ω′

open with Ω ⊂ Ω′ ⊂ IRN. To restrict elements of Lp(Ω′) to Lp(Ω) we simply
choose for every p-Cauchy sequence gn in Cc(Ω

′) a p-Cauchy sequence fn in
Cc(Ω) with

∫
Ω
|fn − gn|p → 0 as n→∞.

We first restrict the attention to p = 1. Cauchy sequences with respect
to the 1-norm are characterised by the property that∫

Ω

|fn − fm| → 0

as m,n → ∞. If fn ∈ Cc(Ω) is a Cauchy sequence and fn ∼ gn for some
other sequence gn ∈ Cc(Ω), then also gn is a Cauchy sequence. In particular
F = [fn] is the zero element if and only if |fn|1 =

∫
Ω
|fn| → 0 as n→∞.

Now consider two such equivalent Cauchy sequences in Cc(Ω) ⊂ Cc(IR
N),

and let A ⊂ IRN be any bounded set over which we can integrate continuous
functions by means of the Riemann integral. the sequences∫

A

fn and

∫
A

gn

are (equivalent) Cauchy sequences in IR with the same limit. Thus∫
A

F = lim
n→∞

∫
A

fn, (31.23)

is the natural definition of the integral22 of the equivalence class (31.22) over
A. The functional

F →
∫
A

F (31.24)

is linear, and ∫
A

|F | = lim
n→∞

∫
A

|fn| ≥ | lim
n→∞

∫
A

fn| = |
∫
A

F |,

in which |F | = [|fn|] is the equivalence class23 of the Cauchy sequence |fn|.

Remark 31.22. Likewise ∫
Ω

Fφ = lim
n→∞

∫
Ω

fnφ

21By setting fn(x) = 0 for all x 6∈ Ω.
22If A ⊃ Ω then

∫
A
F defines

∫
Ω
F .

23See Exercise 31.23 for some details.
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defines the integral of the product of the equivalence class F and the function
φ ∈ Cc(IRN) as the limit of the Cauchy sequence

∫
Ω
fnφ. For φ ∈ Cc(Ω) this

only requires equivalence classes for the equivalence relation

fn ∼ gn ⇐⇒ lim
n→∞

∫
B

|fn − gn| = 0 for every ball B with B̄ ⊂ Ω

of sequences fn for which

lim
m,n→∞

∫
B

|fn − fm| = 0 for every ball B with B̄ ⊂ Ω.

We can think of such equivalence classes as constituting the space L1
loc(Ω).

Exercise 31.23. Let F = [fn] be as in Definition 31.20 with p = 1. Write

fn(x) = f+
n (x)− f−n (x),

with f+
n and f−n nonnegative. Let F+ = [f+

n ], F− = [f−n ], and |F | = [|fn|]. Referring
to (31.23) show that∫

A
F =

∫
A
F+ −

∫
A
F− and

∫
A
|F | =

∫
A
F+ +

∫
A
F−.

Hint: prove and use the linearity of (31.24).

Remark 31.24. Now that we can integrate equivalence classes of Cauchy
sequences you can jump to Section 31.8 as you wish, where we will need a
variant of the following proposition. The proof below is instructive.

Proposition 31.25. Let Ω be open, and let F be an equivalence class of a
Cauchy sequence fn in Cc(Ω) with respect to the 1-norm. Then the function24

(x, r)→
∫
B(x,r)

F (31.25)

is continuous, uniformly25 in x and r.

Proof. We estimate

|
∫
B(x,r)

F −
∫
B(y,s)

F | ≤

24Compare with (31.18).
25A restriction to bounded sets is not necessary because fN ∈ Cc(IRN) .
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|
∫
B(x,r)

F −
∫
B(x,r)

fn|+ |
∫
B(x,r)

fn −
∫
B(y,s)

fn|+ |
∫
B(y,s)

fn −
∫
B(y,s)

F |

≤
∫
B(x,r)

|F − fn|︸ ︷︷ ︸
≤ε

+|
∫
B(x,r)

fn −
∫
B(y,s)

fn|+ |
∫
B(y,s)

|fn − F |︸ ︷︷ ︸
≤ε

(31.26)

for n ≥ N , if N corresponds to ε > 0 via the definition of fn being a Cauchy
sequence26. The definition of the integral of the class F in (31.23), as the
limit of the Cauchy sequence ∫

B(x,r)

fn,

has that same N implying the ε-bounds for all balls B(x, r) and B(y, s) in
(31.26) simultaneously if n ≥ N .

We then fix n = N and ask for the second term in (31.26) that

|
∫
B(x,r)

fN −
∫
B(y,s)

fN | ≤ ε.

Since fN ∈ Cc(Ω) ⊂ Cc(IR
N), this can be done uniformly in terms of the

smallness of |r − s| and |x− y|. �

31.7 From Cauchy sequences to functions

For what it’s worth we ask again the question: does the equivalence class
define a function? So let F be an equivalence class of a Cauchy sequence fn
as in Definition 31.20. Then we can define

AF (x, r) = −
∫
B(x,r)

F =
1

|B(x, r)|

∫
B(x,r)

F (31.27)

for all x ∈ IRN and r > 0. If you wish27 we can use (31.27) to turn F into a
function from IRN to IR by means of a variant of Theorem 31.12.

Theorem 31.26. Let F be an equivalence class of Cauchy sequences in Cc(Ω)
with respect to the 1-norm, and let NF be the set of points x for which

lim
r→0

AF (x, r) (31.28)

does not exist. Then NF is a zero measure set.

26With respect to the 1-norm.
27If not jump to Section 31.8.
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Proof. We examine NF using28

HF (x) = sup
r>0

A|F |(x, r) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|F | ∈ [0,∞], (31.29)

and reason as in Section 31.4. Replacing the estimates that lead to (31.14)
by

|AF (x, r)− AF (x, s)| ≤
|AF (x, r)− Afm(x, r)|+ |Afm(x, r)− Afm(x, s)|+ |Afm(x, s)− AF (x, s)|

≤ A|F−fm|(x, r) + |Afm(x, r)− Afm(x, s)|+ A|fm−F |(x, s)

for 0 < s < r, it follows that

|AF (x, r)− AF (x, s)| ≤ 2HF−fm(x) + |Afm(x, r)− Afm(x, s)|︸ ︷︷ ︸
→ 0 as r, s→ 0.

. (31.30)

The first term on the right hand side of (31.30) is twice the upper bound

HF−fm(x) = H|F−fm|(x)

for
A|F−fm|(x, r) and A|fm−F |(x, s).

Here F − fm with m fixed denotes the equivalence class of the Cauchy se-
quence29 fn− fm, and |F − fm| the equivalence class of the Cauchy sequence
|fn − fm|. It follows that30

lim sup
r,s→0

|AF (x, r)− AF (x, s)| ≤ 2HF−fm(x), (31.31)

Now let

N ε
F = {x ∈ IRN : lim sup

r,s→0
|AF (x, r)− AF (x, s)| > 2ε}

Then (31.31) gives31

N ε
F ⊂ Oε

F−fm = {x ∈ IRN : HF−fm(x) > ε},

and similar to (31.18) the continuity established with Proposition 31.25 im-
plies that Oε

F−fm is open because

x ∈ Oε
F−fm ⇐⇒ ∃r > 0 :

∫
B(x,r)

|F − fm|︸ ︷︷ ︸
continuous in r and x

> ε|B(x, r)|. (31.32)

28Mainly for notational convenience we don’t restrict to balls B(x, r) ⊂ Ω.
29Indexed by n.
30This looks cleaner than (31.14) in fact.
31Compare to (31.15), in which we could have used subscripts g on the right.
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Exercise 31.27. Modify the proof of Theorem 31.19 to show that N ε
F is a set of

zero measure for every ε > 0. Hint: use (31.21).

Thus the limit in (31.28) exists outside the union NF of the sets

N 1
F ⊂ N

1
2
F ⊂ N

1
3
F ⊂ N

1
4
F ⊂ N

1
5
F ⊂ N

1
6
F ⊂ . . . ,

a set of measure zero as before. �

Definition 31.28. Let F be the equivalence class in Theorem 31.26. We
define the function F by

F (x) = lim
r→0

AF (x, r) for x 6∈ NF and F (x) = 0 for x ∈ NF ,

just like we did in Theorem 31.12 for equivalence classes of functions. We
call GF = (NF )c the good set of F .

Exercise 31.29. Referring to (31.31) and Exercise 31.23 show that32

lim sup
r,s→0

|AF+(x, r)−AF+(x, s)| ≤ 2HF−fm(x),

likewise for F− = [f−n ], and also

lim sup
r,s→0

|A|F |(x, r)−A|F |(x, s)| ≤ 2HF−fm(x).

Exercise 31.30. Define F+(x), F−(x) and |F |(x) as in Theorem 31.26. For
which x can you conclude that |F |(x) = |F (x)| = F+(x) + F−(x) and F (x) =
F+(x)− F−(x)?

In relation to Theorem 31.13, and its proof in Exercise 31.14, we observe that
for fixed q ∈ IQ we can also modify the proof of (31.31) to conclude that

lim sup
r,s→0

|A|F−q|(x, r)− A|F−q|(x, s)| ≤ 2HF−fm(x). (31.33)

Now that we have our function F and its good set GF from Section 31.7,
we can ask: given x ∈ GF , how does the value F (x) provided by Definition
31.28 relate to fn(x)? We observe for such x that

|fn(x)− F (x)| ≤
32The right hand sides are the same as in (31.31).
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|fn(x)− Afn(x, r)|︸ ︷︷ ︸
→0 as r→ 0

+ |Afn(x, r)− AF (x, r)|︸ ︷︷ ︸
≤Hfn−F (x)

+ |AF (x, r)− F (x)|︸ ︷︷ ︸
→0 as r→ 0

,

whence
|fn(x)− F (x)| ≤ Hfn−F (x), (31.34)

and again the set
{x ∈ IRN : Hfn−F (x) > ε}

comes into play via

{x ∈ GF : |fn(x)− F (x)| > ε}.

We can deal with it just as in Exercise 31.27. It is covered by an at most
countable union of open balls with a bound

6N

ε

∫
Ω

|fn − F |

for the sum of the measures of the covering balls. This allows to prove
statements about the existence of convergent subsequences only33.

Exercise 31.31. Let δ > 0. For k,m ∈ IN choose n = Nkm for which

m6N
∫

Ω
|fn − F | <

δ

2k

to prove the existence of a subsequence of fn which converges uniformly on the com-
plement of a set N δ

F with |N δ
F | < δ. Then choose δ = 1

j to construct a subsequence
that converges in every x ∈ Ω outside a set NF of measure zero.

31.8 Mollifying functions and equivalence classes

Refering to
Ax,rf = (Kr ∗ f)(x)

in Exercise 31.16, we recall that thanks to (31.23) we also had

Ax,rF = (Kr ∗ F )(x) = lim
n→∞

(Kr ∗ fn)(x) (31.35)

at our disposal for equivalence classes F of Cauchy sequences fn ∈ Cc(Ω). We
now use the p-norm to mollify equivalence classes of the Cauchy sequences
introduced in Section 31.6.

33Convergent subsequences is the best we can hope for in general.
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Theorem 31.32. Let fn ∈ Cc(IR
N) have the Cauchy property with respect

to the p-norm, i.e. ∫
IRN

|fn − fm|p → 0 as m,n→∞,

and let F be its equivalence class. Then

Fε(x) = (ηε ∗ F )(x) = lim
n→∞

(ηε ∗ fn︸ ︷︷ ︸
fεn

)(x) (31.36)

defines34 a function Fε ∈ C0(IRN) for every ε > 0. The convergence is
uniform and ∫

IRN

|f εn − Fε|p → 0 as n→∞,

and ∫
IRN

|f εn|p →
∫

IRN

|Fε|p as n→∞.

The integrals containing Fε are finite improper Riemann integrals of nonneg-
ative continuous functions. We say that Fε ∈ C0(IRN) is p-integrable. In fact
Fε is smooth, see Theorem 31.37, and all its derivatives are also p-integrable
and in C0(IRN).

Proof. We note that f εn is the convolution of Cc(IR
N) and ηε ∈ C∞c (IRN).

Thereby f εn is smooth and its support is contained in a closed ε-neighbourhood
of the support of fn. We use the estimates in (31.10) applied to fn and fn−fm.
The uniform bounds

|f εn(x)| = |
∫

IRN

ηε(x− y)fn(y) dy| ≤ |ηε|q |fn|p ,

|f εm(x)− f εn(x)| = |
∫

IRN

ηε(x− y)(fm(y)− fn(y)) dy| ≤ |ηε|q |fm − fn|p ,

make that the function Fε is well defined by (31.36) as the uniform limit of a
bounded sequence of functions in Cc(IR

N), and thereby in C0(IRN). But we
also have that

||f εm|p − |f
ε
n|p | ≤ |f

ε
m − f εn|p ≤ |fm − fn|p .

Thereby f εn ∈ Cc(IR
N) is a p-Cauchy sequence in Lp(IRN), and |f εn|p is a

Cauchy sequence in IR. Thus

L = lim
n→∞

∫
IRN

|f εn|p

34Superscript in fεn as in Evans, subscript in Fε to distinguish from F ε in Exercise 31.34.
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exists. Suppose that the possibly infinite improper Riemann integral∫
IRN

|Fε|p = lim
R→∞

∫
B(0,R)

|Fε|p

is larger than L. Using the two limit definitions it follows that there exist
δ > 0 and R > 0 such that for all n sufficiently large∫

B(0,R)

|Fε|p ≥
∫

IRN

|f εn|p + δ ≥
∫
B(0,R)

|f εn|p + δ.

But this is impossible since∫
B(0,R)

|f εn|p →
∫
B(0,R)

|Fε|p

by the uniform convergence of f εn to Fε. Thus the improper Riemann integral
of |Fε|p over IRN is finite and∫

IRN

|Fε|p ≤ lim
n→∞

∫
IRN

|f εn|p = L.

Can this inequality be strict? In that case there exists δ > 0 such that
for all n sufficiently large there exists Rn > 0 such that(∫

IRN

|f εn|p
) 1

p

>

(∫
B(0,Rn)

|f εn|p
) 1

p

=

(∫
IRN

|Fε|p
) 1

p

+ δ.

Pick such an n and call it m. Since f εn converges uniformly on B(0, Rm) we
have (∫

B(0,Rm)

|f εn|p
) 1

p

<

(∫
B(0,Rm)

|Fε|p
) 1

p

+
δ

2
≤
(∫

IRN

|Fε|p
) 1

p

+
δ

2

=

(∫
B(0,Rm)

|f εm|p
) 1

p

− δ

2
.

for all n > m sufficiently large. Then(∫
B(0,Rm)

|f εn|p
) 1

p

<

(∫
B(0,Rm)

|f εm|p
) 1

p

− δ

2
,

and thereby

|f εn − f εm|p ≥
(∫

B(0,Rm)

|f εn − f εm|p
) 1

p

≥
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(∫
B(0,Rm)

|f εm|p
) 1

p

−
(∫

B(0,Rm)

|f εn|p
) 1

p

>
δ

2
.

Since m can be chosen as large as we like this prohibits f εn to be a Cauchy
sequence in Lp(IRN), a contradiction.

This proves

lim
n→∞

∫
IRN

|f εn|p =

∫
IRN

|Fε|p, (31.37)

and in the following exercise you will complete35 the proof. �

Exercise 31.33. Use (31.37) to show that

lim
n→∞

∫
IRN

|f εn − Fε|p = 0.

Exercise 31.34. Denote the equivalence class [f εn] by F ε. Show that∫
IRN

F εφ =

∫
IRN

Fεφ

for every φ ∈ Cc(IRN). Hint: use the uniform convergence of f εn.

Remark 31.35. In Exercise 31.34 we have a p-equivalence class F ε of the
p-Cauchy sequence f εn in Cc(IR

N), and a p-integrable function Fε in C0(IRN).
It is easy to see that Fε can be represented by a p-Cauchy sequence in Cc(IR

N)
as well, for instance by

F ε
n(x) = Fε(x)η(

x

n
).

As a consequence the sequence zεn = F ε
n − f εn is also a p-Cauchy sequence

in Cc(IR
N). Its equivalence class Zε then has the property that

∫
IRN Z

εφ = 0
for every φ ∈ Cc(IR

N) by the very statement of the exercise. Of course we
shall want to conclude that Zε is therefore equal to the equivalence class of
the sequence 0, 0, . . . , and Proposition 32.7 will indeed take care of this wish.

Exercise 31.36. Discuss why Fε ∈ Cc(IRN) if Ω is bounded. What can you say
about its support?

35Except for the statements about the derivatives in Theorem 31.37.
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Theorem 31.37. Let the function Fε ∈ C0(IRN) be defined as in Theorem
31.32 as the limit of the ε-mollifications f εn of the p-Cauchy sequence fn.
Then Fε is smooth and all its derivatives are p-integrable as well. In fact
Dαf εn → DαFε uniformly and in p-norm as n→∞ for every multi-index α.
If Ω is bounded then Fε ⊂ C∞c (IRN) and its support is contained in a closed
ε-neighbourhood of Ω.

Proof. We define

Fα
ε (x) = (Dαηε ∗ F )(x) = lim

n→∞
(Dαηε ∗ fn)︸ ︷︷ ︸

Dαfεn

(x), (31.38)

in which Dα is any partial derivative with multi-index

α = (α1, . . . , αN) of order |α| = |α1|+ |αN |.

We saw in the proof of Theorem 31.32 that for ε > 0 fixed the bounded
continuous function Fε = ηε∗F is the uniform n→∞ limit of f εn ∈ C∞c (IRN).
Likewise the bounded continuous function Fα

ε = Dαηε ∗ F is the uniform
n→∞ limit of Dαf εn, because

|Dαf εm(x)−Dαf εn(x)| = |
∫

IRN

Dαηε(x− y)(fm(y)− fn(y)) dy|

≤ |Dαηε|q |fm − fn|p .

Thus the limit n → ∞ and the derivative Dα commute when acting on f εn.
Recalling both (31.36) and (31.38) it follows that DαFε exists and is given
by

Dαηε ∗ F = Fα
ε = DαFε = Dα(ηε ∗ F ). (31.39)

The p-integrability also follows as in the proof of Theorem 31.32, thanks
to the estimate

|Dαf εm −Dαf εn|p ≤ |D
αηε|1 |fm − fn|p .

In particular ∫
IRN

|Dαf εn|p →
∫

IRN

|DαFε|p as n→∞.

�
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Remark 31.38. With the standard definition of Lebesgue integrals the ker-
nels ηε introduced in Exercise 31.16 are used to mollify locally integrable
Lebesgue measurable functions f . For f defined on the whole of IRN we
write36

f ε(x) = (ηε ∗ f)(x) =

∫
IRN

ηε(x− y)f(y) dy︸ ︷︷ ︸
smooth in x

=

∫
IRN

ηε(y)f(x− y) dy, (31.40)

whence

f ε(x) =

∫
|y|≤r

ηε(y)f(x+ y) dy =

∫
|y−x|≤r

ηε(y − x)f(y) dy.

Such mollified functions f ε are globally well defined if f ∈ L1
loc(IR

N), which
contains every Lp(Ω) with Ω open and bounded. Repeated differentiation of
the first integral in (31.40) with respect to x is then allowed37 and gives

Dαf ε(x) =

∫
IRN

Dαηε(x− y)f(y) dy (31.41)

for every partial differential operator with multi-index α. If Ω is bounded and
f ∈ Lp(Ω) then f ε is compactly supported and its support is contained in a
closed ε-neighbourhood of Ω.

Think of Dα first as a (partial) derivative with respect to x, but then also
as an operator acting on smooth functions u to produce new functions Dαu.
In particular Dαηε is a globally defined (smooth) function (with compact
support). It appears in (31.41), evaluated in x− y as

(Dαηε)(x− y) = Dα︸︷︷︸
acts on x

ηε(x− y)︸ ︷︷ ︸
varies with x

.

31.9 Towards Sobolev spaces

In case fn ∈ C |α|c (Ω) the first term in (31.39), that is the first term in

Dαηε ∗ F = Fα
ε = DαFε = Dα(ηε ∗ F ),

is the uniform n→∞ limit of the sequence

Dαηε ∗ fn = ηε ∗Dαfn, (31.42)

36We use a superscript ε for fε to be consistent with the notation in [Evans].
37Theorem 2.27 in [Folland] requires a majorant for which we can take a multiple of f .
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integrating the defining Riemann integrals by parts. This leads us to consider
sequences fn ∈ Ck

c (Ω) for which Dαfn is a p-Cauchy sequence for every α
with |α| ≤ k. Equivalence classes of such sequences define new spaces that
we encounter in Chapter 32.

Referring to the density statement in (31.5) we shall consider functions
u, un and v rather than f , fn and g, and often think of v as taken from a
sequence un that converges to u in the p-seminorm. Statements about the
equivalence class [u] of a function u in Lp(Ω) can be derived from statements
about any p-Cauchy sequence un ∈ Cc(Ω) which converges to an element38

u of that equivalence class [u] in the sense that |un − u|
p
→ 0. Likewise

statements about the equivalence class U of a p-Cauchy sequence un ∈ Cc(Ω)
are derived from statements about any Cauchy sequence in that class U . To
prove something about [u] or U we will pick a function um sufficiently far in
the p-Cauchy sequence un ∈ Cc(Ω), and it saves us an index to call it v. We
can choose to consider such v as v ∈ [v], or as defining the equivalence class
V of the sequence v, v, v, . . . .

In both approaches it is needed to also use the mollified functions vε =
uεm, sometimes with ε > 0 sufficiently small to have vε in C∞c (Ω). When
considering the entire sequence uεn with ε > 0 fixed, we have Theorem 31.32 at
our disposal which represents the equivalence class U ε of the mollified Cauchy
sequence uεn by a function Uε ∈ C∞c (IRN), supported in an ε-neighbourhood
of Ω. This function coincides39 with the function uε defined by (31.40) for
u ∈ Lp(Ω) ⊂ L1

loc(IR
N).

Remark 31.39. It is tempting to mystify notation writing u both for U
and for [u], likewise v for V and [v], and all epsilons as superscripts, see
Exercise 31.34. Thereby we largely forget about the differences between the
two approaches in Chapter 31. But do remember on occasion that um − u is
either the equivalence class um−U of the (Cauchy) sequence um−un indexed
by n, or it is chosen in the equivalence class [um−u] of the function um−u.

38To every such element in fact.
39Do we ever use this?
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32 Sobolev spaces with subscript zero

You may try to read this chapter before reading Chapter 31 and flip back
when necessary. Let Ω be an open set in IRN. Recalling that for 1 ≤ p <∞
the p-norm of a function v ∈ Cc(Ω) is defined by

|v|p
p

=

∫
IRN

|v|p, (32.1)

the Sobolev W 1,p-norm of a function v ∈ C1
c (Ω) is defined by

|v|p
1,p

= |v|p
p

+ |vx1|pp + · · ·+ |vxN
|p
p
. (32.2)

No matter which approach to Lp(Ω) we prefer, the Sobolev space W 1,p
0 (Ω)

will be the closure1 of C1
c (Ω) with respect to the W 1,p-norm2, just like Lp(Ω)

is the closure of Cc(Ω) with respect to the p-norm. The closure is either
taken in a not yet defined larger space W 1,p(Ω), or in the abstract sense with
equivalence classes, just as described in Section 31.6 for Lp(Ω) with equiva-
lence classes3 U = [un] of p-Cauchy sequences4 un in Cc(Ω), and definitions
like ∫

Ω

Uφ =

∫
Ω

φU = lim
n→∞

∫
IRN

φun, |U |
p

= lim
n→∞

|un|p ,

and so on5. Let us start keeping the latter perspective for Lp(Ω). Of course
these definitions are theorems if we replace U by the limit u ∈ Lp(Ω) of the
Cauchy sequence with Lp(Ω) as in Definition 31.6.

Exercise 32.1. We know, one way or another, that Lp(Ω) is the closure of Cc(Ω)
with respect to the p-norm. Explain why it is then also the closure of C1

c (Ω) with
respect to the p-norm. Hint: for instance by considering mollifications of functions in
Cc(Ω) as introduced in Exercice 31.16.

32.1 Cauchy sequences in the Sobolev norm

Section 31.8 ended with the consideration of sequences un ∈ Ck
c (Ω) for which

Dαun is a Cauchy sequence with respect to the p-norm for every α with

1We consider C1
c (Ω) as a subspace of C1

c (IRN).
2The notation is consistent with [Evans], except for the domains being called Ω.
3Denoted by capitals until we decide otherwise and just write u for the class [un].
4Which have ||um|p − |un|p || ≤ |um − un|p → 0 as m,n→∞, see Definition 31.20.
5As in Remark 31.22, with φ ∈ Cc(IRN).
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|α| ≤ k. Restricting to k = 1 we denote the first order partial derivatives of
a sequence un ∈ C1

c (Ω) by D1, . . . , DN acting on un. From the notations

Diun =
∂un
∂xi

= (un)xi

we pick the first.
Now observe that a sequence un in C1

c (Ω) ⊂ C1
c (IRN) is a Cauchy sequence

with respect to the norm defined in (32.2) if and only if the sequences un,
D1un, . . . , DNun are p-Cauchy sequences. This is a much stronger statement
than the statement that un is a p-Cauchy sequence: for any W 1,p-Cauchy
sequence un ∈ C1

c (IRN) we have the p-equivalence classes of not only the
p-Cauchy sequence un but also of the p-Cauchy sequences D1un, . . . , DNun.
For now we denote these classes by capitals U,W1, . . . ,WN . Note that if we
take a sequence independent of n, say v, v, v . . . , with v ∈ C1

c (IRN), then
we can identify v with its equivalence class, and likewise for the sequences
Div,Div,Div . . . of course.

The equivalence class of such a W 1,p-Cauchy sequence un is given by all
sequences vn ∈ C1

c (Ω) ⊂ C1
c (IRN) with

|un − vn|1,p → 0 as n→∞. (32.3)

This class is strictly contained in the p-equivalence class U , and it comes
with p-equivalence classes W1, . . . ,WN , as just explained.

Now recall that Theorem 27.7 stated that∫
Ω

Div =

∫
∂Ω

νiv, (32.4)

for Ω bounded open in IRN, ν the outer normal vector on ∂Ω ∈ C1, and
v : Ω̄ → IR continuously differentiable. Applied to v = φun, and Ω replaced
by some large open ball Bn containing the support of a function un ∈ C1

c (IRN)
under consideration here, we actually don’t need Theorem 27.7 to conclude
that ∫

IRN

φDiun =

∫
Bn

φDiun = −
∫
Bn

unDiφ = −
∫

IRN

unDiφ,

because v = φun vanishes outside Bn and therefore∫
Bn

φDiun + unDiφ =

∫
Bn

Di(φun) = 0

for every i and every such φ. Thus

∀φ∈C1
c (IRN) ∀n∈IN

∫
IRN

φDiun︸ ︷︷ ︸
→

∫
φWi

= −
∫

IRN

unDiφ︸ ︷︷ ︸
→

∫
U Diφ

.
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By the integral definition in Remark 31.22 this implies as indicated that

∀φ∈C1
c (IRN)

∫
IRN

φWi = −
∫

IRN

U Diφ. (32.5)

By itself this is statement about p-equivalence classes only, that happens
to hold for U,W1, . . . ,Wn obtained from the W 1,p-sequence un in C1

c (Ω) we
started out with.

32.2 Weak derivatives of equivalence classes

The statement in (32.5) leads us to consider the p-equivalence class Wi as the
derivative DiU of the p-equivalence class U in some generalised sense, to be
made precise with a suitable class of so called test functions φ for which the
identity in (32.5) should hold. For good reasons the test functions φ are now
restricted to φ ∈ C1

c (Ω), because otherwise the definition fails for functions
as in Theorem 27.7, in view of the possible presence of a boundary integral
term avoided in (32.5).

After the above discussion the following definition is natural.

Definition 32.2. Let U and Wi be equivalence classes as in Definition 31.20
of Lp(Ω). We say that Wi = DiU is the generalised or weak derivative of U
with respect to the ith variable if

∀φ∈C1
c (Ω)

∫
Ω

φWi = −
∫

Ω

U Diφ. (32.6)

By agreement W 1,p(Ω) without subscript 0 consists of all U ∈ Lp(Ω) for which
such W1, . . . ,WN ∈ Lp(Ω) exist. Does it thereby contain W 1,p

0 (Ω)?

Remark 32.3. So W 1,p(Ω) is defined above as a subset of

Lp(Ω) = {U = [un] : un ∈ Cc(Ω) is a p-Cauchy sequence}

by
W 1,p(Ω) = {U ∈ Lp(Ω) : D1U, . . . , DNU exist in Lp(Ω)}.

Since

W 1,p
0 (Ω) = {equivalence classes of W 1,p-Cauchy sequences un ∈ C1

c (Ω)},

the obvious linear injective map from W 1,p
0 (Ω) to W 1,p(Ω) is defined by

[un]︸︷︷︸
class in W 1,p

0 (Ω)

→ [un]︸︷︷︸
class in Lp(Ω)

(32.7)

for every W 1,p-equivalence class of a every W 1,p-Cauchy sequence un ∈ C1
c (Ω).
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Remark 32.4. Changing to lower cases for U and Wi the formulation in
(32.6) is consistent with the defining statement in Theorem 32.46 below6,
where we use the standard definition of Lp(Ω) in Definition 31.6.

Remark 32.5. To have uniqueness of the weak derivatives Wi = DiU we
need7, and indeed prove below, that

∫
Ω
Wiφ = 0 for all φ ∈ C1

c (Ω) implies that
Wi is the equivalence class of the sequence 0, 0, 0, . . . in Cc(Ω). The obvious
definition of the W 1,p-norm of U ∈ W 1,p(Ω) is then via

|U |p
1,p

= |U |p
p

+ |D1U |p
p

+ · · ·+ |DNU |p
p
.

Remark 32.6. Consider W 1,p
0 (Ω) as the abstract closure of C1

c (Ω) in the
W 1,p-norm. Remark 32.3 then implies that this abstract Banach space is
linearly and isometrically embedded by

[un]︸︷︷︸
class in W 1,p

0 (Ω)

→ [un]︸︷︷︸
class in Lp(Ω)

in the normed space W 1,p(Ω). This latter space is itself also8 a Banach space
and contains C1

c (Ω), as well as the closure of C1
c (Ω). Thus we can also

consider W 1,p
0 (Ω) as the closure of C1

c (Ω) in W 1,p(Ω).

Proposition 32.7. Let Ω ⊂ IRN be open and let U = [un] be the equivalence
class of a p-Cauchy sequence un in Cc(Ω). If

∫
Ω
Uφ = 0 for all φ ∈ C1

c (Ω)
then U = 0, i.e.

∫
Ω
|un|p → 0 as n→∞.

Proof. We consider p = 1 first and argue by contradiction. Suppose that

|U |
1

= lim
n→∞

|un|1 = lim
n→∞

∫
Ω

|un| > 0.

We can assume without loss of generality that |un|1 = 1 for all n ∈ IN,
dividing every un by its 1-norm, skipping n for which |un|1 = 0. It is easy to
see9 that this does not affect the Cauchy property of the sequence.

As a consequence any function φ ∈ C1
c (Ω) with |φ|

max
≤ 1 allows the

estimate

|
∫

Ω

unφ−
∫

Ω

umφ| = |
∫

Ω

(un − um)φ| ≤ |un − um|1 <
1

4

6Where we use subscripts xi to denote Di.
7We stumbled on this issue in Section 31.8, see Exercise 31.35.
8Exercise 32.9.
9Formulate and do the exercise.
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for all m,n sufficiently large10. It is then no restriction to assume that this
estimates holds for all m,n. Thus it suffices to exhibit such a φ for which∫

Ω

u1φ >
1

3

and thereby conclude that∫
Ω

unφ =

∫
Ω

u1φ︸ ︷︷ ︸
> 1

3

+

∫
Ω

unφ−
∫

Ω

u1φ︸ ︷︷ ︸
>− 1

4

>
1

12

for all n. But then ∫
Ω

Uφ ≥ 1

12
,

in contradiction to the asumption that such integrals vanish. A nice but
not very sharp11 exercise about Riemann integrals of compactly supported
continuous functions completes the proof for p = 1, and also for p > 1. �

Exercise 32.8. Let f ∈ Cc(IRN) have
∫

IRN |f | = 1. Show there exists a smooth
function φ with compact support contained in the support of f such that

|φ|
max
≤ 1 and

∫
Ω
fφ >

1

3
.

Likewise, if
∫

IRN |f |p = 1 for p > 1 show there exists such a φ with

|φ|
q
≤ 1 and

∫
Ω
fφ >

1

3
,

and prove Proposition 32.7 for p > 1.

Exercise 32.9. Remark 32.5 makes W 1,p(Ω) a normed space, thanks to Proposition
32.7. Prove that W 1,p(Ω) is complete. Hint: consider a Cauchy sequence and use
that Lp(Ω) is by definition complete as the abstract closure of Cc(Ω) in the p-norm.

In Definition 32.2 we can replace φ ∈ C1
c (Ω) by φζ with ζ ∈ C1(IRN) to

get ∫
Ω

ζφDiU =

∫
Ω

Wi ζφ = −
∫

Ω

U(ζDiφ+ φDiζ),

10For p > 1 you would use |
∫

Ω
(un − um)φ| ≤ |un − um|q with 1

p + 1
q = 1.

11We arbitrarily chose 0 < 1
4 <

1
3 < 1.
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whence

∀φ∈C1
c (Ω)

∫
Ω

(Wiζ + UDiζ) φ = −
∫

Ω

Uζ Diφ. (32.8)

This proves the best Leibniz rule we can expect in the Lp(Ω) context.

Theorem 32.10. Let ζ ∈ C1(IRN) and let U ∈ Lp(Ω) have a weak derivative
DiU ∈ Lp(Ω), then ζU has a weak derivative given by

Di(Uζ) = (DiU)ζ + U(Diζ)

in Lp(Ω).

Remark 32.11. The defining statement in (32.6) of the weak derivative
Wi = DiU also makes sense for U and Wi in L1

loc(Ω) as in Remark 31.22.
The uniqueness of Wi follows along similar lines and Theorem 32.10 holds
with Lp(Ω) replaced by L1

loc(Ω).

32.3 Mollifiers and density tricks, compactness!

This section could be part of Chapter 31 but is included here to have the
present chapter be more self-contained. We first explain how in the Lebesgue
approach from Section 31.2 to Lp(Ω) mollification and density arguments
combine to have convergence of mollifiers in p-norm. Then we will see that
the equivalence class approach to Lp(Ω) only requires Theorem 32.13.

Recall from Exercise 31.16 and (31.40) that we use mollifiers

ηε(x) =
1

εN
η(
x

ε
)

with

η(x) = η(|x|) ≥ 0, η ∈ C∞c (B),

∫
IRN

η = 1,

B denoting the open unit ball. As discussed in Section 31.9,

uε(x) = (ηε ∗ u)(x) =

∫
IRN

ηε(x− y)u(y) dy︸ ︷︷ ︸
implies smoothness

=

∫
|y|≤ε

ηε(y)u(x± y) dy︸ ︷︷ ︸
good for ε→ 0

(32.9)

defines a function uε ∈ C∞c (IRN) for all u in the Lebesgue space L1
loc(IR

N),
but below we prefer to make statements about convergence in Lp(IRN) only,
namely

u ∈ Lp(IRN) =⇒ |uε − u|
p
→ 0 as ε→ 0. (32.10)
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which applies to any u ∈ Lp(Ω) extended to the whole of IRN. For bounded
Ω and un a bounded sequence in W 1,p

0 (Ω) it is then no big deal to obtain a
subsequence that converges in p-norm.

For f ∈ Cc(IRN) we noted the Hölder estimate

|f ε(x)| ≤
∫
|y|≤ε
|f(x+ y)| ηε(y)1= 1

p
+ 1
q dy

≤
(∫
|y|≤ε
|f(x+ y)|p ηε(y) dy

) 1
p
(∫
|y|≤ε

ηε(y) dy

) 1
q

︸ ︷︷ ︸
=1

,

whence ∫
IRN

|f ε(x)|p dx ≤
∫
x∈IRN

∫
y∈IRN

|f(x+ y)|p ηε(y) dy dx =

∫
y∈IRN

∫
x∈IRN

|f(x+ y)|p dx︸ ︷︷ ︸
=
∫
IRN |f(x)|p dx

ηε(y) dy =

∫
IRN

|f(x)|p dx.

This special case12 of Theorem 32.12 is included in Theorem 32.13 below.

Theorem 32.12. Let u ∈ Lp(IRN). Then∫
IRN

|uε(x)|p dx ≤
∫

IRN

|u(x)|p dx, (32.11)

i.e. the p-norm of uε is at most equal to the p-norm of u itself.

As a consequence we have13

|uε − vε|
p
≤ |u− v|

p
(32.12)

for u ∈ Lp(IRN) and v ∈ Cc(IRN), and likewise that

|uεm − uεn|p ≤ |um − un|p (32.13)

for sequences un ∈ Cc(IRN). The latter will suffice for the equivalence class
approach in Sections 31.6 and 31.8. The estimates are uniform in the mol-
lifier parameter ε, and are complemented by a convergence estimate for
v ∈ C1

c (IRN), applicable also to um and un in (32.13).

12The Lebesgue setting requires Fubini’s theorem, or a limit argument.
13You already noticed we refrain from the use of ε in smallness estimates.
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Theorem 32.13. Let v ∈ C1
c (IRN) and 1 ≤ p <∞. Then in addition to the

estimate
|vε|

p
≤ |v|

p
,

that holds for all v ∈ Cc(IRN) from the reasoning above, we have that

|vε − v|
p
≤ ε |∇v|

p
, (32.14)

as a consequence of the intermediate result

|vε(x)− v(x)| ≤
(∫

IRN

|v(x+ εy)− v(x)|p η(y)dy

) 1
p

. (32.15)

The right hand side in (32.14) is the p-norm of the Euclidean length of ∇v.

Remark 32.14. For v ∈ Cc(IRN) we already know from Exercise 31.16 that
vε ∈ C∞c (IRN) satisfies

|vε|
max
≤ |v|

max
and |vε − v|

max
→ 0

as ε→ 0.

Before we prove Theorem 32.13 we note that it is via the above two
theorems and the splitting

|u− uε|
p
≤ |u− v|

p
+ |v − vε|

p︸ ︷︷ ︸
≤ε|∇v|

p

+ |vε − uε|
p︸ ︷︷ ︸

≤|u−v|
p

(32.16)

with v ∈ C1
c (Ω) that the following theorem follows.

Theorem 32.15. Let u ∈ Lp(IRN), then

|uε|
p
≤ |u|

p
and |uε − u|

p
→ 0

as ε→ 0. The same statement holds for p-equivalence classes U = [un] if U ε

is defined as the p-equivalence U ε = [uεn], in which un ∈ C1
c (Ω) is a p-Cauchy

sequence.

Exercise 32.16. Prove the first statement in Theorem 32.15 using Theorems 32.12
and 32.13. Hint: use (32.11) with u−v, the density of C1

c (Ω) in Lp(IRN) and (32.14).
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Exercise 32.17. Let un ∈ C1
c (Ω) be a p-Cauchy sequence. Use the splitting

|un − uεn|p ≤ |un − um|p + |um − uεm|p︸ ︷︷ ︸
≤ε|∇um|p

+ |uεm − uεn|p︸ ︷︷ ︸
≤|un−um|p

to show for the p-equivalence classes U = [un] and U ε = [uεn] that

|U ε|
p
≤ |U |

p
and |U − U ε|

p
→ 0

as ε→ 0. This is the second statement in Theorem 32.15 .

Remark 32.18. Theorems 31.32 and 31.37 imply that the p-equivalence class
U ε is represented by a smooth p-integrable function Uε with all its derivatives
in C0(IRN). It follows from Remark 31.35 and Proposition 32.7 that

Uε → U

in p-norm. In case Ω is bounded the functions Uε are in C∞c (IRN), just
like14 the function uε defined by (32.9), with the supports contained in closed
ε-neighbourhoods of Ω.

Proof of Theorem 32.13. We now prove the ε-estimate (32.14), crucially
used for the middle terms in the 3-splittings above. Recall this is about15

functions v in C1
c (IRN). We write

vε(x)− v(x) =

∫
IRN

ηε(y)v(x+ y) dy− v(x) =

∫
IRN

ηε(y) (v(x+ y)− v(x)) dy

=

∫
IRN

η(y) (v(x+ εy)− v(x)) dy =

∫
IRN

η(y)
1
q η(y)

1
p (v(x+ εy)− v(x)) dy.

Hölder’s inequality gives

|vε(x)− v(x)| ≤
(∫

IRN

η(y) dy

) 1
q

︸ ︷︷ ︸
=1

(∫
IRN

η(y)|v(x+ εy)− v(x)|p dy
) 1

p

.

whence (32.15) follows.
We next use the mean value theorem in integral form, see (12.1), and the

Hölder estimate

|
∫ 1

0

f |p ≤ |
∫ 1

0

|f |p (1 ≤ p <∞).

14See Remark 31.38.
15We don’t need to know here in which sense this holds for (which?) other functions.
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The x-integral in the right hand side of (32.15) is estimated for |y| ≤ ε as∫
IRN

|v(x+ εy)− v(x)|p dx =

∫
IRN

|[v(x+ tεy)]
t=1

t=0
|p dx

=

∫
IRN

|
∫ 1

0

∇v(x+ εty) · εy dt|p dx

≤ εp
∫

IRN

(∫ 1

0

|∇v(x+ εty)| dt
)p

dx ≤ εp
∫

IRN

∫ 1

0

|∇v(x+ εty)|p dt dx

whence (32.15) gives∫
IRN

|vε(x)− v(x)|p dx ≤
∫

IRN

η(y)

∫
IRN

|v(x+ εty)− v(x)|p dx dy ≤

≤
∫

IRN

η(y) εp
∫

IRN

∫ 1

0

|∇v(x+ εty)|p dt dx dy,

and (32.14) follows changing integration order from dt dx dy to dx dt dy. �

We next establish the compactness of the embedding W 1,p
0 (Ω) → Lp(Ω) for

bounded open sets Ω.

Theorem 32.19. Let p ≥ 1 and let Ω ⊂ IRN be bounded and open. Then the
embedding

W 1,p
0 (Ω)→ Lp(Ω)

is compact: every bounded sequence un in W 1,p
0 (Ω) has a subsequence which,

considered as a sequence in Lp(Ω), is convergent. Here W 1,p
0 (Ω) ⊂ Lp(Ω)

is defined one way or another16 as a Banach space in which C1
c (Ω) is dense

with respect to the W 1,p-norm.

Proof. We use the splitting

|un − um|p ≤ |un − vn|p︸ ︷︷ ︸
→0

+ |vn − vεn|p︸ ︷︷ ︸
≤ε |∇vn|p

+|vεn − vεm|p + |vεm − vm|p︸ ︷︷ ︸
≤ε |∇vm|p

+ |vm − um|p︸ ︷︷ ︸
→0

,

and deal with with the first and fifth term by density of C1
c (Ω) in W 1,p

0 (Ω)
taking m,n large. To be precise, choose vn ∈ C1

c (Ω) with |un − vn|1,p →
0 as n → ∞. Then ∇vn is bounded in p-norm, whence the second and
fourth term are controled by (32.14) and as small as we like taking ε > 0
small independent of m,n. For the middle term we invoke the Ascoli-Arzelà

16The choice between the two approaches to introduce Lp(Ω) is not relevant here.
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Theorem17, using ε-dependent bounds on vεm(x), vεn(x) and ∇vεm(x),∇vεn(x)
uniform in x and m,n, to get Cauchy subsequences of vεn in the maximum
norm, for every ε > 0 fixed. These subsequences are also p-Cauchy sequences.
Exercise 32.20 then completes the proof. �

Exercise 32.20. Use a diagonal argument to show that un itself has a p-Cauchy
subsequence and explain why this completes the proof.

32.4 Estimates and embeddings for W 1,p
0 (Ω)

Estimates derived for functions in C1
c (Ω) carry over to functions in W 1,p

0 (Ω).
We discuss two important such estimates, namely the Hölder continuity es-
timate (32.19) for p > N , and the Gagliardo-Nirenberg-Sobolev estimate

|u|
q
≤ Cp,N|∇u|p for

1

q
=

1

p
− 1

N
if 1 ≤ p < N. (32.17)

The proof of (32.17) relies on repeated application of the one-dimensional
estimate18

|u|
max
≤ 1

2
|u′|

1
for u ∈ C1

c (IR), (32.18)

first in the special case that p = 1, and for N ≥ 3 by a clever repeated19 use
of the generalised Hölder’s inequality in which the exponents are all taken
equal. The general case in (32.17) then follows from putting uγ for u and
a follow your nose estimate invoking Hölder’s inequality for the integral of
γ|u|γ−1uxi , which involves a particular choice of γ to get the exponents right.
The constant Cp,N blows up as p→ N (from below). For the computational
details and additional exercises see Section 32.5.

The second (Morrey) estimate is usually stated as

|u(x1)− u(x2)| ≤ Cp,N|∇u|p |x1 − x2|α for α = 1− N

p
if p > N,

but the p-norm of ∇u may be restricted to the intersection of the two balls
centered in x1 and x2 with radius |x1 − x2|. That is

|u(x1)− u(x2)| ≤ Cp,N |∇u|Lp(Wx1x2 )
|x1 − x2|1−

N
p , (32.19)

17Theorem 8.13 with [0, 1] replaced by a large closed box.
18The case p = N = 1, q =∞ in (32.17), does not generalise to p = N > 1, q =∞.
19For N = 2 a single application of Cauchy-Schwartz.
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in which
Wx1x2 = B(x1, |x1 − x2|) ∩B(x2, |x1 − x2|).

This estimate is derived from the inequality∫
CR

|u− u(0)| ≤ RN

N

∫
CR

|ur|
rN−1

(32.20)

for cones described in polar coordinates as

CR = {x = rω : 0 ≤ r ≤ R, ω ∈ A},

with A a nice subset of the unit sphere, and ur denoting the radial derivative.
The r-part of the integral on the left in (32.20) is in some sense the counter
part of (32.18), and the integral on the right hand side is estimated using a
follow your nose estimate invoking Hölder’s inequality. The Morrey estimate
(32.19) is then proved estimating

|u(x1)− u(x2)| ≤ |u(x1)− u(x)|+ |u(x)− u(x2)|,

and integrating over the intersection of the two cones C1 and C2 centered
in x1 and x2, chosen to have C1 ∪ C2 equal to the union of the two balls
mentioned earlier. For the details and additional exercises see Section 32.6.
Again the constant Cp,N blows up as p→ N (from above).

32.5 Proof of the GNS-estimates

In this section we use subscripts for partial derivatives. With Remark 32.22
we establish a statement that implies (32.17). Let’s do the arguments for
increasing values of the dimension. It is easy to see that

|f(x)| ≤ 1

2

∫ ∞
−∞
|f ′(x)| dx

for f ∈ C1
c (IR). Applied to x → u(x, y) and y → u(x, y) we have for u ∈

C1
c (IR2) that

|u(x, y)|2 ≤ 1

2

∫ ∞
−∞
|ux(x, y)| dx︸ ︷︷ ︸

depends on y only

1

2

∫ ∞
−∞
|uy(x, y)| dy︸ ︷︷ ︸

depends on x only

,

and thus it follows for u ∈ C1
c (IR2) that∫∫

IR2

|u|2 ≤ 1

4

∫∫
IR2

|ux|
∫∫

IR2

|uy|,
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whence

|u|
2
≤ 1

2
|ux|

1
2

1
|uy|

1
2

1
.

The same trick with x → u(x, y, z), y → u(x, y, z) and z → u(x, y, z)
and Hölder’s inequality applied 3 times with exponents p1 = p2 = 1

2
to the

successive x, y, z-integrations, gives∫∫∫
IR3

|u|
3
2 ≤

∫∫∫
IR3

(
1

2

∫
x

|ux|)
1
2 (

1

2

∫
y

|uy|)
1
2 (

1

2

∫
z

|uz|)
1
2

= (
1

2
)

3
2

∫
z

∫
y

∫
x

(

∫
x

|ux|)
1
2 (

∫
y

|uy|)
1
2 (

∫
z

|uz|)
1
2

≤ (
1

2
)

3
2

∫
z

∫
y

(

∫
x

|ux|)
1
2 (

∫
x

∫
y

|uy|)
1
2 (

∫
x

∫
z

|uz|)
1
2

≤ (
1

2
)

3
2

∫
z

(

∫
y

∫
x

|ux|)
1
2 (

∫
x

∫
y

|uy|)
1
2 (

∫
y

∫
x

∫
z

|uz|)
1
2

≤ (
1

2
)

3
2 (

∫
z

∫
y

∫
x

|ux|)
1
2 (

∫
z

∫
x

∫
y

|uy|)
1
2 (

∫
y

∫
x

∫
z

|uz|)
1
2 .

In each integration one of the 3 factors does not depend on the integration
variable, the subscripts indicate which variable has been integrated away.

Exercise 32.21. Prove that

|u| 3
2

≤ 1

2
|ux|

1
3
1
|uy|

1
3
1
|uz|

1
3
1

generalises to

|u| N
N−1

≤ 1

2
|ux1 |

1
N
1
· · · |uxN |

1
N
1

=
1

2
Πi=1,...,N |uxi |

1
N
1
≤ 1

2
|∇u|

1

for u ∈ C1
c (IRN) via N integrations and Hölder’s generalised inequality with N − 1

equal exponents 1
N−1 applied in every step. Use that in each integration one of the

N factors does not depend on the integration variable.

Applied to uγ = |u|γ−1u it follows via Hölder’s inequality with20

1

p
+

1

p′
= 1

20We use p′ instead of q which is already in use.
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that

|u|γ
γN
N−1

= |uγ|
N
N−1

≤ 1

2
Πi=1,...,N |γuγ−1uxi |

1
N

1
≤ γ

2
Πi=1,...,N |uγ−1|

1
N
p′
|uxi |

1
N
p

=
γ

2
|u|γ−1

(γ−1)p
p−1

Πi=1,...,N |uxi |
1
N
p

in which γ can be chosen to have equal subscripts of |u| in the first and last
expression in this chain.

Exercise 32.22. For 1 ≤ p < N you should check that this gives

q =
γN

N − 1
=

(γ − 1)p

p− 1
=

pN

N − p
,

which you may prefer to memorise as

1

q
=

1

p
− 1

N
.

What’s the value of γ? Dividing by |u|γ−1
q on both sides you get

CNp|ux1 |
1
N
p
· · · |uxN |

1
N
p
≤ CNp|∇u|p

with an explicit constant CNp. Give this value. Check again that 1 ≤ p < N is the
assumption to make here.

Remark 32.23. We have proved for u ∈ C1
c (Ω) that

|u|
q
≤ CNp|ux1|

1
N
p
· · · |uxN |

1
N
p
≤ CNp|∇u|p

This estimate holds in fact for all u ∈ W 1,p
0 (Ω) if 1 ≤ p < N and

1

q
=

1

p
− 1

N
.

In Exercise 32.27 we play a bit towards similar statements about W 2,p
0 (Ω).

Exercise 32.24. Let 1 ≤ p < N and let Ω be bounded. Use (32.17) to prove that

W 1,p
0 (Ω) ⊂ Lq(Ω) if

1

q
≥ 1

p
− 1

N
,
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and that |∇u|
p

defines an equivalent norm on W 1,p
0 (Ω). In particular

|u|
p
≤ CpqΩ|∇u|p for all u ∈W 1,p

0 (Ω),

with CpqΩ a constant depending on p, q and Ω only21. Make CpqΩ as explicit as
possible in terms of p, N and the measure of Ω.

Exercise 32.25. A special case in Exercise 32.24 is q = p, and the inequality for
p = q = 2 is called Poincaré’s inequality. For 1 ≤ p < N it makes that

u→ |∇u|p

is an equivalent norm on W 1,p
0 (Ω), which was defined as the closure of C1

c (Ω) in
W 1,p(Ω) with respect to the norm defined by

|u|p
1,p

= |u|p
p

+ |ux1
|p
p

+ · · ·+ |uxN |
p

p

Show that these norms are also equivalent for N ≤ p <∞.

Exercise 32.26. Let 1 ≤ p < N and Ω ⊂ IRN open and bounded. Prove that the
embedding

W 1,p
0 (Ω)→ Lq(Ω)

is compact if
1

q
>

1

p
− 1

N
.

Hint: use Theorem 32.19 and interpolation inequalities22 with the p-norms.

Exercise 32.27. Show for N > 2 that23

|u| N
N−2

≤ 1

4
max
i 6=j
|uxixj |1

for u ∈ C2
c (IRN). Only the mixed derivatives are needed24.

21And thereby also on the dimension N .
22Exercise 31.5.
23There are similar estimates for u ∈ C3

c (IRN), u ∈ C4
c (IRN),. . . .

24Nice project: versions similar to Exercise 32.23 for W 2,p
0 with only mixed derivatives.
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32.6 Proof of the Morrey estimates

We first take N = 3 and u ∈ C1(IR3). Write u(x, y, z) = v(r, θ, φ), with
spherical coordinates

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ,

and let CR,ψ be the set in IR3 defined by 0 ≤ r ≤ R, 0 ≤ θ ≤ ψ and φ free.
If 0 < ψ < π

2
and R > 0, then25 ψ is called26 the opening angle of the closed

cone CR,ψ, and R is called the radius of the cone27.
Assuming that u(0, 0, 0) = v(0, θ, φ) = 0 we use

|v(r, θ, φ)| ≤
∫ r

0

|vr(ρ, θ, φ)| dρ

to estimate ∫
CR,ψ

|u| =
∫ ψ

0

∫ 2π

0

∫ R

0

|v(r, θ, φ)| r2 sin θ dr dφ dθ

≤
∫ ψ

0

∫ 2π

0

∫ R

0

∫ r

0

|vr(ρ, θ, φ)| dρ r2 sin θ dr dφ dθ

(interchanging the order of the integrations with respect to r and ρ, throwing
a away one negative term and replacing ρ by r again)

≤ R3

3

∫ ψ

0

∫ 2π

0

∫ R

0

|vr|
r2

r2 sin θ dr dφ dθ =
R3

3

∫
CR,ψ

|ur|
r2

,

in which ur = xux + yuy + zuz = vr. Thus∫
CR,ψ

|u| ≤ R3

3

∫
CR,ψ

|ur|
r2

(32.21)

Exercise 32.28. Use generalised polar coordinates

x1 = rω1 = r cos θ1 = rc1, x2 = rω2 = r sin θ1 cos θ2 = rs1c2, x3 = rω3 = rs1s2c3,

. . . , xN−2 = rωN−1 = rs1 · · · sN−2cN−1, xN = rωN = rs1 · · · sN−2sN−1

25CR,ψ a not cone for ψ > π
2 , it’s a half ball with radius R if ψ = π

2 and a ball if ψ = π.
26And not 2ψ.
27Evans only integrates over balls.
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to generalise and improve28 (32.21) as∫
CR,ψ

|u|+ 1

N

∫
CR,ψ

r|ur| ≤
RN

N

∫
CR,ψ

|ur|
rN−1

(32.22)

for CR,ψ in IRN defined by 0 ≤ r ≤ R, 0 ≤ θ1 ≤ ψ and θ2, . . . , θN−1 free.

Exercise 32.29. (continued) Let ω ∈ IRN with |ω| = 1. Explain why estimate
(32.22) holds with CR,ψ replaced by the closed cone

CR,ω,ψ = {x ∈ IRN : |x| ≤ R, x · ω ≥ |x| cosψ}, (32.23)

a cone with direction29 ω and opening angle ψ ∈ (0, π2 ).

Exercise 32.30. Not so important: explain why the measure of the cone C1,ω,ψ

defined by (32.23) is given by∫
C1,ω,ψ

1 =
2π

N

∫ ψ

0
sinN−2 θ1 dθ1

∫ π

0
sinN−1 θ2 dθ2 · · ·

∫ π

0
sin θN−2 dθN−2. (32.24)

if R = 1. Call this number CNψ. Show that

CNψ =
ωN−1

N

∫ ψ

0
sinN−2 θ dθ,

in which ωN−1 is the measure of the unit ball in IRN−1. Correct my mistakes if this
formula is wrong30.

Exercise 32.31. Hölder’s inequality31 gives32

∫
CR,ω,ψ

|ur|
rN−1

≤

(∫
CR,ω,ψ

(
1

rN−1

)p′) 1
p′
(∫

CR,ω,ψ

|ur|p
) 1

p

︸ ︷︷ ︸
|ur|Lp(CR,ω,ψ)

28Don’t throw that negative term away now but bring it to the other side.
29Note ω = e3 in the 3-dimensional example, ω = e1 in the N -dimensional example.
30Is there a quicker way? Does the integral simplify if ψ = π

3 ? Not so important.
31Which for integrals follows from the inequality in Section 17.3.
32With 1

p + 1
p′ = 1.
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for the right hand side of (32.22). Show that∫
CR,ω,ψ

|ur|
rN−1

≤
(
CNψ

p− 1

p−N

)1− 1
p

|ur|Lp(CR,ω,ψ)
R

1−N
p (32.25)

if p > N . Explain why the estimate holds for all u ∈ C1(CR,ω,ψ). Why does the
estimate fail for p ≤ N?

Combining (32.22) and (32.25) we have

N

RN

∫
CR,ω,ψ

|u| ≤
(
CNψ

p− 1

p−N

)1− 1
p

|ur|Lp(CR,ω,ψ)
R1−N

p , (32.26)

in which ψ can have any value in [0, π].

Exercise 32.32. For R > 0, x1, x2, ω1, ω2 ∈ IRN with |ω1| = |ω2| = 1 and angles
ψ1, ψ2, consider C1 = x1 + CR,ω1,ψ1 and C2 = x2 + CR,ω2,ψ2 . Use

|C1 ∩ C2| |u(x1)− u(x2)| ≤
∫
C1

|u(x1)− u(x)|dx+

∫
C2

|u(x)− u(x2)|dx

and (32.26) to show that

|C1∩C2| |u(x1)−u(x2)| ≤ RN

N

(
C

1− 1
p

Nψ1
+ C

1− 1
p

Nψ2

)(
p− 1

p−N

)1− 1
p

|∇u|
Lp(C1∪C2)

R
1−N

p .

Exercise 32.33. In Exercise 32.32 take33

R = |x1 − x2|, ω1 =
x2 − x1

R
= −ω2, ψ =

π

3
,

and prove that

|u(x1)− u(x2)| ≤ C(N, p)|∇u|
Lp(B|x1−x2|

(x1)∩(B|x1−x2|
(x2))
|x1 − x2|1−

N
p , (32.27)

in which C(N, p) is a constant that can be made explicit if you insist.

33Sketch the balls with centers x1 and x2 and radius |x1 − x2| to see what’s going on.
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Exercise 32.34. If so, show that

C(N, p) = cN

(∫ π
3

0 sinN−2 θ dθ
)1− 1

p

ωN−1

1
p

(32.28)

with cN to be specified. Hint: show first that the measure AN of the set described by

x1 ≥ 0, x2 = r cos θ1, x3 = r sin θ1 cos θ2, . . . , xN = r sin θ1 · · · sin θN−2, r ≥ 0,

and

x1 +
r√
3
≤ 1

2

is

AN =
ωN−13

N−1
2

N(N − 1)2N
,

and explain why 2ANR
N is the measure of the intersection of the two cones C1 and

C2. Another hint in hindsight: for N = 2 the value of A2 is immediate from a picture.
Do A3 first with high school calculus and guess the formula for N > 3.

Exercise 32.35. Let p > N. Prove that W 1,p
0 (Ω) ⊂ Cα(Ω) for α = 1 − N

p , in
which

Cα(Ω) = {u ∈ C(Ω) : [u]α <∞} where [u]α = sup
x1 6=x2

|u(x1)− u(x2)|
|x1 − x2|α

,

the supremum taken over the whole of Ω.

Exercise 32.36. Let Ω be bounded and α ∈ (0, 1]. Then34 every u ∈ Cα(Ω)
extends to a continuous function on Ω̄, and Cα(Ω) is a Banach space with norm
defined by35 |u|α = |u|

max
+ [u]α.

Exercise 32.37. Let p > N, Ω bounded, α = 1 − N
p . Use the Ascoli-Arzelà

Theorem to prove that every bounded sequence un in W 1,p
0 (Ω) has a subsequence

that, considered as a sequence in C(Ω̄), converges uniformly to a limit u, which is
also in Cα0 (Ω), the subspace consisting of functions u ∈ Cα(Ω) which vanish on ∂Ω.
Verify that this subspace has the seminorm [·]α as an equivalent norm.

34This is to convince you that maybe it is better to rename Cα(Ω) and write Cα(Ω̄).
35If you don’t use Greek letters for Lebesgue norms this will not confuse.
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Remark 32.38. In view of Exercise 32.37 the embedding

W 1,p
0 (Ω)→ C(Ω̄)

is compact for p > N if Ω is bounded. It then also holds that

W 1,p
0 (Ω)→ Lp(Ω) is compact if Ω is bounded, (32.29)

but this was already shown for all p ≥ 1 in Theorem 32.19 via different
arguments36.

Now recall the definitions of W 1,p(Ω) and W 1,p
0 (Ω) for Ω in IRN bounded,

open and connected,

u ∈ W 1,p(Ω) ⇐⇒ u, ux1 , . . . , uxN ∈ Lp(Ω),

and, for 1 ≤ p < ∞, the space W 1,p
0 (Ω) being the closure of C1

c (Ω) in the
Banach space W 1,p(Ω).

Exercise 32.39. Let u ∈ W 1,p
0 (Ω), Ω in IRN bounded, open and connected, N <

p <∞ and let α = 1− N
p . Take a sequence un ∈ C∞c (Ω) with un → u in W 1,p(Ω).

Prove that un is a Cauchy sequence in Cα(Ω̄), and that its limit ū in Cα(Ω̄) has the
property that |u− ū|

p
= 0. Prove that the map u→ ū is linear and continuous from

W 1,p
0 (Ω) to Cα(Ω̄).

Exercise 32.40. (continued) A rough estimate for the seminorm

[u]α = sup
x,y∈Ω
x6=y

|u(x)− u(y)|
|x− y|α

with α = 1− N
p : show that

[u]
1−Np

≤ C(p,N)|∇u|
Lp(Ω)

,

and also show that
|u|∞ ≤ C̃(p,N,Ω)| |∇u|

Lp(Ω)

for some constant C̃(p,N,Ω) you can make as precise as you want. Give just one.
Hint: first for u ∈ C1

c (Ω), reason as in Exercise 32.39 to get the estimate for all
u ∈W 1,p

0 (Ω) if p > N .

36Including the Ascoli-Arzelà Theorem.
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Exercise 32.41. Show that Cα(Ω̄) is a Banach space.

Exercise 32.42. Show that W 1,p
0 (Ω) is compactly embedded in C0(Ω). Hint: use

the Ascoli-Arzelà theorem via Exercise 32.40.

Exercise 32.43. Let 0 < β < α < 1. Show that

[u]β ≤ [u]α + Cαβ|u|∞ ,

in which Cαβ is a constant depending on α and β only. Hint: it is easy to estimate
[u]α by a product of powers of [u]β and |u|∞ . Use Young’s inequality

ab ≤ εpap

p
+

bq

qεq
for ε > 0, a, b ≥ 0, p, q ≥ 1 with

1

p
+

1

q
= 1

to conclude.

Exercise 32.44. Use Exercises 32.42 and 32.43 to conclude that W 1,p
0 (Ω) is com-

pactly embedded in Cβ(Ω̄) is 0 < β < 1− N
p .

Exercise 32.45. Show that W 1,p
0 (Ω) is embedded in hα(Ω̄), the closed subspace37

of Cα(Ω̄) for which

sup
x,y∈Ω

0<|x−y|≤ε

|u(x)− u(y)|
|x− y|α

→ 0 as ε→ 0,

if α = 1− N
p and p > N .

32.7 Weak derivatives of Lebesgue functions

The approach in Section 31.2 and the concept of weak derivative lead to the
following theorem.

37These are the so-called little Hölder spaces, unlike Cα(Ω̄) they are separable.
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Theorem 32.46. Suppose that∫
Ω

vφ = −
∫

Ω

uφxi (32.30)

for every φ ∈ C1
c (Ω), for some given u and v in L1

loc(Ω), Ω ⊂ IRN. Then v is
unique in L1

loc(Ω) for u ∈ L1
loc(Ω). We say that v is the weak derivative of u

with respect to its ith variable, notation v = Diu = uxi.

Proof. The proof uses the full Lebesgue machinery that we happily avoided
in Section 32.2. Suppose that some other v, say ṽ ∈ L1

loc(Ω) also satisfies this
condition, then the difference w = v − ṽ is also L1

loc(Ω) and satisfies∫
Ω

wφ = 0

for every φ ∈ C1
c (Ω). Take an open ball B ⊂ Ω and redefine w(x) = 0 for

x 6∈ B. The mollifier wε is then identically equal to zero on IRN for all ε > 0.
By Remark 31.38 we have

|w|
1

= |wε − w|
1
→ 0

as ε → 0. But |w|
1

doesn’t go anywhere. So |w|
1

= 0, and Theorem 31.12
tells us what w is, as a function: zero! It follows that v = ṽ in B outside a
set of measure zero, for every B ⊂ Ω open. Thus v = ṽ in Ω outside a set of
measure zero. �

Definition 32.47. For 1 ≤ p < ∞ and Ω ⊂ IRN the space W 1,p(Ω) is
defined as the space of functions38 u ∈ Lp(Ω) for which the weak derivatives
ux1 , . . . , uxN exist and are in Lp(Ω).

Exercise 32.48. Prove that W 1,p(Ω) is a Banach space with the norm defined by

|u|p
1,p

= |u|p
p

+ |ux1 |pp + · · ·+ |uxN |
p
p
. (32.31)

Hint: you need to use that Lp(Ω) is a Banach space when you consider a Cauchy
sequence un in W 1,p(Ω).

Remark 32.49. Once again W 1,p
0 (Ω) may be defined as the closure of C1

c (Ω)
in W 1,p(Ω). Since W 1,p(Ω) is Banach space, the space W 1,p

0 (Ω) is again
complete as a closed subspace of W 1,p(Ω).

38With the equivalence relation that identifies functions differing on zero measure sets.
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Remark 32.50. Every u ∈ W 1,p
0 (Ω) extends to a u ∈ W 1,p

0 (IRN) by setting
u equal to zero outside Ω. The similar statement u ∈ C1

c (Ω) and C1
c (IRN)

already implied the same statement in the equivalence class context. And we
have already proved the following theorem in Exercise 32.20.

Remark 32.51. The definitions of W 2,p(Ω) and of W 2,p
0 (Ω) (the closure of

Ck
c (Ω) with k ≥ 2) should be obvious, starting from the norm defined by

|u|p
2,p

= |u|p
p

+
∑

1≤i≤N

|uxi |pp +
∑

1≤i≤j≤N

|uxixj |pp .

Exercise 32.52. Fill in the details of Remark 32.51 and generalise to W k,p(Ω) and

W k,p
0 (Ω) with k ≥ 2. Again you may prefer the approach in which functions in Lp(Ω)

are equivalence classes of p-Cauchy sequences in Cc(Ω), or C∞c (Ω) for that matter.

32.8 Sobolev spaces for Ω = IRN

We finish this chapter by showing that the subscript zero has no meaning
when Ω = IRN.

Theorem 32.53. Let u ∈ W 1,p(IRN), 1 ≤ p <∞. Then

uε → u in W 1,p(IRN) as ε→ 0.

Proof. In the Lebesgue approach let u ∈ W 1,p(IRN) and uxi = Diu ∈
Lp(IRN). Then39

(uxi)
ε(x) = (Diu)ε(x) =

∫
IRN

ηε(x− y)(Diu)(y) dy (32.32)

=

∫
IRN

(Diηε)(x− y)u(y) dy = (

∫
IRN

ηε(x− y)u(y) dy)xi = (Diu
ε)(x),

so
Di(u

ε) = (uε)xi = (uxi)
ε = (Diu)ε. (32.33)

Since Theorems 32.12 and 32.13 apply to both u and Diu the limit statement
in the theorem follows.

Alternatively we consider u and wi = Diu as p-equivalence classes U and
Wi = DiU , and use the functions Fε as in Exercise 31.34 of Section 31.8,

39Note that Di acts on u to give Diu which we can evaluate in x, x− y, y and so on.
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with F replaced by U and Vi = DiU . Note carefully that the mollification of
the equivalence class Wi = DiU rewrites as

(DiU)ε(x) = (ηε ∗DiU)(x) = (Diηε ∗ U)(x) = (DiUε)(x),

by first Definition 32.2 which puts Di on ηε, and then the same reasoning as
in the proof of Theorem 31.37. As a consequence Uε and DiUε = (DiU)ε are
smooth p-integrable functions in C0(IRN) that converge in p-norm to U and
DiU , i.e. Uε converges to U in W 1,p-norm. �

Theorem 32.54.
W 1,p

0 (IRN) = W 1,p(IRN).

Exercise 32.55. Prove this theorem. Hint: if u is W 1,p(IRN) then by Theorem
32.10 so is the function un defined by un(x) = u(x)η(xn), η as in the definition of ηε.
Apply Theorem 32.53 to un.
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33 Sobolev spaces without subscript zero

Recall that if u, v ∈ Lp(Ω) satisfy∫
Ω

vφ = −
∫

Ω

uφxi

for every φ ∈ C1
c (Ω), then v is the (unique) weak derivative of u with respect

to its ith variable, notation v = Diu = uxi . If so, then for every continuously
differentiable ζ : IRN → IRN the product ζu is also in Lp(Ω) and has a
(unique) weak derivative with respect to its ith variable, given by the (weak
version of the) Leibniz rule1

Diζu = uDiζ + ζDiu. (33.1)

As in Remark 33.3 we define

W 1,p(Ω) = {u ∈ Lp(Ω) : D1u, . . . , DNu exist in Lp(Ω},

and note that the implication

u ∈ W 1,p(Ω)

ζ ∈ C1
c (IRN)

=⇒ ζu ∈ W 1,p(Ω)

is at our disposal, with ζu ∈ W 1,p(IRN) if supp ζ ⊂ Ω.
From here on we no longer resist the temptation of Remark 31.39. It

is up to you whether you think of u as an equivalence class of Lebesgue
measurable functions2, or as an equivalence class of p-Cauchy sequences3 un
in Cc(Ω). Both approaches allow us to use that every u ∈ Lp(Ω) ⊂ Lp(IRN)
can be approximated in p-norm with functions v ∈ Cc(Ω) ⊂ Cc(IR

N), if we
like taken from a suitably chosen p-Cauchy sequence un in Cc(Ω) ⊂ Cc(IR

N).
Writing uε for the mollification of u we then know that the limit

uε = lim
n→∞

(ηε ∗ un︸ ︷︷ ︸
uεn

) (33.2)

exists as a smooth function for every ε > 0 fixed as in (31.36). The con-
vergence is in p-norm and in maximum norm, also for all derivatives. Thus
Dαuε is p-integrable and in C0(IRN) for every multi-index α. If Ω is bounded
we can conclude that uε ∈ C∞c (IRN), with its support contained in an ε-
neighbourhood of Ω.

1See Theorem 32.10.
2See Definition 31.6.
3See Section 31.6.
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We know that

|uε|
p
≤ |u|

p
and |uε − u|

p
→ 0

as ε→ 0, thanks to4 density and the estimate

|vε − v|
p
≤ ε |∇v|

p

for v ∈ C1
c (IRN). The latter estimate was not yet used for u ∈ W 1,p(IRN),

but the previous chapter did end with the statement that

uε → u in W 1,p(IRN) as ε→ 0 (33.3)

for every u ∈ W 1,p(IRN), thanks to5

Di(u
ε) = (Diu)ε.

Thereby
W 1,p

0 (IRN) = W 1,p(IRN), (33.4)

and thus
|uε − u|

p
≤ ε |∇u|

p

also holds for all u ∈ W 1,p(IRN).
However it is only in the special case that Ω = IRN that W 1,p is the closure

of C1
c in the W 1,p-norm6. Whereas statements about W 1,p(IRN) can be proved

via functions in C1
c (IRN) and the methods of calculus, things are much more

complicated for W 1,p(Ω) with Ω strictly contained in IRN. Although given
u ∈ W 1,p(Ω) we can extend u and its derivatives w1 = D1u, . . . , wN = DNu
to IRN by setting7 u(x) = w1(x) = · · · = wN(x) = 0 for x 6∈ Ω, we certainly
cannot expect to have wi = Diu across ∂Ω. We still have that

uε → u and wεi → wi in Lp(IRN) as ε→ 0,

but convergence in W 1,p(Ω) fails because we can only have that

wεi = Diu
ε in Lp(Ωε), Ωε = {x ∈ Ω : B(x, ε) ⊂ Ω}. (33.5)

The following observation will help to find an alternative.

4See (32.16) in Section 32.3, where we used v; un was used in Exercise 32.17.
5Using superscripts only, see Remark 31.39 and Exercise 31.34.
6In other words, C1

c (IRN) is dense in W 1,p(IRN).
7Reasoning in the Lebesgue setting for convenience.
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Remark 33.1. Let Ω ⊂ IRN be open and bounded, with boundary ∂Ω ∈ C1.
Any statement that we want make here about functions u in W 1,p(Ω) can be
localised using partitions of unity, splitting u via ζ0, ζ1, . . . , ζn in C1

c (IRN) ⊂
C∞c (IRN), with ζ0 + ζ1 + · · ·+ ζn ≡ 1 on Ω̄, as

u = u0 + u1 + · · ·+ un = ζ0u+ ζ1u+ · · ·+ ζnu,

in which we take ζ0 ∈ C1
c (Ω) and ζ1, . . . , ζn ∈ C1

c (IRN). This is just like
in Sections 27.4 and 27.5 for the proof of Green’s Theorem 27.7. The weak
Leibniz rule (33.1) applies8 to each ζiu.

33.1 Density via shifts, localisation and mollification

In this section we prove that C1(Ω̄) is dense in W 1,p(Ω) if Ω bounded and
∂Ω is not too bad9 , e.g. if ∂Ω ∈ C1. The proof involves a translation
trick that we record here separately. It will be applied to the individual
terms ζiu in Remark 33.1 to establish the density of C1(Ω̄) in W 1,p(Ω). This
corresponds to Theorem 3 in Evans’ Section 5.3.3, which we improve by
making the formulation functional with the construction of a continuous
linear ε-dependent map u → uε from W 1,p(Ω) to C∞c (IRN) with the desired
properties.

Theorem 33.2. Let e be a unit vector e and h > 0 as in (33.6). For u in
Lp(IRN) define uhe ∈ Lp(IRN) by

uhe(x) = u(x+ he). (33.6)

Then the mollified translates satisfy

uεhe → u in Lp(IRN) as h→ 0 and ε→ 0.

Proof. Since clearly
(uhe)

ε = (uε)he

we can write uεhe for the mollified and shifted u. It follows that

|uεhe − uhe|p = |uε − u|
p
→ 0 in Lp(IRN) as ε→ 0

by Theorem 32.15. But then

|uεhe − u|p ≤ |u
ε
he − uhe|p︸ ︷︷ ︸
=|uε−u|p

+|uhe − u|p = |uε − u|
p︸ ︷︷ ︸

→0

+ |uhe − u|p︸ ︷︷ ︸
→0

, (33.7)

8Evans’ stronger assumption ζ ∈ C∞c (Ω) for Leibniz’ rule leads to cumbersome details.
9See Chapter 27.3 for C1-boundaries. To do later perhaps: non smooth boundaries!
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the latter because

|uhe − u|p ≤ |uhe − vhe|p︸ ︷︷ ︸
=|v−u|p

+|vhe − v|p + |v − u|
p

(33.8)

for every v ∈ Cc(IRN), similar to (32.16). This completes the proof. �

Exercise 33.3. Use (33.8) with v ∈ Cc(IRN) and |v − u|
p

as small as desired to

prove that uhe → u in Lp(IRN). Hint: use the uniform continuity of each such v.

Exercise 33.4. Verify that the proof works for both definitions10 of Lp(Ω).

Theorem 33.5. Let Ω be open bounded with ∂Ω ∈ C1. Then there exists a
partition of unity as in Remark 33.1, unit vectors e1, . . . , en, and a number
λ > 0 such that for every u in W 1,p(Ω) the function

uε = (ζ0u)ε +
n∑
i=1

(ζiu)ελεei ,

is in C∞c (IRN), and converges to u in W 1,p(Ω).

Remark 33.6. In fact the result is valid under the assumption that ∂Ω is
compact and uniformly Lipschitz continuous11. This is not so important for
our purposes here as we will need ∂Ω to be C1 for other reasons later, but we
do note the number λ is

√
1 + L2, in which L is the largest of the n Lipschitz

constants that occur in the proof. Moreover, if u ∈ W k,p(Ω) with k ∈ IN and
1 ≤ p <∞ then uε → u in W k,p(Ω).

Proof of Theorem 33.5. We localise u by multiplying it with a function
ζ ∈ C1

c (IRN) and then consider shifts ũhe of ũ = ζu defined by the choice of a
fixed unit vector e to be chosen in relation to the local description of Ω and
its boundary in and near the support of ζ. Note that

ũ ∈ W 1,p(Ω̃), Ω̃ = Ω ∪ (supp ζ)c, Ω̃c = Ωc ∩ supp ζ

and that
ũhe ∈ W 1,p(Ω̃he)

10See Sections 31.2 and 31.6.
11Give a definition of what this should mean.
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is defined by

ũhe(x) = ũ(x+ eh) for x ∈ Ω̃he = {x ∈ IRN : x+ he ∈ Ω̃}.

We extend ũ and w̃i = Diũ, defined in Lp(Ω̃), to Lp(IRN) by setting

ũ(x) = w̃i(x) = 0 for x ∈ Ω̃c = Ωc ∩ supp ζ and i = 1, . . . , N

as before, and know from (33.2) that uε, wεi ∈ C∞c (IRN) have the property
that

uεhe → u and wεih → wi in Lp(IRN) as h→ 0 and ε→ 0.

To conclude that
ũεhe → ũ in W 1,p(Ω)

it suffices to have
w̃εih = Diũ

ε
he in Lp(Ω), (33.9)

and in view of (33.5) this holds if

Ω ⊂ {x ∈ Ω̃he : B(x, ε) ⊂ Ω̃he}. (33.10)

The above reasoning will now be applied to a partition of unity as in
Section 27.4 with each ζ1, . . . , ζn taking care of some part of the boundary of
Ω, and ζ0 ∈ C∞c (Ω). Thus ζ0u is in W 1,p(IRN) and taken care of by Theorem
32.53:

Exercise 33.7. Use Theorem 32.53 to show that (ζ0u)ε → ζ0u in W 1,p(Ω) as
ε→ 0.

Without loss of generality we continue the proof reasoning in the 2-dimensional
setting, with12

supp ζ = [ã, b̃] = [ã1, b̃1]× [ã2, b̃2],

a1 < ã1 < b̃1 < b1, a2 < ã2 < b̃2 < b2,

Ω ∩ (a, b) = {(x, y) : a1 < x < b1, f(x) < y < b2},

in which
f : [a1, b1]→ (ã2, b̃2)

12Make a sketch.
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is Lipschitz continuous with Lipschitz constant L. Dropping the (second
unit) vector e from the notation we write

ũh(x, y) = ũ(x, y + h)

and note that

Ω̃h ⊃ {(x, y) : a1 < x < b1, y > f(x)− h}.

Now let λ =
√

1 + L2 and h = λε. Then every point in [ã, b̃] ∩ Ω with

xN ≥ f(x1, . . . , xN−1) + λε

is the center of an open ball with radius ε > 0 that is contained in (a, b)∩Ω,
provided ε is smaller than the distance from [ã, b̃] to the boundary of (a, b).
This implies (33.10) holds with h = λε, whence

ũελε → ũ in W 1,p(Ω) (33.11)

as ε→ 0.

Exercise 33.8. To convince yourself of the statement preceding (33.11) draw a
picture in the xy-plane with the line y = Lx and find the point Pε = (0, λε) on the
positive y-axis with distance ε to that line, and the point Qε on that line which realises
this distance. Shift the origin O = (0, 0) to a point on the graph y = f(x) contained
in [ã, b̃], and pull the triangle OPεQε along. Specify the smallness condition on ε.

The above argument applies to every ζ1, . . . , ζn. Combined with Exercise
33.7 this concludes the proof Theorem 33.5. �

33.2 Statements for W 1,p(Ω) via the extension operator

To extend results for W 1,p
0 (Ω) to W 1,p(Ω) we use a well behaved extension

operator that maps W 1,p(Ω) into W 1,p
0 (Ω̃) with Ω̃ slightly larger than Ω. The

extension operator is first defined for u ∈ C1(Ω̄) and requires the boundary
∂Ω to be bounded and C1 (locally the graph of a C1-function). This uses
the same partitions of unity used in the proof of Theorem 33.5 to establish
that W 1,p(Ω) is the closure of C1(Ω̄) if ∂Ω is bounded and C1. The extension
map

u ∈ W 1,p(Ω)
E−→ ũ ∈ W 1,p

0 (Ω̃)
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comes out linear and bounded. Results such as the compactess in Theorem
32.19 and the embeddings13 in Section 32.4 then carry over to W 1,p(Ω).

Here I don’t follow Evans’ approach in which the extensions are first
defined locally for u and then glued together using a partition of unity. It is
much simpler to first cut up u in smaller pieces ζiu as explained in Remark
33.1 and use the globally defined extensions ũi of ζiu rather than locally
defined extensions of u. With local C1-extensions ũi defined by linear maps

u
Ei−→ ũi (33.12)

with
|ũi|1,p ≤ Ci |u|1,p , (33.13)

we simply define

u ∈ C1
c (Ω̄)

E−→ C1
c (Ω̃) by u→ ζ0u+ ũ1 + · · ·+ ũn.

In view of the Leibniz rule14

(ζu)xj = ζuxj + ζxju

it follows that
|Eu|

1,p
≤ C |u|

1,p
,

with C some horrible constant depending on Ω̃ and Ω via the norms of ζi in
C1. This cuts a long story short. The map

u ∈ C1(Ω̄)
E−→ ũ ∈ C1

c (Ω̃)

satisfies the desired W 1,p-estimates, and thereby extends as a map from
W 1,p(Ω) to W 1,p

0 (Ω̃) using the density of C1(Ω̄) in W 1,p(Ω) established with
Theorem 33.5.

Note that we take the supports of ζ1, . . . , ζn as compact subsets of open
cylinders rather than balls. After a permutation of coordinates each of these
cylinders is described as Ci = Bi × Ii, with Bi an open ball, Ii a bounded
interval, and chosen such that

Ω ∩ Ci = {x = (x1, . . . , xN−1, xN) ∈ C : xN > γi(x1, . . . , xN−1)}.

Here γi : B̄i → Ii is C1, and the supports of the ζi are then contained in
smaller cylinders C̃i = B̃i× Ĩi ⊂⊂ Ci. The extensions ũi of ζiu with compact
support in Ci are defined via transformations and higher order reflections as
in Appendix C.1 and in Section 5.4 in of Evans.

13With different constants of course.
14I’m using subscripts xj for partial derivatives here, so ζxj = Djζ.
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33.3 The trace operator and its kernel

The other important operator is the bounded linear trace operator

W 1,p(Ω)
T−→ Lp(∂Ω)

in Section 5.4 of Evans, which extends

u ∈ C1(Ω̄)→ u|∂Ω ∈ C1(∂Ω).

Evans defines it locally, first under the assumption that ∂Ω is flat and u ∈
C1(Ω̄). The same splitting as in Theorem 33.5 can be used to first define
T (ζiu) instead, for u ∈ C1(Ω̄), so

u ∈ C1(Ω̄)→ ζiu = ui ∈ C1(Ω̄ ∩ C̄i)→ ui|∂Ω ∈ C1(∂Ω).

The local coordinate transformation flattening ∂Ω ∩ C̄i is not even needed,
as ui is defined for all xN ≥ γ(x1, . . . , xN−1) with (x1, . . . , xN−1) ∈ Bi and
vanishes for xN large. Thus

Tui(x1, . . . , xN−1) = ui(x1, . . . , xN−1, γ(x1, . . . , xN−1)) = −
∫ ∞
γ

(ui)xN
,

and the p-norm on Bi is estimated by the p-norm of ∇ui, the factor(
1 + γ2

x1
+ · · ·+ γ2

xN−1

) 1
2

being irrelevant for the estimate.
The characterisation of the kernel of T as in Theorem 2 of Section 5.4 is

also done locally then, as Evans observes in (6), in which the flattening avoids
cumbersome notation in the already technical proof that follows. Actually
the proof is not so hard. It relies on this estimate, formulated in IR2 without
loss of generality for u ∈ C2

c (IR2):∫ ∞
−∞
|u(x, y)|p dx ≤ 2p

(∫ ∞
−∞
|u(x, 0)|p dx+ yp−1

∫ y

0

∫ ∞
−∞
|uy|p

)
. (33.14)

Exercise 33.9. Prove (33.14) and explain why it holds for u ∈ W 1,p(IR2
+) with

compact support in IR× [0,∞).
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Exercise 33.10. If such a u has Tu = 0, then the functions um defined by
um(x, y) = (1 − ζ(my))u(x, y) with ζ ∈ C∞c ([0, 2)) and ζ ≡ 1 on [0, 1], ζ ′ ≤ 0
on [0, 2) are in W 1,p

0 (IR2
+) and converge to u in W 1,p(IR2

+). Prove this and conclude

that u ∈W 1,p
0 (IR2

+). Hint: you have to use Exercise 33.14 below.

Exercise 33.11. Let Ω be a bounded domain in IR2 = {(x, y) : x, y ∈ IR} and
ζ ∈ C1(IR2). Prove that ζu ∈W 1,p(Ω) if u ∈W 1,p(Ω).

Exercise 33.12. Introduce new coordinates ξ, η by

x = x0 + aξ + bη, y = y0 + cξ + dη,

with ad 6= bc, define V by (ξ, η) ∈ V ⇐⇒ (x, y) ∈ Ω, and write v(ξ, η) = u(x, y).
Show that

u ∈W 1,p(Ω) ⇐⇒ v ∈W 1,p(V )

and that this correspondence defines a linear homeomorphism between the two Sobolev
spaces.

Exercise 33.13. Assume Φ : IR2 → IR2 is C1, injective on Ω̄, with invertible
Jacobian matrix in every (x, y) ∈ Ω̄. Then u → u ◦ Φ−1 = v defines a bijective map
from C1(Ω̄)→ C1(V̄ ) where V = Φ(Ω). Show that

1

C
|v|

W1,p(V )
≤ |u|

W1,p(Ω)
≤ C|v|

W1,p(V )

for some C > 1.

Exercise 33.14. Explain why this map uniquely extends to a bijection from W 1,p(Ω)
to W 1,p(V ) if ∂Ω ∈ C1.

Exercise 33.15. The intersection of W 1,p(Ω) and C(Ω̄) is a Banach space with
norm e.g. |u|∞+ |ux|p + |uy|p . Explain why this Banach space is the closure of C1(Ω̄)
with respect to this norm.
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34 Elliptic boundary value problems

This chapter corresponds to Chapter 6 in Evans’ PDE book, but we first
consider the partial differential equation

Lu = −(aijuxi)xj + cu = f with boundary condition u = 0 (34.1)

for u = u(x), x ∈ Ω, Ω a bounded domain1 in IRN , ∂Ω at least continuous,
i.e. locally the graph of a continuous function. Compared to (1) in Section
6.1, I drop the summation signs, use subscripts for the coefficients, and omit
the first order terms.

Clearly the existence of classical solutions, i.e. solutions u with u ∈ C2(Ω)
and u ∈ C(Ω̄), requires smoothness conditions on the coefficients aij = aij(x)
and c = c(x), and on the right hand side f . The uniform ellipticity condition
(4) on the coefficients aij = aij(x) is that there exists θ > 0 such that

aij(x)ξiξj ≥ θ|ξ|2

for all x ∈ Ω and for all ξ ∈ IRN. It is used to verify the coercivity condition
in the Lax-Milgram Theorem 30.23 for bilinear forms such as the form B
introduced in (34.3) below. We stress that in the special case of (34.1) we
shall only need the Riesz Representation Theorem, see Section 30.3. The
advantage of the boundary condition u = 0 is that we can work in the space
H1

0 (Ω) = W 1,2
0 (Ω), which is defined as the closure of C1

c (Ω) in H1(Ω).
Evans starts with the more general equation

Lu = −(aijuxi)xj + biuxi + cu = f,

for which the Lax-Milgram Theorem is required, see Section 30.4. This theo-
rem reduces to the Riesz Representation Theorem in the case that the bilinear
form in Theorem 30.23 is symmetric. In Sections 30.7, 30.8 we presented a
simple example, starting from the standard Hilbert space in Section 30.6,
of the general framework that we then recognise when solving (34.1) in the
space H1

0 (Ω). In this framework the Spectral Theorem 30.10 applies to the
solution operator

f
S−→ u

with respect to two different inner products, as explained in Section 30.9.
This corresponds to Theorems 1 and 2 in Evans’ Section 6.5.

1Domains are denoted by U in Evans.
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34.1 Weak solutions

In the weak solution approach we multiply the partial differential equation
in (34.1) by a v ∈ C1(Ω̄), integrate over Ω and use integration by parts to
rewrite the terms with aij as

−
∫

Ω

(aijuxi)xj︸ ︷︷ ︸
wxj

v = −
∫
∂Ω

νja
ijuxi︸ ︷︷ ︸
νjw

v +

∫
Ω

aijuxi︸ ︷︷ ︸
w

vxj , (34.2)

in which νj is the jth component of the outward normal on ∂Ω. This requires
∂Ω to be piecewise C1, the coefficients aij ∈ C2(Ω̄), c ∈ C(Ω̄), the right hand
side f ∈ C(Ω̄), and u ∈ C2(Ω̄). The boundary integral disappears if v = 0
on ∂Ω, leading to the identity2∫

Ω

aijuxivxj +

∫
Ω

cuv︸ ︷︷ ︸
B[u,v]

=

∫
Ω

fv︸ ︷︷ ︸
(f,v)

(34.3)

for all v ∈ C1(Ω̄) with v = 0 on ∂Ω. The assumptions on aij, c, f can be
weakened, since this identity certainly make sense for u ∈ C1(Ω̄), and so does
the boundary condition u = 0. In fact, the standard weak solution approach
requires solutions which have their first order derivatives in L2(Ω). Thus the
natural (Hilbert) space for u, v to live is H1

0 (Ω), and u ∈ H1
0 (Ω) is called a

weak solution of (34.1) if (34.3) holds for all v ∈ H1
0 (Ω).

We will also say that u ∈ H1(Ω) is a weak solution of3

Lu = −(aijuxi)xj + cu = f with boundary condition νja
ijuxi = 0

if (34.3) holds for all v ∈ H1(Ω), but for now we restrict the attention to
the reformulation of (34.1), with u and v both in H1

0 (Ω). Note that (34.3)
requires aij, c ∈ L∞(Ω) only, and f ∈ L2(Ω) more than suffices for the right
hand side of (34.3) to makes sense because H1

0 (Ω) is contained in L2(Ω).
Recall that H1

0 (Ω) is the closure of C1
c (Ω) in H1(Ω) = W 1,2(Ω). The right

hand side of (34.3) is equal to the inner product of f and v in L2(Ω) and it
defines a linear functional F via

v ∈ H1
0 (Ω)

F−→
∫

Ω

fv = (f, v)L2(Ω) = F (v) = 〈F, v〉︸ ︷︷ ︸
two notations for F

, (34.4)

the latter notation being the one used in the Lax-Milgram Theorem in Section
6.2.1. In (34.4) we chose not to write f for F in 〈F, v〉, as f acts on v via the

2The underbraces indicate the notation in (8) of Evans’ Section 6.1.
3Section 5.8.1 is important for this problem.
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L2-inner product, and not via the inner product in H1(Ω), which is defined
by the left hand side of (34.3) with aij = δij and c = 1, i.e.

(u, v)H1(Ω) =

∫
Ω

uxivxi︸ ︷︷ ︸
first order terms

+

∫
Ω

uv =

∫
Ω

∇u · ∇v +

∫
Ω

uv. (34.5)

Note that the H1(Ω) inner product is the bilinear form corresponding to the
partial differential equation ∆u+u = f . This is the easiest example of (34.3).
The next easiest example is when c(x) ≥ 0 for all x ∈ Ω, and the left hand
side of (34.3) still defines an inner product, also if c(x) = 0 for all x ∈ Ω.

34.2 The Lax-Milgram Theorem

It is only for equations of the form

Lu = −(aijuxi)xj + biuxi + cu = f

that we need the Lax-Milgram Theorem of Section 30.4. Its statement and
proof will be recalled below. The symmetric case was also discussed in Section
30.8. The f in Theorem 1 in Evans’ Section 6.2.1 is really the F in (34.4) if
the theorem is applied to the bilinear form in (34.3) and the Hilbert space
H1

0 (Ω). This F was defined via the inner product of the larger Hilbert space
L2(Ω). Have a look at Section 30.8 for a first example of this double dealing
with the Riesz Theorem. Our Sobolev space H1

0 (Ω) here corresponds to V
there, and L2(Ω) to H. Note that Evans considers a more general right hand
side in (10), which is related to a characterisation of the dual of H1

0 (Ω) in his
Section 5.9.1.

The discussion of the Lax-Milgram Theorem below uses the notation in
Evans4. If a bilinear form B : H ×H → IR is bounded, i.e. if

∀u, v ∈ H |B[u, v]| ≤ α|u| |v|,

then for each u ∈ H the map

v ∈ H Au−→ B[Au, v] = (Au)(v) = 〈Au, v〉︸ ︷︷ ︸
two notations for Au

(34.6)

is linear and bounded, since

|〈Au, v〉| = |B[u, v]| ≤ α |u| |v|
4And this H corresponds to X in Theorem 30.26 of Section 30.5.
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implies that
|Au| ≤ α |u|

for all u ∈ H. Thus A : H → H∗ is linear and bounded. Recall that the dual
space

H∗ = {f : H → IR : f is linear and bounded}
is normed by

|f | = sup
06=v∈H

|〈f, v〉|
|v|

,

and can be identified with H via the Riesz Representation Theorem and

〈f, v〉 = f · v = (f, v)H ,

considering f ∈ H = H∗, but in the application to H = H1
0 (Ω) this is not

the inner product in the right hand side to (34.3).
If the bilinear form is also coercive on H, i.e. if

∀u ∈ H B[u, u] ≥ β |u|2,

then

β |u|2 ≤ B[u, u] = 〈Au, u〉 ≤ |Au| |u| whence |Au| ≥ β |u|

for all u ∈ H and it follows that A is a bijection between H and A(H), a
subspace of H∗, and that this bijection is bounded in both directions. Thus
A(H) is complete, and thereby a closed subspace of H∗ which5 coincides with
H∗.

The (linear) solution operator6

F ∈ H∗ S−→ u ∈ H is defined by B[u, v] = 〈F, v〉 for all v ∈ H,
(34.7)

and has the property that

|u|H = |SF |H ≤
1

β
|F |H∗

In the application to boundary value problems any right hand side of (34.1)
that defines an F in the dual of the Sobolev space used is allowed. In the case
of H1

0 (Ω) this dual space is denoted by H−1(Ω) and may be viewed as the
space consisting of functions in L2 as well as their first order distributional
derivatives, see Section 5.9.1 in Evans.

5Via the Riesz Representation or the Hahn-Banach Theorem and the reflexivity of H.
6See also Section 30.9.
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34.3 Checking the boundedness condition

It is usually easy to show that the bilinear form derived from the boundary
value problem formulation via integration by parts is bounded, also for other
boundary conditions, such as the Neumann condition

νja
ijuxi = 0 on ∂Ω, (34.8)

which is a special case of the Robin boundary condition

νja
ijuxi + bu = 0 on ∂Ω, (34.9)

in which b = b(x) is assumed to be bounded and integrable. See Exercises
6.6.4 and 6.6.5. The latter condition is called Newton’s cooling law in the case
that aij is a positive multiple of the identity matrix and u is the temperature
in a body Ω with heat exchange at the boundary7. In (34.2) this condition
gives the additional term ∫

∂Ω

buv

which should now be included in the left hand side of (34.3). The natural
Sobolev space to pose∫

Ω

aijuxivxi +

∫
Ω

cuv +

∫
∂Ω

buv =

∫
Ω

fv (34.10)

in is H1(Ω).
In the case of the Neumann condition (34.8) this extra term is not there

and the only difference with the Dirichlet problem is the choice of the Sobolev
space. Boundary conditions which are used in the integration by parts deriva-
tion of the weak formulation are sometimes called natural boundary condi-
tions. The Dirichlet boundary condition is not a natural boundary condition,
it has to be forced on the solution by the choice of the smaller Sobolev space
H1

0 (Ω).

34.4 Checking coercivity

It is usually more delicate to show the coercivity of the bilinear form. The
basic (ellipticity) assumption on the coefficients aij is (4) in Section 6.1.1 of
Evans. With v = u it bounds the highest order terms from below by the
highest order terms in (34.5). In the case of H1

0 (Ω) the Poincaré inequality∫
Ω

u2 ≤ C
Ω

∫
Ω

|∇u|2 (34.11)

7This physical context forces the exchange coefficient to be positive.
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helps. In particular the bilinear form

B[u, v] =

∫
Ω

∇u · ∇v

used for solving

−∆u = f with boundary condition u = 0

is coercive onH1
0 (Ω) considered as a subspace ofH1(Ω) with the norm derived

from (34.5).
The Neumann problem for −∆u = f is very instructive. It requires a

condition on f for solvability, as well as the same condition on u to have a
unique condition, choosing

H̃1(Ω) = {u ∈ H1(Ω) :

∫
Ω

u = 0}

as the Sobolev space to be used in the weak formulation. For functions in
this space it holds that

|u|
2
≤ CΩ|∇u|2 ,

see Evans’ Section 5.8.1.
You should compare the role of b in the Robin boundary condition to

that of c in the partial differential equation, as should be clear from (34.10).
Coercivity requires some positivity.

The higher order problem for the bi-Laplacian in Exercise 6.6.3 is only one
of the problems of this type. It has two ”unnatural” boundary conditions,
which are forced upon the solution by the choice to have u ∈ H2

0 (Ω), the
closure of C2

c (Ω) in the W 2,2-norm. Can you think of natural boundary
conditions that lead to a formulation in H2(Ω), or a mix of natural and
unnatural boundary conditions that require H2(Ω) ∩H1

0 (Ω) as the space to
be used? Note that for the coercivity of the bilinear form you need the
regularity theory in Section 6.3.

34.5 The general case with first order terms

The treatment of the Dirichlet problem in Section 6.2.2 should be easy to
follow after the discussion above. The main issue is how to deal with the
terms in B[u, v] that come from the first order derivatives in the Lu. Section
6.2.3 uses the adjoint operator and the Fredholm alternative towards Theo-
rem 4. The Fredholm alternative is applied to the solution operator Sµ for
the bilinear form

Bµ[u, v] = B[u, v] + µ

∫
Ω

uv
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with one choice γ of µ, chosen sufficiently large to make Bγ coercive, and
thereby Bµ for all µ ≥ γ. This latter trick is independent of the Fredholm
alternative approach that follows after Theorem 3 in Evans’ Section 6.2,
and requires the energy estimates in Section 6.2.2. Young’s inequality is
repeatedly used here, and will also be used in Section 35 below.

34.6 The symmetric case

Evans Section 6.5. See again Section 30.6. The first order terms in L typ-
ically prevent the bilinear form from being symmetric. Without these first
order terms the symmetry of aij makes the bilinear form symmetric. This
symmetry is usually assumed, see the opening statements in Section 6.5.1. In
the case that B[u, v] is a symmetric bounded coercive bilinear form, it defines
an equivalent norm on the Sobolev space (used in in the weak formulation)
via

|u| =
√
B[u, u].

The solution operator

f
S−→ u

then satisfies both

(Sf, g)L2(Ω) = (f, Sg)L2(Ω) and B(Su, v) = B(u, Sv)

as you should verify, and it is compact from L2(Ω) to L2(Ω) as well as from
the Sobolev space to itself. The eigenvalue formula’s for the solution operator
using B[u, v] then lead to eigenvalue formula’s of which the first is stated in
the remark following Theorem 2 in Section 6.5.1.

34.7 Maximum principles

Evans Section 6.4. More on those principles in Chapters 5 and 10 in

http://www.few.vu.nl/~jhulshof/NOTES/ellpar.pdf
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35 Regularity

This chapter corresponds to Evans’ Section 6.3. Read his motivation with (3)
for (2). The upshot is that we want to use the pure second order derivatives
of a weak solution u as v in the weak formulation of

Lu = −(aijuxi)xj + biuxi + cu = f, (35.1)

e.g. with boundary condition u = 0. This is not allowed, but we can get
around this obstruction if we take finite second order differences instead, as
Evans does in (11) of his Section 6.3. The circumvention is explained in
Section 35.6, which you can actually read now if you like1, but I explain first
how Evans’ approach can be turned around in such a way that his (11) is
only used without the ζ2 factor between D−hk and Dh

k .
The first goal is to prove that a weak solution u ∈ H1

0 (Ω) is in H2(Ω)
under minimal assumptions on L and ∂Ω, provided f is in L2(Ω), as a first
step towards higher regularity and smoothness of solutions. In the proof we
need a correspondence between bounds on integrals of squared first order
difference quotients uniformly in the step size h and bounds on the 2-norm
of weak derivatives. This will require the use of weak limits of

Dh
ku(x) =

1

h
(u(x+ hek)− u(x))

along sequences hn → 0, given a uniform L2-bound on Dh
ku. Note that Evans’

exposition in Section 5.8.2 relies on his Appendix D4, but we only need the
Hilbert space case2 of the weak compactness statement, which is much easier
to prove using Remark 30.29.

35.1 An a priori energy estimate

Recall that u ∈ H1(Ω) is called a weak solution of Lu = f if∫
Ω

aijuxivxj +

∫
Ω

biuxiv +

∫
Ω

cuv︸ ︷︷ ︸
B[u,v]

=

∫
Ω

fv︸ ︷︷ ︸
(f,v)

(35.2)

holds for all v ∈ H1
0 (Ω). We assume that aij = aji, bi and c are continuous

on Ω̄, and that the uniform ellipticity condition

aijξiξj ≥ θ|ξ|2 (35.3)

1Have a look Theorem 35.3 before your read on.
2Since this is about 2-norms.
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holds. In case u ∈ H1
0 (Ω) we can take v = u and thus have

θ

∫
Ω

|∇u|2 ≤
∫

Ω

aijuxiuxj =

∫
Ω

(f − cu− biuxi)u. (35.4)

It then follows that the so-called energy estimate3∫
Ω

|∇u|2 ≤
∫

Ω

f 2 + C

∫
Ω

u2 (35.5)

holds, for some constant C that can be specified upon demand in terms of θ
and the bounds on bi and c. We emphasize that (35.5) is an explicit a priori
bound: it holds for all solutions u ∈ H1

0 (Ω).

Exercise 35.1. Use Young’s inequality for

ab = εa
b

ε

with p = q = 2 and a suitable choice of ε > 0 to prove (35.5).

We next want to establish that the second order (weak) derivatives of
a weak solution u ∈ H1

0 (Ω) exist in L2(Ω), with a priori bounds similar to
(35.5). To do so we assume the first order derivatives aijxk exist and are
continuous on Ω̄, and that ∂Ω ∈ C2.

35.2 Localise it

We write

u = ζ0u+ · · ·+ ζnu =
n∑

m=0

um, (35.6)

with ζ0, . . . , ζn smooth, compactly supported, nonnegative, the support of ζ0

contained in Ω, just as in Remark 33.1. Evans’ method can be modified by
observing that each of the terms û = um = ζmu in (35.6) is itself a weak
solution of an equation L̂u = f̂ with the same coefficients aij. This is just
like (9) and (10) in Evans’ Section 6.3, and follows replacing v in (35.2) by
ζmv.

Indeed, dropping the subscript we have that∫
Ω

fζv = B[u, ζv] =

∫
Ω

aijuxi(ζv)xj +

∫
Ω

biuxiζv +

∫
Ω

cuζv

3See Evans’ Section 6.2.2.
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=

∫
Ω

aijuxiζvxj +

∫
Ω

aijuxiζxjv︸ ︷︷ ︸
Leibniz rule for (ζv)xj

+

∫
Ω

biuxiζv +

∫
Ω

cuζv.

Taking the three v-terms to the other side we use ζuxi = (ζu)xi − uζxi to get∫
Ω

(fζ − cζu− biuxiζ − aijuxiζxj)v =

∫
Ω

aijuxiζvxj

=

∫
Ω

aij(ζu)xivxj −
∫

Ω

aijuζxivxj︸ ︷︷ ︸
Leibniz again

.

By the definition of weak derivative the last term equals∫
Ω

(aijuζxi)xjv =

∫
Ω

aijxjuζxiv +

∫
Ω

aijuxjζxiv +

∫
Ω

aijuζxixjv,

where we have use the Leibniz rule4 for the product aijuζxi . Taking also the
two new terms with v to the other side we arrive at∫

Ω

aijûxivxj =

∫
Ω

aij(ζu)xivxj =

∫
Ω

f̂v (35.7)

with

f̂ = ζ(f − cu− biuxi)− ζxi(2aijuxj + aijxju)− ζxixjaiju. (35.8)

In other words û = ζu satisfies

−(aijûxi)xj = f̂ (35.9)

in the usual weak sense, and clearly5

|f̂ |
2
≤ C|u|

1,2
(35.10)

with the constant C depending only on uniform bounds for

aij, aijxk , b
i, c, ζ, ζxi , ζxixj .

In the case that ζ ∈ C2
c (Ω) we see that both u and f have compact

support in Ω. The function û is then in fact a weak solution of (35.9) in
H1(IRN) = H1

0 (IRN). Compare this to Evans’ Section 6.7 Exercise 46, which
then applies. The upshot is that there is really no need for the use of a cut-off
function in (11) of Evans’ Section 6.3.1. We test the equation for û = ζu
with second order difference quotients

D−hk Dh
k û

only, rather then testing the equation for u with (11).

4Note carefully that aijζxi
φ is an allowable test function if φ ∈ C1

c (Ω).
5Recall (32.48).
6Exercise 7 in the second edition.
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35.3 Flatten it

The trick with û = ζu and f̂ in (35.10) also works if ζ is one of the functions
as in Remark 33.1. Or as in the proof of Theorem 27.7 for that matter,
compactly supported in a window W in which the boundary of Ω is given by
the graph of a C1-function γ. From that proof we now borrow the flattening
trick that Evans explains7 in Appendix C1. We examine the action of these
flattening transformations8 on test functions v with support in W , and on
the solution û = ζu. Define new coordinates

xi = x̃i for i = 1, . . . , N − 1 and x̃N = xN − γ( x1, . . . , xN−1︸ ︷︷ ︸
↑

x′=(x1,...,xN−1
)=x̃′

),

let ũ, ṽ be defined by

û(x) = ũ(x̃), v(x) = ṽ(x̃), (35.11)

and assume that in the support of ζ we have that x ∈ Ω if and only if x̃N > 0.
Then for v ∈ C1

c (W ) the chain rule implies that

DNv = DN ṽ and Div = Diṽ −DN ṽDiγ

for i = 1, . . . , N − 1. Since

Diγ = γxi = γx̃i ,

we may write
vxN = ṽx̃N and vxi = ṽx̃i − γx̃i ṽx̃N ,

or simply
vxi = ṽx̃i − γx̃i ṽx̃N (35.12)

for all i = 1, . . . , N , since DNγ = 0. By density this also holds for v in H1
0 (Ω)

with support in W , and likewise

ûxi = ũx̃i − γx̃iũx̃N . (35.13)

In fact a test function argument9 shows that we also have (35.13) starting
with u ∈ H1(Ω).

As a consequence the bilinear form10 in (35.7) is transformed via

aijûxivxj = ãij(ũx̃i − γx̃iũx̃N )(ṽx̃j − γx̃j ṽx̃N ),

7Take balls rather than cylinders as neighbourhoods.
8Postponing the difference quotients Dh

k once more.
9In which dx = dx̃, we will need this later, requires γ ∈ C1 only.

10If you like with also v localised.
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and so are the terms in (35.8) via f̂(x) = f̃(x).
The bounded first order derivatives of γ do not qualitatively change the

bound in (35.10), only the constant changes. The coercivity estimate (35.3)
changes likewise. The quadratic form in (35.3) transforms as

Q(ξ) = aijξiξj = ãij(ξ̃i − εiξ̃N︸ ︷︷ ︸
ξi

)(ξ̃j − εj ξ̃N︸ ︷︷ ︸
ξj

) = âij ξ̃iξ̃j = Q̃(ξ̃), (35.14)

in which aij = aij(x) = ãij(x̃) = ãij, εi = γxi , and the coefficients11 âij(x̃) is
defined by the third equality12. Since εN = 0 and the other εi are uniformly
bounded, we have that

|ξ| ≥ C|ξ̃| (35.15)

for some constant C > 0, whence

Q̃(ξ̃) ≥ θ̃C2|ξ̃|2.

Thus the operator

L̃ = − ∂

∂x̃j
âij(x̃)

∂

∂x̃i

is uniformly elliptic, and ũ is a solution of

L̃u = f̃

in H1
0 (IRN

+) with compact support, with f̃ defined by (35.8) and

f̃(x̃) = f̂(x). (35.16)

35.4 Flattening as a Sobolev map

We consider the flattening transformation again. Recall (35.13) as

u(x) = ũ(x̃), uxi = wi = ũx̃i − γiũx̃N , γi = γxi , γN = 0, (35.17)

in which

xi = x̃i for i = 1, . . . , N − 1 and x̃N = xN − γ(x1, . . . , xN−1)

is a transformation that is clearly invertible. In Section 35.8 we need the
following theorem13 with k = 2.

11We use hats as superscripts because the tildes were already in use.
12Here we see that we need ∂Ω ∈ C2 to have âij ∈ C1.
13We can replace Hk by W 1,k of course.
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Theorem 35.2. Assume that

γ ∈ Ck([a1, b1]× · · · × [aN−1, bN−1]),

and let

U = {x = (x′, xN) : x′ ∈ (a1, b1)× · · · × (aN−1, bN−1), xN > γ(x′)};

Ũ = {x̃ = (x′, x̃N) : x′ ∈ (a1, b1)× · · · × (aN−1, bN−1), x̃N > γ(x′)}.
Then (35.17) defines a linear bijection between Hk(U) and Hk(Ũ) which is
continuous in both directions.

Proof. Let k = 1. Every ũ in H1(Ũ) defines functions u,w1, . . . , wN in
L2(U) via (35.17). We have to show that u ∈ H1(U) with wi = uxi in L2(U).
By the chain rule we know that that every ṽ ∈ C1

c (Ũ) defines v ∈ C1
c (U) via

v(x) = ṽ(x̃) and vice versa, and

vxi = ṽx̃i − γiṽx̃N .

Since dx̃ = dx it follows that∫
U

wiv +

∫
U

uvxi =

∫
Ũ

(ũx̃i − γiũx̃N )ṽ +

∫
Ũ

ũ(ṽx̃i − γiṽx̃N ). (35.18)

and with i = N this reads∫
U

wNv +

∫
U

uvxN =

∫
Ũ

ũx̃N ṽ +

∫
Ũ

ũṽx̃N = 0,

because ũ ∈ H1(Ũ). This proves wN = uxN in L2(U). Thereby the terms
with γi in (35.18) cancel, because γiṽ ∈ C1

c (Ũ) and (γiṽ)x̃N = γiṽx̃N . But
then we’re left with∫

U

wiv +

∫
U

uvxi =

∫
Ũ

ũx̃i ṽ +

∫
Ũ

ũṽx̃i = 0,

again because ũ ∈ H1(Ũ). This proves wi = uxi in L2(U) for all the other i.
So (35.17) maps ũ ∈ H1(Ũ) to u ∈ H1(U).

Likewise we have that (35.17) maps u ∈ H1(U) to ũ ∈ H1(Ũ). Thus
(35.17) defines a (linear) bijection between H1(U) and H1(Ũ), which is con-
tinuous in both directions, because as in (35.15) we have

|∇ũ| ≤ C|∇u| and |∇u| ≤ C|∇ũ|.

Note that
uxi = ũx̃i − γiũx̃N
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in (35.17) inverts as
ũx̃i = uxi + γiuxN . (35.19)

This completes the proof for k = 1. The proof for k > 1 is similar but
not needed, as the statement in the theorem can be applied to the terms in
(35.19) separately, to give

ũx̃ix̃j = uxixj + γjuxNxj + γijuxN + γiuxNxj + γiγjuxNxN (35.20)

for k = 2 and so on.

35.5 Garbage distribution

For later purposes we spell out what (35.16) does to (35.8), in which we
distribute the garbage as

f̂ = ζ(f − cu− biuxi)− ζxi(2aijuxj + aijxju)− ζxixjaiju

= ζf − (ζc+ ζia
ij
j + ζija

ij)︸ ︷︷ ︸
Γ

u− (ζbi + 2ζja
ij)︸ ︷︷ ︸

βi

wi︸︷︷︸
uxi

,

with subscripts for derivatives of known functions. The first order derivatives
of the unknown solution are denoted by wi. Recall that the function ζ is com-
pactly supported and smooth, and so are its derivatives. Thus the coefficients
Γ and βi are compactly supported, and as smooth as the smoothness of aij

and bi allow.
Applying (35.16) we use the notation as in (35.11) for v for f and u, but

since f̃ and ũ are already used in (35.16) and (35.11), we set

f(x) = f̃0(x̃), u(x) = w0(x) = w̃0(x̃) = U(x̃),

with x restricted to the window in which ζ is supported.
For the first order derivatives of u we do not use this transformation rule.

To be consistent with (35.13) we define the functions Wi = w̃i as functions
of x̃ by

uxi = wi = w̃i − γiw̃N , (35.21)

in which γi is the partial derivative of γ with respect to xi. Recall that γ
and γi do not change under the flattening transformation.

For the other (given) functions and coefficients we use again the same
transformation rule as in (35.11) for v and write

ζ(x) = ζ̃(x̃), βi(x) = β̃i(x̃), Γ(x) = Γ̃(x̃) = C(x̃),
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and find that f̂ as a function of x transforms as

f̃ = ζ̃ f̃0︸︷︷︸
F

−CU − β̃i(w̃i − γiw̃N)︸ ︷︷ ︸
BiWi

(35.22)

as a function of x̃, i.e.

f̃(x̃) = F (x̃)− C(x̃)U(x̃)−Bi(x̃)Wi(x̃),

with Wi = w̃i defined by (35.21). The first term F in (35.22) is the localised
and then transformed original right hand side f in (35.1). If f is in L2(Ω)
then F is in L2(IRN

+). This only requires the function γ used in the flattening
transformation to be continuous14.

The second15 term CU is the product of a compactly supported known
function C and U , the transformed but not localised unknown solution u =
w0. As for the third term, note that B is related to β, but not simply
as B = β̃. Still, every term BiWi is the product of a compactly supported
known function Bi, and the unknown function Wi defined by (35.21) in terms
of w1, . . . , wN . Since we already know that u = w0 is in H1(Ω), the unknown
functions w0, w1, . . . , wN are all in L2(Ω). Therefore CU and BW are in
L2(IRN

+) if C and B are bounded, which is certainly the case here because c
and bi are bounded by assumption.

35.6 Difference quotients of weak derivatives

We are now ready to use second order difference quotients D−hk Dh
k ũ and

observe that for k < N these are in H1
0 (IRN

+), because we started out with
u ∈ H1

0 (Ω). In what follows we drop the hats and tildes and note that the
arguments are valid for any compactly supported16 weak solution of

−(aijuxi)xj = f (35.23)

in H1
0 (IRN

+) if f is in L2(IRN
+). We have∫

IRN
+

aijDiuDjv =

∫
IRN

+

aijuxivxj =

∫
IRN

+

fv for all v ∈ H1
0 (IRN

+), (35.24)

and insert
v = D−hk Dh

ku ∈ H1
0 (IRN

+) with k < N. (35.25)

14For what’s to come: F is in Hm(IRN
+) if f is in Hm(Ω) and γ is in Cm.

15We chose to write C for Γ̃.
16This is for convenience only, and suffices for our needs.
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Note that for any v in H1
0 (IRN

+) we have that

Dh
kv(x) =

1

h
(v(x+ hek)− v(x))

defines Dh
kv ∈ H1

0 (IRN
+) if k < N . It is easy to see that Di and Dh

k commute,
and that

DiD
h
kv = Dh

kDiv ∈ L2(IRN
+) (35.26)

for all k < N and all i, including i = N . Moreover

Dh
k(uv)(x) =

1

h
(u(x+ hek)v(x+ hek)− u(x)v(x)) =

u(x+ hek)
1

h
(v(x+ hek)− v(x)) +

1

h
(u(x+ hek)− u(x))v(x) =

u(x+ hek)D
h
kv(x) + v(x)Dh

ku(x)

gives17

Dh
k(uv) = uhekD

h
kv + vDh

ku, (35.27)

and all terms in this Leibniz rule are certainly in L1(IRN
+) if u and v are in

H1
0 (IRN

+). We thus have∫
IRN

+

Dh
k(uv) =

∫
IRN

+

uhekD
h
kv +

∫
IRN

+

vDh
ku.

The left hand side vanishes if u or v has compact support, in which case it
follows that ∫

IRN
+

vDh
ku = −

∫
IRN

+

uD−hk v, (35.28)

because∫
IRN

+

u(x+ hek)
1

h
(v(x+ hek)− v(x)) dx =

∫
IRN

+

u(x)
1

h
(v(x)− v(x− hek))︸ ︷︷ ︸

D−hk v(x)

dx.

We insert (35.25), which by the commutation rule (35.26) is equal to

Djv = DjD
−h
k Dh

ku = D−hk Dh
kDju,

in (35.24) and use the discrete integration by parts rule (35.28) for the second
order terms to obtain∫

IRN
+

Dh
k(aijDiu)Dh

kDju+

∫
IRN

+

fD−hk Dh
ku = 0.

17See (33.6).
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The discrete Leibniz rule (35.27) applied to the first factor in the first integral
then gives∫

IRN
+

aijhekD
h
kDiuD

h
kDju︸ ︷︷ ︸

≥ θ |Dhk∇u|2

+

∫
IRN

+

Dh
ka

ij DiuD
h
kDju+

∫
IRN

+

fD−hk Dh
ku = 0,

in which the first term is good but the middle term is bad18 for our purposes.
The third term will turn out to be quite innocent, just as the integral of fu
in (35.4). We’ll take it from here with tricks that deserve a separate section.

35.7 Young estimates for the good and the bad

Taking the bad term on the left to the right we have

θ

∫
IRN

+

|Dh
k∇u|2 +

∫
IRN

+

f D−hk Dh
ku ≤ −

∫
IRN

+

Dh
ka

ij Diu︸ ︷︷ ︸
(Dhka∇u)

j

Dh
kDju︸ ︷︷ ︸

(Dhk∇u)j

≤ θ

2

∫
IRN

+

|Dh
k∇u|2 +

1

2θ

∫
IRN

+

|Dh
ka|22︸ ︷︷ ︸

squared Frobenius
matrix norm

|∇u|2,

in which we used Young’s inequality with p = q = 2. i.e. with two squares,
and ε = θ.

Working towards (35.29) below, we picked the factor to appear squared
as the bad coefficient of the θ-term to be just half of the coefficient of the θ-
term on the left. This square is the bad term not under control yet. We also
simplified the other square in the 1

θ
-term using (16.10) with the Frobenius

norm

|Dh
ka|22 =

N∑
i,j=1

(Dh
ka

ij)2.

It follows that

θ

2

∫
IRN

+

|Dh
k∇u|2 +

∫
IRN

+

fD−hk Dh
ku ≤

Mk

2θ

∫
IRN

+

|∇u|2, (35.29)

for some constant Mk that depends19 only on the bounds on the partial
derivatives of the coefficients aij with respect to xk.

18But not too bad.
19To be precise, we can take

Mk =

N∑
i,j=1

|aijxk
|2
max

.
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The left hand side of (35.29) now contains the term we want to bound,∫
IRN

+

|Dh
k∇u|2 =

∫
IRN

+

|∇Dh
ku|2,

with a new prefactor θ
2
. We estimate the other term in the left hand side of

(35.29) using20 ∫
IRN

+

(D−hk w)2 ≤
∫

IRN
+

(Dkw)2 ≤
∫

IRN
+

|∇w|2 (35.30)

for w = Dh
ku ∈ H1

0 (IRN
+) via again Young’s inequality as

∣∣ ∫
IRN

+

fD−hk Dh
ku
∣∣ ≤ θ

4

∫
IRN

+

(D−hk Dh
ku︸︷︷︸
w

)2 +
1

θ

∫
IRN

+

f 2

≤ θ

4

∫
IRN

+

|∇Dh
ku︸︷︷︸
w

|2 +
1

θ

∫
IRN

+

f 2.

Again we picked the factor to appear squared as the bad coefficient of the
θ-term to be just half of the coefficient of the θ-term on the left that we want
to estimate. It thus follows that

θ

4

∫
IRN

+

|Dh
k∇u|2 ≤

Mk

2θ

∫
IRN

+

|∇u|2 +
1

θ

∫
IRN

+

f 2. (35.31)

By now the first term on the right hand side of (35.29) is under control,
because

θ

∫
IRN

+

|∇u|2 ≤
∫

IRN
+

aijuxiuxj =

∫
IRN

+

fu ≤ ε

2

∫
IRN

+

f 2 +
1

2ε

∫
IRN

+

u2.

This time the choice of ε > 0 in Young’s inequality is not so important
anymore. The estimate is even easier than, but similar to the energy estimate
in (35.5), which is of course already in the bag in case we deal with a solution
obtained from a solution in H1

0 (Ω) via localisation and flattening.
Combined with (35.31) it follows that with some constant Ck that can be

made explicit in terms of θ and Mk only, the a priori estimate∫
IRN

+

|Dh
k∇u|2 ≤ Ck

∫
IRN

+

(u2 + f 2) (35.32)

20To do: this holds via density and straightforward calculations for w ∈ C1
c (IRN

+).
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holds for all k = 1, . . . , N−1. A weak limit argument for h→ 0 then shows21

that the weak xk-derivatives of all uxi exist in L2(IRN
+).

The only second order derivative not yet in L2(IRN
+) is the pure second

order derivative uxNxN , but note that (35.24) can now be written as∫
IRN

+

aNNuxNvxN =

∫
IRN

+

v
(
f +

∑
(i,i) 6=(N,N)

(aijuxixj + aijxjuxi)
)

(35.33)

for all v ∈ H1
0 (IRN

+). Every term in the big factor on the right exists22 in
L2(IRN

+), so aNNuxN has a weak derivative with respect to xN in L2(IRN
+),

and thereby23 so does uxN . All terms in the partial differential equation
(35.23) now exist in L2(IRN

+), and the equation also holds in L2(IRN
+)! Writing

|∇∇u|2 for the sum of all the squared partial derivatives we have proved the
following theorem for compactly24 supported u ∈ H1

0 (IRN
+).

Theorem 35.3. A weak solution u ∈ H1
0 (IRN

+) of

−(aijuxi)xj = f

is in H2(IRN
+) provided f ∈ L2(IRN

+), the coefficients aij and their first order
derivatives are continuous and bounded, and for some θ > 0 it holds that

aij(x)ξiξj ≥ θ|ξ|2

for all x ∈ IRN
+ and all ξ ∈ IRN. Moreover, the equation

aijuxixj + aijxjuxi︸ ︷︷ ︸
(aijuxi )xj

+f = 0 (35.34)

is satisfied (with each term) in L2(IRN
+), and there exists a constant C > 0

depending only on the ellipticity constant θ > 0 and the bounds on aij and
aijxk such that ∫

IRN
+

|∇∇u|2 +

∫
IRN

+

|∇u|2 ≤ C

∫
IRN

+

(u2 + f 2)

for every such solution u. Vice versa, if u ∈ H2(IRN
+)∩H1

0 (IRN
+), then (35.34)

defines f ∈ L2(IRN
+).

21To do: also not very difficult, and again only needed on half spaces.
22By Definition 32.6 and the Leibniz rule in Theorem 32.10.
23Again by Theorem 32.10.
24Remember this restriction is only for convenience, but suffices for what follows.
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It remains to prove the statement∫
IRN

+

(D−hk w)2 ≤
∫

IRN
+

(Dkw)2 ≤
∫

IRN
+

|∇w|2

in (35.30) for all w ∈ H1
0 (IRN

+), which we needed to get to (35.31), and its
counterpart to get from (35.32) to the same estimate for ∇uxk . The first one
follows from a calculation for w ∈ C1

c (IRN
+) that goes along lines we have seen

before. We follow Step 1 of Evans’ proof in Section 5.8.2.a and use for k < N
and h ∈ IR that

w(x+ hek)− w(x) = h

∫ 1

0

Dkw(x+ thek) dt,

whence ∫
IRN

+

|Dh
kw|2 ≤

∫
IRN

+

∫ 1

0

|Dkw(x+ thek)|2 dt dx =

∫
IRN

+

|Dkw|2,

an estimate which then also holds for all w ∈ H1
0 (IRN

+) by the density.
For the counterpart we use the discrete integration by parts formula∫

IRN
+

wDh
kφ = −

∫
IRN

+

φD−hk w (35.35)

for φ ∈ C1
c (IRN

+) and w ∈ L2(IRN
+) with∫
IRN

+

|Dh
kw|2 ≤ C

for all h ∈ IR. Letting h→ 0 the left hand side of (35.35) converges to∫
IRN

+

w φxk

if h→ 0. Since the functions D−hk w are bounded in L2(IRN
+) by C, there is a

sequence hn → 0 and a function vk in L2(IRN
+) with∫

IRN
+

|vk|2 ≤ C, (35.36)

such that the right hand side converges to

−
∫

IRN
+

φ vk
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for every φ ∈ L2(IRN
+). It follows that∫

IRN
+

w φxk = −
∫

IRN
+

φ vk,

so vk is the weak xk-derivative of w, and (35.36) holds, as desired in relation
to (35.32) for the conclusion in Theorem 35.3. Note that we have used

Theorem 35.4. Let H be a Hilbert space, C > 0, and xn a sequence in H
with |xn| ≤ C for all n. Then there exists x ∈ H with |x| ≤ C and a strictly
increasing sequence nk in IN such that

xnk · y → x · y

for all y ∈ H. We say that xnk converges weakly x in H.

Exercise 35.5. Prove this theorem for the standard Hilbert space in Exercise 30.28
and use Remark 30.29 to conclude that the above reasoning for the right hand side of
(35.35) is valid.

Remark 35.6. If u ∈ H1
0 (IRN

+) and Dku ∈ L2(IRN
+) then Dh

ku is bounded in
H1

0 (IRN
+) by the argument above for (35.30). By Theorem 35.4 Dh

ku converges
weakly in H1

0 (IRN
+) along some sequence hn → 0, and it follows that Dku ∈

H1
0 (IRN

+).

35.8 Regularity for zero boundary data

Everything we did in the previous two sections applies to solutions obtained
from localizing and flattening solutions u ∈ H1

0 (Ω) as we did in Section 35.2
and Section 35.3. Thus we now obtain the same result for solutions of

Lu = −(aijuxi)xj + biuxi + cu = f

by translating Theorem 35.3 for ũ defined from the terms in (35.6) by (35.11)
back to each ζu. Here we only need that ũ ∈ H2(IRN

+) implies that ζu ∈
H2(Ω), which is the inverse of the statement we announced in Section 35.5
as a footnote. For general coordinate transformations this statement is not
obvious25, but for the flattening transformation it follows directly from the
definition of weak derivatives26. The first result for solutions u ∈ H1

0 (Ω) as
in Section 35.1 is now in the pocket.

25See also Exercise 33.14 and the exercises above it.
26See Section 35.4.
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Theorem 35.7. If the coefficients aij are in C1(Ω̄), bi and c are in C(Ω̄),
∂Ω is in C2, and f is in L2(Ω), then indeed every weak solution u ∈ H1

0 (Ω)
of Lu = f is in H2(Ω) and∫

Ω

|∇∇u|2 +

∫
Ω

|∇u|2 ≤ C

∫
Ω

(u2 + f 2).

The constant C only depends on θ, Ω and the bounds on aij, aijxk , b
i, c.

35.9 Higher order regularity

To see what we need to get u in H3 we assume that u is as in Theorem 35.3,
φ ∈ C∞c (IRN

+), and take v = φxk with k < N in (35.24) to obtain∫
IRN

+

aijuxiφxkxj =

∫
IRN

+

fφxk .

Using φxkxj = φxjxk , Definition 32.6 and the Leibniz rule, this rewrites as∫
IRN

+

fxkφ =

∫
IRN

+

(aijuxi)xkφxj =

∫
IRN

+

aijuxixkφxj +

∫
IRN

+

aijxkuxiφxj .

Then another application of Definition 32.6 and the Leibniz rule give∫
IRN

+

aijuxkxiφxj =

∫
IRN

+

(fxk − (aijxkuxi)xj)φ

=

∫
IRN

+

(fxk − aijxkuxixj − a
ij
xkxj

uxi)φ,

provided also the second order derivatives of aij are continuous, and fxk is
in L2(IRN

+) . It follows that uxk is a weak solution of (35.23) with f replaced
by

fk = fxk − aijxkuxixj − a
ij
xkxj

uxi , (35.37)

and we have another another theorem for free27. Applying Theorem 35.3 to
all uxk with k < N it follows that all third order derivatives are in L2(IRN

+)
with similar estimates.

Theorem 35.8. A weak solution u ∈ H1
0 (IRN

+) of

−(aijuxi)xj = f

27Remark 35.6 says that uxk
is in H1

0 (IRN
+).
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is in H3(IRN
+) provided f ∈ H1(IRN

+), the coefficients aij and their first and
second order derivatives are continuous and bounded, and for some θ > 0 it
holds that

aij(x)ξiξj ≥ θ|ξ|2

for all x ∈ IRN
+ and all ξ ∈ IRN. Moreover, there exists a constant C > 0

depending only on the ellipticity constant θ > 0 and the bounds on aij, aijxk ,
aijxkxl such that∫

IRN
+

|∇∇∇u|2 +

∫
IRN

+

|∇∇u|2 +

∫
IRN

+

|∇u|2 ≤ C

∫
IRN

+

(u2 + f 2 + |∇f |2)

for every such solution u.

Thus we can give the wheel another turn if for our solution ũ ∈ H1
0 (IRN

+) at

hand it holds that it solves the equation in Theorem 35.3 with f̃ ∈ H1(IRN
+).

In view of (35.37) this amounts to having

f̃k = f̃x̃k − ã
ij
x̃k
ũx̃ix̃j − ã

ij
x̃kx̃j

ũx̃i ∈ L2(IRN
+),

of which we already know that the second term is in L2(IRN
+). So is the third

if the second order derivatives of ãij are continuous and bounded, which is
certainly the case if aij ∈ C2(Ω̄) and ∂Ω ∈ C2. What do we need to have the
weak partial derivatives f̃x̃k in L2(IRN

+)? We use Theorem 35.2 to answer the

question by verifying what we need to have f̃ ∈ H1(IRN
+).

Recall that f̃ in (35.22) was defined from

f̂ = ζf − (ζc+ ζia
ij
j + ζija

ij)u︸ ︷︷ ︸
g0

− (ζbi + 2ζja
ij)uxi︸ ︷︷ ︸

gi

via f̃(x̃) = f̂(x), whence28

f̃ = ζ̃ f̃0 − g̃0 − g̃1 − · · · − g̃N .

The first term is in H1(IRN
+) if we started with f in H1(Ω).

If we assume that c ∈ C1(Ω̄) then the second term is in H1
0 (IRN

+) because

u is in H1
0 (Ω), and its multiplied by the C1-function ζc + ζia

ij
j + ζija

ij, in
which the terms with aij are already C1 by assumption. This gives a localized

g0 = (ζc+ ζia
ij
j + ζija

ij)u ∈ H1
0 (Ω),

28We don’t use (35.22) now.
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which has the same support as ζ, and maps to29 a localized g̃0 ∈ H1
0 (IRN

+).
As for the third term, Theorem 35.7 says that each uxi is in H1(U). If

we assume that also all bi are in C1(Ω̄), then multiplying the functions uxi
by C1-functions ζbi + 2ζja

ij gives localised functions

gi = (ζbi + 2ζja
ij)uxi ∈ H1(Ω).

Again these have the same support as ζ, and map to localised functions
g̃ ∈ H1(IRN

+) by Theorem 35.2 with k = 1.

Theorem 35.9. If the coefficients aij are in C2(Ω̄), bi and c are in C1(Ω̄),
∂Ω is in C3, and f is in H1(Ω), then every weak solution u ∈ H1

0 (Ω) of
Lu = f is in H3(Ω), and∫

Ω

|∇∇∇u|2 + |∇∇u|2 +

∫
Ω

|∇u|2 ≤ C

∫
Ω

(u2 + |∇f |2 + f 2).

The constant C only depends on θ, Ω and all the bounds on the coefficients
and the derivatives used.

Proof. The assumptions make that f̃ is in H1(Ω), as explained above.
Therefore Theorem 35.8 applies to ũ. It only remains to apply Theorem 35.2
with k = 3 to conclude that ζu is in H3(Ω).

And then the wheel keeps on turning. The GNS- and Morrey-estimates
finish the job, with eigenfunctions of L as a special case of interest. Again
all arguments are easiliest done for ũ ∈ H1

0 (IRN
+) with bounded support.

29We only need g̃0 ∈ H1(IRN
+).
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36 Exercises about weak solutions

We write H1(0, 1) for the Sobolev space of u ∈ L2(0, 1) with u′ ∈ L2(0, 1),
and

||u||2
H1

=

∫ 1

0

(u2 + u′2)

defines the H1-norm on H1(0, 1). Recall that u′ ∈ L2(0, 1) means that the
weak derivative of u′ of u satisfies∫ 1

0

u′φ+

∫ 1

0

uφ′ = 0

for all φ ∈ C1
c (0, 1), and that the closure of C1

c (0, 1) in the H1-norm is denoted
by H1

0 (0, 1).
If you like the space L2(0, 1) may be defined as the abstract closure of

C1
c (0, 1) or Cc(0, 1) with respect to the 2-norm. For every f ∈ L2(0, 1) the

mollified functions f ε are defined by convolution with the usual mollifiers as
smooth compactly supported functions by

f ε(x) =

∫
IR

ηε(x− y)f(y) dy,

in which the integrals may be obtained via (with respect to the 2-norm)
Cauchy sequences fn ∈ C∞c (0, 1) ⊂ C∞c (IR). In particular Theorem 32.13
applies.

Exercise 36.1. Let un ∈ C1
c (0, 1) be a Cauchy sequence with respect to the H1-

norm.

a) Prove that un is uniformly convergent, and explain why its limit u in H1
0 (0, 1)

is also in C([0, 1]), with u(0) = u(1) = 0.

b) Use Young’s inequality with p = q = 2 and (u2
n)′ = 2unu

′
n to prove that∫ 1

0
u2
n ≤

∫ 1

0
u′2n and thereby

∫ 1

0
u2 ≤

∫ 1

0
u′2,

the Poincaré inequality for u in H1
0 (0, 1). Hint: integrate from 0 to x ≤ 1

2 for
control on (0, 1

2) and then use symmetry for control on (1
2 , 1).

Exercise 36.2. Prove that the closure of C1([0, 1]) in H1(0, 1) is H1(0, 1).
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Exercise 36.3. Let H̃1(0, 1) be the set of all u ∈ H1(0, 1) with
∫ 1

0 u = 0. Prove

that H̃1(0, 1) is a closed subspace of H1(0, 1), and that the Poincaré inequality∫ 1

0
u2 ≤ 4

∫ 1

0
u′2,

holds for all u ∈ H̃1(0, 1). Hint: prove that u ∈ C([0, 1]) and use the intermediate
value theorem.

Exercise 36.4. Consider the partial differential operator L defined by

Lu = −(au′)′ + bu′ + cu

for u ∈ C2([0, 1]), with coefficients a, b, c ∈ C([0, 1]), and assume that a(x) ≥ θ > 0
and c(x) ≥ µ > 0 for all x ∈ [0, 1]. Recall that u ∈ H1(0, 1) is called a weak solution
of Lu = f if B(u, v) =

∫ 1
0 fv for all v ∈ H1

0 (0, 1).

a) Show there exists δ > 0 such that the bilinear form defined by

B(u, v) =

∫ 1

0
(au′v′ + bu′v + cuv)

has the property that

∃β>0 ∀u∈H1(0,1) B(u, u) ≥ β||u||2
H1(0,1)

if b(x)2 < 4µθ for all x ∈ [0, 1]. Hint: use Young’s inequality with p = q = 2 in
the form

ab ≤ εa2 +
b2

4ε
.

b) If so show Lu = f has a unique weak solution in H1
0 (0, 1) for all f ∈ L2(0, 1).

c) Show that au ∈ H1(0, 1) if a ∈ C1([0, 1]) and u ∈ H1(0, 1).

d) If so show that a weak solution u ∈ H1(0, 1) is in

H2(0, 1) ∩H1
0 (0, 1) = {u ∈ H1

0 (0, 1) : u′ ∈ H1(0, 1)}

if f ∈ L2(0, 1). Hint: so you have to show that u′′ ∈ L2(0, 1).

e) Explain why L is then a linear homeomorphism between H2(0, 1) ∩ H1
0 (0, 1)

and L2(0, 1).

f) Generalise the results to the case that b ≡ c ≡ 0.
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Exercise 36.5. Let L be as in Exercise 36.4 with the same assumptions on the
coefficients a, b, c. The unique weak solution in H1

0 (0, 1) is called the weak solution
of Lu = f with homogeneous Dirichlet boundary condition u = 0 on the boundary of
the open interval (0, 1).

a) Explain why a weak solution u ∈ H1(0, 1) of Lu = f with homogeneous Neu-
mann boundary condition ux = 0 on the boundary is defined by B(u, v) =

∫ 1
0 fv

for all v ∈ H1(0, 1). Under the assumptions on a, b, c prove that there exists a
unique weak solution (of the homogeneous Neumann boundary problem) u in
H1(0, 1) for all f ∈ L2(0, 1).

b) Assume that a ∈ C1([0, 1]). Prove that every weak solution u ∈ H1(0, 1) of
Lu = f is in H2(0, 1) if f ∈ L2(0, 1).

c) Now consider the case that b ≡ 0 and c(x) = 1
n . Denote the solution of the

homogeneous Neumann boundary problem for L by un. Derive a condition on
f necessary for the convergence of un in H1(0, 1). Hint: take a convenient
function v ∈ H1(0, 1) in the definition.

d) Let f ∈ L2(0, 1). Prove that there exists a unique

u ∈ H̃1(0, 1) = {u ∈ H1(0, 1) :

∫ 1

0
u = 0}

such that ∫ 1

0
au′v′ =

∫ 1

0
fv

for every v ∈ H̃1(0, 1).

e) Under which condition on f does it hold that this u is a weak solution of the
differential equation −(au′)′ = f on (0, 1)?

f) Consider again the case that b ≡ 0, and consider the solution set Uλ of all
nonzero weak solutions u ∈ H1(0, 1) of Lu = λu with homogeneous Neumann
boundary condition ux = 0. Explain why this set is empty for all λ ≤ 0 and
give the Raleigh formula for the smallest λ > 0 for which Uλ is not empty.

g) Derive a Raleigh formula for the smallest λ for which−(au′)′ = λu has a nonzero
weak solution with homogeneous Neumann boundary condition. Explain why
this λ is 0 and describe E0.

h) Use the Raleigh formula with u restricted to the closed subspace of functions
with

∫ 1
0 uw = for every w ∈ E0 to characterise the next smallest λ for which

−(au′)′ = λu has a nonzero weak solution with homogeneous Neumann bound-
ary condition.

i) Take a ≡ 1 and compare to Exercise 36.3.
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Exercise 36.6. Before we consider a weak solution approach for equations like

(x(1− x)u′(x))′ + f(x) = 0

on (0, 1), we compare solving this equation to solving u′′ + f = 0. Referring to the
special case λ = 1 in (28.39) of Section 28.8 we also consider the resolvent equations

λu(x)− u′′(x) = f(x) and λu(x)− (x(1− x)u′(x))′ = f(x)

with λ > 0. Recall you solved −u′′ = f with homogeneous Dirichlet boundary condi-
tions u(0) = u(1) = 0 as

u(x) =

∫ 1

0
g(x, s)f(s) ds,

with

g(x, s) =

{
(1− s)x for x < s
s(1− x) for x > s

by integrating −u′′ = f twice.

a) Read on after (28.42) and explain why g(x, s) is the unique solution of

−u′′(x) = δs(x) = δ(x− s)

with u(0) = u(1) = 0 if 0 < s < 1.

b) For λ > 0 the function

uλ(x) =
sinh
√
λx√
λ

= x+
λ

3!
x3 +

λ2

5!
x5 +

λ4

7!
x7 + · · ·

is the unique solution of λu(x) − u′′(x) = 0 with u(0) = 0 and u′(0) = 1.
Determine a0(s, λ), b0(s, λ) > 0 such that, for every s ∈ (0, 1),

gλ(x, s) =

{
a0(s, λ)uλ(x) for x < s

b0(s, λ)uλ(1− x) for x > s

defines the (unique) solution of λu − u′′ = δs with homogeneous Dirichlet
boundary conditions u(0) = u(1) = 0. You should get

gλ(s, x) = gλ(x, s) =
sinh
√
λ (1− s) sinh

√
λx√

λ sinh
√
λ

=
(1− s+ λ(1−s)3

3! + λ2(1−s)5

5! + · · · )(x+ λx3

3! + λ2x5

5! + · · · )
1 + λ

3! + λ2

5! + · · ·

for 0 ≤ x ≤ s ≤ 1. Notice how well behaved this is for λ→ 0.
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c) Still for λ > 0: show that

ũλ(s, x) = ũλ(x, s) =
cosh

√
λ (1− s) cosh

√
λx√

λ sinh
√
λ

(0 ≤ x ≤ s ≤ 1)

defines the (unique) solution of λu − u′′ = δs with homogeneous Neumann
boundary conditions. Notice how ill behaved this is for λ→ 0.

d) Show for λ > 0 that nontrivial solutions of λu(x)− (x(1− x)u′(x))′ = 0 with
u(x) bounded as x → 0 are power series with radius of convergence 1 and
u(0) 6= 0. In particular there is a unique power series solution

u(x) = Uλ(x) = 1 + α1(λ)x+ α2(λ)x2 + · · · =
∞∑
n=0

αnx
n

with u(0) = 1 and recurrence relation

αn(λ) =
λ+ n(n− 1)

n2
αn−1(λ)

for n ∈ IN, and every solution is of the form

u(x) = A(1 +BVλ(x))Uλ(x),

with Vλ(x) a primitive of
1

x(1− x)Uλ(x)

that behaves like lnx as x ↓ 0.

e) Use Uλ to obtain

Gλ(x, s) =

{
A0(s, λ)Uλ(x) for x < s

B0(s, λ)Uλ(1− x) for x > s
,

as a solution of λu(x)− (x(1− x)u′(x))′ = δ(x− s) for s ∈ (0, 1), by choosing
A0, B0 to make Gλ(x, s) continuous in x = s with a suitable jump condition
for its x-derivative. You should get A0, B0 as the solution of

Uλ(s)A = Uλ(1− s)B U ′λ(s)A+ U ′λ(1− s)B =
1

s(1− s)
.

This suggest that for λ > 0 the solution of λu(x) − (x(1 − x)u′(x))′ = f(x)
does not involve boundary conditions. What goes wrong for λ = 0?

f) Write and solve the recurrence relation as

lnαn − lnαn+1 = ln(1− 1

n
+

λ

n2
) = ln(1− 1

n
) + ln(1 +

λ

n(n− 1)
)
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= lnλ+
n∑
k=2

ln(1− 1

k
)︸ ︷︷ ︸

−Ln

+
n∑
k=2

ln(1 +
λ

k(k − 1)
)︸ ︷︷ ︸

Fn(λ)=F (λ)−fn(λ)

,

with

F (λ) =

∞∑
k=2

ln(1 +
λ

k(k − 1)
), fn(λ) ∼ λ

∫ ∞
n

dx

x(x+ 1)
∼ λ

n
,

Ln = −
n∑
k=2

ln(1− 1

k
) =

n∑
k=2

1

k
+

∞∑
m=2

1

m

n∑
k=2

1

km︸ ︷︷ ︸
<1

=

n∑
k=2

1

k
+

∞∑
m=2

1

m

∞∑
k=2

1

km︸ ︷︷ ︸
<1

−
∞∑
m=2

1

m

∞∑
k=n+1

1

km︸ ︷︷ ︸
<n1−m

m−1

= lnn+ γ − 1 +

∞∑
m=2

1

m

∞∑
k=2

1

km
+O(

1

n
)

to conclude that for n ≥ 2 the coefficients are given by

αn = λ exp(

n∑
k=2

ln(1− 1

k
) exp(

n∑
k=2

ln(1 +
λ

k(k − 1)
) ∼ Cλ

n

as n→∞, with30

Cλ = λ exp(1− γ −
∞∑
m=2

1

m

∞∑
k=2

1

km
+ F (λ)).

g) Verify that

Uλ(x)− Cλ ln
1

1− x
is a multiple of Uλ(1− x).

h) For which complex λ are the above calculations valid?

i) Solve the equation Cλ = 0.

j) Multiply (x(1− x)u′(x))′ = λu(x) by v, interchange u, v and subtract, to find
that x(1 − x)(u′(x)v(x) − u(x)v′(x)) is constant. Which constant do you get
for u(x) = Uλ(x) and v(x) = Uλ(1− x)? Evaluate Gλ(x, s).

30If I have my expansions right.
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Exercise 36.7. Consider the differential equation

Lu = −(au′)′ + bu′ + cu = f

on some open interval I ⊂ IR, with a, b, c sufficiently smooth and a(x) > 0 for all
x ∈ I. Let U be a solution with f ≡ 0 for which U(x) has some well defined behaviour
at the left endpoint of I that makes U unique up to a multiplicative constant, and V
be a solution for which V (x) has some well defined behaviour at the right endpoint of
I that makes V unique up to a multiplicative constant.

a) Verify for s ∈ I that

G(x, s) =
1

a(s)(U ′(s)V (s))− (U(s)V ′(s))

{
V (s)U(x) for x < s
U(s)V (x) for x > s

is the unique solution of Lu = δs with these behaviours at both endpoints,
provided the Wronskian W (s) = U ′(s)V (s))− (U(s)V ′(s) is nonzero.

b) Verify that aW ′ = bW to conclude that W is either identically zero or nowhere
zero on I to distinguish between either the existence of a solution operator
or the existence of nontrivial solutions of the homogeneous equation, with the
behaviours under consideration.

c) Exercise 36.6 concerned I = (0, 1), b ≡ 0, c ≡ λ, V (x) = U(1 − x), with
various very special choices of a, and various choices of boundary behaviours.
See if you want to rewrite Cλ and Gλ.

d) Choose a new independent variable z such that

x(1− x)
d

dx
=

d

dz

and re-examine the equation in z on IR.

Exercise 36.8. Consider the differential equation

Lu = −(xu′)′ = f

on the interval (0, 1].

a) Solve the equation with boundary condition u(1) = 0 with f(x) ≡ 1, n ∈ IN
and show that it has precisely one solution un which is bounded on (0, 1]. Which
solution?
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b) Same question but now with a general f ∈ C([0, 1]). Prove that there exists a
unique bounded solution u. Hint: use F (x) =

∫ x
0 f and show in particular that

u(0) =

∫ 1

0

F (x)

x
dx.

c) The weak solution approach for Lu = f leads to the bilinear form

B(u, v) =

∫ 1

0
xu′(x)v′(x) dx

Use the result in (b) to show that

B(u, v) =

∫ 1

0
fv

for all v ∈ C1([0, 1]), provided v satisfies a certain condition. Which condition?

d) The weak formulation involves the standard L2-inner product which defines the
2-norm, and what we here call the B-norm defined by

||u||2
B

=

∫ 1

0
xu′(x)2 dx = B(u, u).

Why does the latter define a norm on

V = {u ∈ C1([0, 1]) : u(1) = 0}?

e) Show that
|u|

2
≤ ||u||B

for all u ∈ V . Hint: use the Cauchy-Schwarz inequality for

u(x) = −
∫ 1

x
u′(s) ds = −

∫ 1

x

1√
s

√
su′(s) ds and

∫ 1

0
ln = −1.

f) We can thus take the closure of V with respect to the B-norm in L2(0, 1).
Denote this closure by H. Explain why for all f ∈ L2(0, 1) there exists a unique
u ∈ H such that

∀v∈H B(u, v) =

∫ 1

0
fv,

and why for f ∈ C([0, 1]) this solution is given by (b).

g) Continue from (b) to show that

|u′(x)| ≤
|f |

2√
x
,

and thereby
|u(x)− u(y)| ≤ 2|f |

2
|
√
x−√y|

for all x, y ∈ (0, 1].
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h) Prove that the solution operator f → u is compact from C([0, 1]) to itself with
respect to the 2-norm. Hint: use (g) to show that fn bounded in 2-norm implies
that the corresponding solutions un are uniformly equicontinuous.

i) Prove that the same solution operator is symmetric with respect to the L2-inner
product and that there exists a unique sequence of positive eigenvalues µn.

j) Show that the power series
∞∑
n=0

(−x)n

n!2

has a countable number of positive zero’s. Hint: use (i).

Exercise 36.9. Consider the bilinear form

Bλ(u, v) =

∫ 1

0

(
a(x)u′(x)v′(x) + λu(x)v(x)

)
dx

in relation to the equations studied in Exercise 36.6.

Exercise 36.10. We use the closure H2
0 (0, 1) of C4

c (0, 1) in the space

H2(0, 1) = {u ∈ H1(0, 1) : u′ ∈ H1(0, 1)} with ||u||2
H2

=

∫ 1

0
(u2 + u′2 + u′′2)

(which defines the H2-norm of u), to define weak solutions of u′′′′ = f with boundary
conditions u = u′ = 0 in x = 0 and x = 1.

a) Assume that f ∈ C([0, 1]). Integrate the equation four times to show that there
exists a unique classical solution of this boundary value problem, which we call
(BVP).

b) Explain why every classical solution of u′′′′ = f satisfies∫ 1

0
u′′v′′ =

∫ 1

0
fv for all v ∈ H2

0 (0, 1).

c) For f ∈ L2(0, 1) we say that u ∈ H2
0 (0, 1) is a weak solution of (BVP) if (b)

holds. Prove that (BVP) has a unique solution for every f ∈ L2(0, 1).

d) Denote the solution u of (BVP) by S(f). Prove that
∫ 1

0 S(f)g =
∫ 1

0 fS(g) for
all f, g ∈ L2(0, 1). We say that S is symmetric with respect to the 2-norm.
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e) The solution map S maps H2
0 (0, 1) to itself. Explain why S is not symmetric

with respect to the H2-norm. Which equivalent inner product norm does make
it symmetric?

f) Explain why S : H2
0 (0, 1)→ H2

0 (0, 1) is compact.

g) Give a Rayleigh type formula for the largest eigenvalue of S.

h) Give a boundary value problem for a fourth order differential equation for which
the solution operator S : H2

0 (0, 1)→ H2
0 (0, 1) is symmetric with respect to the

H2-norm.

i) Which boundary conditions should you impose for u′′′′ = f to get∫ 1

0
u′′v′′ =

∫ 1

0
fv for all v ∈ H2(0, 1)

as definition of a weak solution u ∈ H2(0, 1)?

Exercise 36.11. Consider the weak formulation in the last item in Exercise 36.10.
Under which conditions on f does it allow solutions, and which additional conditions
are needed to make the solution unique?

Exercise 36.12. Play with (Raleigh quotients for) the bilinear form

B(u, v) =

∫ 1

0
(a(x)u′(x)v′(x) + c(x)u(x)v(x)) dx,

in which a, c ∈ C([0, 1]) and a > 0 on [0, 1].

Exercise 36.13. Play with the bilinear form

B(u, v) =

∫ 1

0
(A(x)u′′(x)v′′(x) + a(x)u′(x)v′(x) + c(x)u(x)v(x)) dx,

in which A, a, c ∈ C([0, 1]) and A > 0 on [0, 1].

590



Exercise 36.14. In Chapter 35 we considered weak solutions u ∈ H1(Ω) of (35.1)
using (35.2) with v ∈ H1

0 (Ω). As in Exercise 36.5 we say that u ∈ H1(Ω) is weak
solution of the homogeneous Neumann problem for

Lu = −(aijuxi)xj + biuxi + cu = f

if (35.2) holds for all v ∈ H1(Ω). What are the (smoothness and) boundary conditions
that we have to impose on (a, b, c, f , ∂Ω and) a classical solution u for u to be such
a weak solution?

Exercise 36.15. The homogeneous Neumann problem

Lu = −(aijuxi)xj + biuxi + cu = f

leads to B(u, v) with u and v in the large space H1(Ω). It also comes with the
question as to what is needed to have the weak solution u ∈ H2(Ω). See if you can
modify the approach in Chapter 35. Can your prove that in the end this u also satisfies
the boundary condition you imposed in Exercise 36.14?

Exercise 36.16. In Section 35.5 we considered a localised form of

Lu = −(aijuxi)xj + biuxi + cu = f,

derived in Section 35.2 using ζv in the weak formulation with the binear form B(u, v).
Take N = 1 and derive conditions that allow a choice of ζ that make for ζu solving a
problem with a symmetric bilinear form. Discuss why in general this does not fly for
N > 1.

Exercise 36.17. Let Ω ⊂ IRN be a bounded domain. Reason as in the above
exercise to show that there exists a constant CΩ > 0 such that∫

Ω
u2 ≤ CΩ

∫
Ω
|∇u|2

for all u ∈ H1(Ω) with
∫

Ω u = 0, the Poincaré inequality in

H̃1(Ω) = {u ∈ H1(Ω) :

∫
Ω
u = 0}.
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Exercise 36.18. Exercise 36.17 is an alternative for Section 5.8.1 when p = 2.
Here’s the same result reasoning from contradiction. Let Ω ⊂ IRN be a bounded
domain with sufficiently smooth boundary to allow an extension operator as in Theorem
1 of Section 5.4 in Evans. Then the embedding H1(Ω) in L2(Ω) is compact, and
thereby also the embedding of H̃1(Ω) in L2(Ω). Prove that there cannot be a sequence
un ∈ H̃1(Ω) with

∫
Ω u

2
n = 1 and

∫
Ω |∇un|

2 → 0. Conclude there exists a constant
CΩ such that the Poincaré inequality∫

Ω
u2 ≤ CΩ

∫
Ω
|∇u|2

holds for all u ∈ H̃1(Ω).
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37 Bio-related stuff

All this relates to what Bio-Bob and I did and are doing with Frank, Bas
and the SysBio group.

37.1 Cellular chemical networks

We consider cellular networks of reacting metabolites with enzymes catalyz-
ing the chemical reactions1. We are interested in the question as to if and
how the cell is capable of tuning its enzyme concentrations to maximise cer-
tain output flows when the metabolic concentrations are in steady state. The
steady state depends both on the enzyme concentrations and the concentra-
tions of external metabolites that take part in the cellular network under
consideration.

The simplest of such networks are linear chains

X0
e1
←→ X1

e2
←→ X2

e3
←→ . . .

e
N
←→ XN

e
N+1
←→ XN+1, (37.1)

in which X0 and XN+1 are external and X1, . . . , XN internal metabolites,
and the ej, j ∈ J = {1, . . . , N + 1}, stand for the enzyme concentrations.
The dynamics of this linear chain are specified by

ẋi = vi − vi+1 (37.2)

for i = 1, . . . , N , in which xi are the concentrations of the (internal) metabo-
lites Xi, i ∈ I = {1, . . . , N}, and vi and vi+1 are the reaction rates of the
reaction that produces product Xi and the reaction that consumes substrate
Xi. The output flow is vN+1 and in steady state it is equal to the input flow:

vN+1 = · · · = v1.

The reactions are typically modelled by

vj = vj(ej,x) = ejfj(x), (37.3)

in which the metabolic concentrations are grouped in a vector x which in-
cludes also the external concentrations. Thus

x = (xE,xI),

1This is about joint work with the Systems Biology group at the VU.
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with E the index set of external concentrations and I the index set of internal
ones. The external concentrations appearing in the in- and output reaction
rates are often considered to be prescribed and constant, implying that

ẋi = 0 (37.4)

for i ∈ E, with E = {0, N + 1} in case of (37.1), when the steady state
equations for x1, . . . , xN have the external concentrations x0, xN+1 and the
enzyme concentrations as parameters. Only the ratio2

e1 : e2 : · · · : eN+1

is of direct interest here. Doubling the enzyme concentrations doubles the
reaction rates, which has no effect on the steady state, but it does double the
steady state flow through the network. Clearly there must be some restriction
in the model to have the maximization problem make sense.

For more general networks models like

ẋi =
∑
j∈J

Nijvj(ej,x) (i ∈ I) (37.5)

are used, in which N is a stoichiometry matrix. In the case of the linear
chain (37.1) this matrix has entries

Nii = 1, Nij = −1 for j = i+ 1, Nij = 0

for j < i and j > i + 1. The reaction functions fj may depend only on the
substrates and products of the corresponding reaction, so

fj(x) = fj(xj−1, xj) (37.6)

in case of (37.1), or on other metabolic concentrations, for instance if metabo-
lites can form complexes with enzymes catalyzing reactions in which they do
not appear as substrate or product. These functions fj(x) are often referred
to as the saturation levels of the corresponding enzyme. In Michaelis-Menten
kinetics they are derived from mass action kinetics involving different time
scales.

37.2 Michaelis-Menten kinetics

Enzyme reaction rates are derived from mass action kinetics for reaction
blocks which in the simplest case are of the form

S + E −→
←− ES −→

←− EP −→
←− P + E, (37.7)

2Think of projective coordinates.
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in which S and P are substrate and product of a reversible reaction

S
e
←→ P

catalyzed by enzyme E, and ES and EP are complexes of the enzyme with
the substrate S and the product P . In a linear chain every link

Xi
ei
←→ Xi+1

is of this form.
Denoting concentrations by

s = [S], p = [P ], c0 = [E] = [C0], c1 = [ES] = [C1], c2 = [EP ] = [C2],

mass action kinetics for each of the six arrows in (37.7) gives a coupled system
of differential equations

ds

dt
= −k1sc0 + k2c1;

dc0

dt
= −k1sc0 + k2c1 + k5c2 − k6pc0;

dc1

dt
= k1sc0 − k2c1 − k3c1 + k4c2;

dc2

dt
= k3c1 − k4c2 − k5c2 + k6pc0;

dp

dt
= k5c2 − k6pc0,

in which we have used k1,3,5 to denote the reaction constants of the forward
and k2,4,6 for the backward reactions in (37.7). The constant k1 corresponds
to the rate of S and E binding, the constant k2 to the rate of the complex
ES unbinding, and likewise for k6 and k5. The constant k3 and k4 correspond
to the rate of the complex ES turning into the complex EP and vice versa3.

The right hand sides of these equations are linear in c0, c1, c2, so we can
write 

ṡ
ċ0

ċ1

ċ2

ṗ

 =


−k1s k2 0

−k1s− k6p k2 k5

k1s −k2 − k3 k4

k6p k3 −k4 − k5

−k6p 0 k5


 c0

c1

c2

 ,

in which we recognise that the total enzyme concentration

c0 + c1 + c2 = etot = ε

3Ignore smaller molecular groups consumed or produced in ES −→←− EP?
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is constant4, a positive constant denoted by ε and assumed to be small in
what follows.

The system is of the form

ẋ = A(x)c

ċ = B(x)c
for x =

(
s

p

)
and c =

 c0

c1

c2

 ,

with A(x) and B(x) matrices depending on x. Assuming the enzyme con-
centrations to be small compared to the concentrations of S and P we scale
the free and bound enzyme concentrations with ε and set

c = εγ.

This shows that a splitting of time-scales appears when ε is small because

ẋ = εA(x)γ; γ̇ = B(x)γ.

Introducing a new time variable τ = εt, we write

ẋ =
dx

dt
= ε

dx

dτ
= εx′, γ̇ =

dγ

dt
= ε

dγ

dτ
= εγ ′

and conclude that
x′ = A(x)γ, εγ ′ = B(x)γ.

For ε = 0 this reduces to

x′ = A(x)γ with B(x)γ = 0 and γ0 + γ1 + γ2 = 1,

and leads5 to

ṗ =
ε(k1k3k5s− k2k4k6p)

k2k4 + k2k5 + k3k5 + k1(k3 + k4 + k5)s+ (k2 + k3 + k4)k6p
(37.8)

as the modelling equation for
S

e
←→ P

Exercise 37.1. Explain why (37.8) would be plausible. What do you get for ṡ via
the same reasoning? Hint: the rank of the matrix B(x) is 2 and its kernel is given by

k2k4 + k2k5 + k3k5 : k1s(k4 + k5) + k4k6p : k1sk3 + (k2 + k3)k6p

in projective coordinates, which sum up to

k2k4 + k2k5 + k3k5 + k1s(k3 + k4 + k5) + (k2 + k3 + k4)k6p.

4We also have that ṡ+ ċ1 + ċ2 + ṗ = 0.
5You can wonder if there’s a theorem to support this reduction.

596



Exercise 37.2. Explain6 why

k2k4 + k2k5 + k3k5

k1s(k3 + k4 + k5) + (k2 + k3 + k4)k6p

is the ratio between free enzyme and bound enzyme.

The resulting differential equation (37.8) is of the form

ṗ =
ε(k135s− k246p)

k2345 + k1345s+ k2346p
, (37.9)

but often7 written as

ṗ =

V +

Ks
(s− p

Keq
)

1 + s
Ks

+ p
Kp

,

in which Keq is the value at which S and P are in thermodynamic equilibrium
and therefore called the equilibrium constant. Note that this equilibrium is
a constant, in the sense that it does not depend on the amount of enzyme
invested in the reaction. Enzymes lower the threshold (chemical potential)
necessary to drive the reaction but the equilibrium (the tipping point when
there is enough substrate relative to product to get a net positive reaction
rate) remains always the same.

Exercise 37.3. Verify that

Ks =
k2345

k1345
=
k2k4 + k2k5 + k3k5

k1(k3 + k4 + k5)
, Kp =

k2345

k2346
=
k2k4 + k2k5 + k3k5

(k2 + k3 + k4)k6
,

Keq =
k135

k246
=
k1k3k5

k2k4k6
, V + =

k135

k1345
=

εk3k5

k3 + k4 + k5
.

Exercise 37.4. Examine (37.9), Keq, Ks and Kp when k1, k2 →∞ with

k1

k2
= κs

fixed. Same question for k5, k6 →∞ with

k6

k5
= κp

fixed.

6Does this relate to the term saturation level?
7See Appendix 1 of Teusink’s FEBS 2000 paper for examples from yeast glycolysis.
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37.2.1 Directed graphs and trees

We put the derivation of (37.8) in a graph theoretic framework which should
help you to derive similar ODE’s for more complicated8 reactions. We change
the notation in the differential system and write it as

ṡ
ċ0

ċ1

ċ2

ṗ

 =


−k10s k01 0

−k10s− k20p k01 k02

k10s −k01 − k21 k12

k20p k21 −k02 − k12

−k20p 0 k02


 c0

c1

c2

 , (37.10)

to exhibit the graph structure in which C0, C1, C2 are the nodes. The con-
stants kij systematically correspond to the reactions

Ci ← Cj

and the graph has precisely one link between every pair of nodes. Every link

Ci − Cj
comes with constants kij and kji. The additional structure in this particular
example is that the constant k10 multiplies s and the constant k20 multiplies
p.

If we drop s and p from the notation we get the square matrix

K2 =

 −k10 − k20 k01 k02

k10 −k01 − k21 k12

k20 k21 −k02 − k12

 (37.11)

which labels every arrow in the directed graph9

C0
−→
←− C1

−→
←− C2

−→
←− C0 (37.12)

accordingly.

Exercise 37.5. Determine the null space of K2. Show that it is spanned by a
vector in which every entry is the sum of three terms, each of which is the product
of two different kij . The first10 entry contains the term k01k02 which we can view as
corresponding to the subgraph

C1 → C0 ← C2

of (37.12). List the graphs corresponding to all nine terms.

8It was already complicated....
9Drawn with two copies of C0 for linear convenience.

10We number the 3 entries 0, 1, 2.
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Exercise 37.6. Re-examine (37.7) and observe it corresponds to the full matrix K2.
In projective form the coordinates of the null vector of K2 are

k01k12 + k02k21 + k01k02 : k10k02 + k12k20 + k10k12 : k20k01 + k21k10 + k20k21

1. Multiply k10 by s and k20 by p to get a solution (c0, c1, c2) of ċ0 = ċ1 = ċ2 = 0
for s and p fixed and divide by c0 +c1 +c2 to get a solution with c0 +c1 +c2 = 1.

2. Multiply this solution by ε and substitute it in

ṡ = −k01sc0 + k01c1; ṗ = k02c2 − k20pc0,

to get an equation for ṡ and ṗ.

3. The numerator in the resulting expression for ṗ is the product of ε and the
difference of two terms, each of which corresponds to a directed subgraph with
three arrows. Which subgraphs?

Remark 37.7. What you found is (37.8) with the constants

k1, k2, k3, k4, k5, k6

replaced by
k10, k01, k21, k12, k02, k20,

and every product of k’s can be seen as corresponding to a subgraph.

Exercise 37.8. From (37.11) it is clear what the matrix K3 should be. Use a
computer algebra package to find the null vector K3 in a form similar to what you
found in Exercise 37.8. The first entry contains the term k01k02k23 which we can view
as corresponding to the subgraph

C1 → C0 ← C2 ← C3

of the complete directed graph with nodes C0, C1, C2, C3. This first entry is the sum
of 16 such terms. Draw the 16 corresponding directed graphs11.

Exercise 37.9. The directed graphs corresponding to k01k02 in Exercise 37.5 and
k01k02k23 in Exercise 37.8 may be seen as trees rooted in C0. Verify that the terms in
the first entry of the null vector of K3 exhibit all trees rooted in C0. In which entries
do the trees rooted in C1 appear? How do these differ from the trees rooted in C0?
Same question for C2 and C3.

11More complicated reactions have more complexes but typically sparser matrices.
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Exercise 37.10. State a theorem that generalises what you just found to n =
4, 5, . . . and see if you can prove12 it.

Remark 37.11. The rooted trees become undirected trees if we undirect the
arrows of their directed graphs. The special role of the root then disappears.
Each entry of the null vector then generates all trees with nodes C0, . . . , Cn.
Computer algebra packages will allow you to guess a formula for the total
number of such trees from brute force calculation of the kernel of Kn for
n = 3, 4, 5. Prüfer codes provide a proof13.

37.2.2 More complicated reactions

Consider
A+ E −→

←− EA

B + E −→
←− EB

B + EA −→
←− EAB −→

←− A+ EB

EAB −→
←− P + E

as a model for
A+B

e
←→ P (37.13)

and introduce
a = [A], b = [B], p = [P ],

c0 = [E] = [C0], c1 = [EA] = [C1], c2 = [EB] = [C2], c3 = [EAB] = [C3]

as the concentrations. In this model14

EAB −→
←− P + E

is a lumped simplification of

EAB −→
←− EP −→

←− P + E.

This model has a graph in which every pair of nodes Ci and Cj is linked,
except for the C1 and C2. Its matrix K3 has k12 = k21 = 0.

12Using the graph interpretation rather than linear algebra.
13Look elsewhere for this proof.
14The analogous model for S e←→ P is examined in Exercise 37.21.
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Exercise 37.12. We write the null vector projectively as

k01k02k03 + · · · : · · · : · · · : k30k31k32 + · · · .

The constant k10 has to be multiplied by a, k20 by b, and k30 by p, but first you should
determine all terms in the null vector from the graph structure. Do so, and then write
the equation for ṗ like you did in Exercise 37.6, using (the reactions in) the link

C3
−→
←− C0

and the null vector of K3 with k12 = k21 = 0 and a, b, p included in the appropriate
coefficients. The denominator will be big and also appears in the derivatives ȧ and
ḃ. Which links do you need for ȧ? Note the symmetry in a and b. How do ȧ and ṗ
relate? And ȧ and ḃ?

Exercise 37.13. We say that (37.13) is in steady state if ȧ = ḃ = ṗ = 0. This
reduces to one single equation for a, b, p. Write this equation and examine its solution
set.

Exercise 37.14. (continued). The oriented closed loop 0 → 1 → 3 → 2 → 0
comes with 4 reaction coefficients and so does 0 → 2 → 3 → 1 → 0. Is there an a
priori constraint on these reaction coefficients? Two hints: what properties should the
solution set in Exercise 37.13) have? What about the reaction constants in the closed
loops 0 → 1 → 3 → 0 and 0 → 3 → 1 → 0? Think of Escher’s eternal climbing or
descending staircase.

Exercise 37.15. (continued). The constraint in Exercise 37.14 causes the numer-
ators to factorise. Relate the terms in the factors to subgraphs.

Exercise 37.16. Modify the above model for (37.13) with an extra reaction step

EAB −→
←− EP −→

←− P + E

and do the same analysis as in the previous exercises. Hint: you now have 5 nodes.
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Exercise 37.17. Model the reaction

A+B
e
←→ P +Q

in a way which is similar to Exercise 37.16 and symmetric in substrates and products.
How many nodes? There are now two loops with constraints. Examine the results in
relation to the graphs.

Exercise 37.18. Refering to Exercise 37.4, see how the above complicated formulas
simplify if you take similar limits for all reactions involving E.

Exercise 37.19. See how the complicated formulas for (37.13) simplify if you take
out one of the two reaction paths from EAB to E.

Exercise 37.20. Examine the extremely complicated equation for

A+B
e
←→ P +Q

in Exercise 37.17. How does it simplify under modifications as in the previous two
exercises?

Exercise 37.21. Back to S
e←→ P . Compare (37.7) to the simplified model

S + E −→
←− ES −→←− P + E, (37.14)

which has the graph
C0 = C1

in which there are two links between the nodes C0 and C1, one for S +E −→←− ES and

one for ES −→←− P + E, with constants

ks01, k
s
10, k

p
01, k

p
10.

Verify that the method with rooted trees leads to

ṗ =
kp01k

s
10s− k

p
10k

s
01p

ks01 + kp01 + ks10s+ kp10p
,

and relate this to taking k21 and k12 in the system (37.10) for (37.7) large but of the
same order.
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Exercise 37.22. Derive the simplest model for A + B
e←→ P + Q which still has

the two loops in its graph.

37.3 Linear chains

We go back to (37.1),

X0
e1
←→ X1

e2
←→ X2

e3
←→ . . .

e
N
←→ XN

e
N+1
←→ XN+1,

in which every link is a reaction like (37.7) modelled with (37.6) derived as in
Section 37.2 and therefore a quotient of the form (37.9). This leads to some
projects which we formulate more open than the modelling of the individual
reactions above.

37.3.1 Steady states

Given the enzyme concentrations ei and the exterior concentrations x0 and
xN+1, the system of ODE’s derived starting from (37.2) is bound to have a
steady state. Show that there is a unique steady state. Hint: use monotonic-
ity properties of the functions fi. Distinguish between

vN+1 = · · · = v1 > 0 and vN+1 = · · · = v1 < 0,

and explain why this distinction does not depend on the enzyme concentra-
tions but only on x0 and xN+1. How? Play with interchanging the roles of
solutions x1, . . . , xN and parameters e1, . . . , eN+1. Which values of the con-
centrations allow a choice of enzyme concentrations that make them steady
states?

37.3.2 Global behaviour of nonsteady state solutions

Consider the ODE system for given fixed enzyme concentrations ei and exte-
rior concentrations x0 and xN+1, and initial concentrations at time t = 0 for
x1, . . . , xN . Try to show that this system of ODE’s is globally stable. Hints:
take N = 2 to get started and some ideas; use the monotonicity properties of
the reaction functions fi(xi−1, xi) to derive monotonicity properties for the
maximum and the minimum of xi(t) over i = 1, . . . , N and order-preserving
properties between solutions with different initial data; maybe derive ODE’s
for vi.
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37.3.3 Optimisation problems

Largely independent of the previous two sections. Given exterior concentra-
tions x0 and xN+1 such that steady states have

vN+1 = · · · = v1 = J > 0,

examine the problem of finding steady states which maximize J varying the
positive enzyme concentrations under the constraint that

e0 + · · · eN+1 = eT > 0.

Hint: how does this problem depend on eT ? Reformulate the problem as a
problem in which the enzyme concentrations appear only after solving the
problem.

37.3.4 Self-steering networks

Suppose the cell is able to tune its enzyme concentration based on the internal
metabolic concentrations. How would it choose its enzyme concentrations to
steer towards an optimal steady state as in Section 37.3.3?

37.3.5 Inhibition

The reactions in (37.1) may be more complicated than (37.7) if other metabo-
lites in the chain also bind to the enzyme that catalyzes the reaction

Xi−1
−→
←− Xi

for some of the single substrate single product reaction in the chain. Explore
how the reaction rates derived for (37.7) have to be modified, and how this
affects what we did above.

37.4 General networks

The linear chains come with an ODE system (37.5) which is special for an-
other reason: the kernel of N is one-dimensional. Up to a multiple, only
one vector of reaction rates is allowed in steady state, and all entries of the
vector are nonzero. The chain may be part of a larger network in which all
the other reactions have zero reaction rate, due to the corresponding enzyme
concentrations being zero. The set (or vector) of nonzero reaction rates is
called a flux mode. The linear chain itself only has one flux mode.
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37.4.1 Networks with one flux mode and one output

Cook up (small) nonlinear networks with one flux mode and one output in
which more complicated reactions as in Section 37.2.2 occur and see what
you can do concerning the issues in the subsections of Section 37.3 if the
output flow to is to be maximised.

37.4.2 Networks with more flux modes and one output

What are the questions to be asked and how would you proceed for the
optimization problem?

37.5 Stable polynomials

You may have seen that we often need to solve equations of the form

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0,

with real coefficients a0, a1 . . . , an−1, an = 1, and that we want to know if the
solutions all have negative real part.

Write

f(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 = p(z2) + zq(z2)

and introduce
P (z) = p(−z2), Q(z) = zq(−z2).

For example, if
f(z) = 1 + z + z2 + z3 + z4 + z5,

then
P (z) = 1− z2 + z4, Q(z) = z − z3 + z5.

Assume that f(z) factorizes as

f(z) = (z − z1)(z − z2) · · · (z − zn)

(this is always true), in which all zj have negative real part. In the course I
showed that this implies that

Im(Q(z)P (z)) > 0 if Imz > 0.

For nonreal z this implies that P (z) 6= 0 6= Q(z) so that we can write (without
worrying about dividing by zero!)

Q(z)

P (z)
=
Q(z)P (z)

|P (z)|2
and

P (z)

Q(z)
=
P (z)Q(z)

|Q(z)|2
,

605



and conclude that for Imz > 0 the first quotient has positive imaginairy part
and the second negative imaginairy part.

We also see that P (z) and Q(z) have only real zero’s. Except for z = 0
for Q(z), these appear in pairs z = ±ζ with ζ > 0, and we cannot have
P (ζ) = Q(ζ) = 0, because in such a case z = iζ is a zero of both p(z2) and
q(z2), and therefore of f(z). This would contradict the assumption that all
zero’s of f(z) have negative real part.

Moreover, we can write for any such ζ, e.g. with P (ζ) = 0, using long
division (in dutch: staartdeling) that

P (z) = (z − ζ)R(z),

with R(z) a polynomial with real coefficients. We say that z = ζ is a simple
zero of P (z) if R(ζ) 6= 0. If ζ is not a simple zero you can divide out more
factors z − ζ and obtain that

P (z) = (z − ζ)kRk(z)

with k > 1 and Rk(ζ) 6= 0, so that in the end

P (z)

Q(z)
= (z − ζ)k

Rk(z)

Q(z)
= (z − ζ)kS(z),

with S(ζ) 6= 0. You should be able to see that this cannot be true if the
imaginary part of this expression is negative close to ζ in the upper half
plane.

Thus
P (z) = (z − ζ)R(z) with R(ζ) = P ′(ζ) 6= 0

and the quotient is of the form

P (z)

Q(z)
= (z − ζ)S(z) with S(ζ) =

P ′(ζ)

Q(ζ)
6= 0.

The sign of the last quotient tells you the sign of the imaginary part of this
expression for z a little above ζ. Conclude that

P (ζ) = 0 =⇒ P ′(ζ)

Q(ζ)
< 0,

and, by the same reasoning,

Q(ζ) = 0 =⇒ Q′(ζ)

P (ζ)
> 0.
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It follows that the zeros of P (z) and Q(z) are interlaced!
A remarkable consequence is also that all coefficients of f(z) have the

same sign and are positive:

a0 > 0, a1 > 0, . . . , an > 0, an−1 = 1 > 0.

To see this consider for instance p(−z2), replace z2 by w and write

p(w) = a0 − a2w + a4w
2 − . . . .

All zero’s of p(w) are real, positive and simple. Convince yourself that poly-
nomials with this property have alternating coefficients, just like the series
for the cosx and sin x that I wrote on the board.

The final conclusion is that

• all the coefficients in f(z) have the same sign;

• the zero’s of P (z) and Q(z) are all real, simple, and interlaced.

It is another nice exercise to show that if these the two properties hold,
all zero’s of f(z) have negative real part.

37.6 Hurwitz, rough stuff

We give an analytic proof, the origin of which we do not know. We found it
in the book of Hurwitz, chapter 3, §9, see also the paper of Velleman. The
proof uses the following fact from the theory of Laurent series.

Theorem 37.23. [Cauchy’s estimate] Let q(z) =
∑∞

n=−∞ anz
n be a Laurent

series, converging for r1 < |z| < r2. Let ρ be a real number between r1 and
r2. Let M := max|z|=ρ |q(z)|. Then for all n ∈ IZ we have |an|ρn ≤M .

Proof. We first proof this for n = 0. Let ε > 0. The Laurent series is
uniformally convergent on the compact circle {|z| = ρ}, we can find an
n ∈N with

∣∣q(z)−
∑n

k=−n akz
k
∣∣ < ε for all z ∈ IC with |z| = ρ. Write

f(z) := a0 +
n∑′

k=−n
akz

k, where the prime means that we do not take the

summand for k = 0. It follows that |f(z)| < M + ε for all z with |z| = ρ.
Let ξ be a complex number with |ξ| = 1 and ξk 6= 1 for all k ∈N . Example:
ξ = (2 − i)/(2 + i). If ξk = 1 for some k, a simple calculation shows that
(2i)k = (2− i)(A+Bi) for some A,B ∈ IZ. Then 4k = 5(A2 +B2), which is
impossible. Put zi := ξiρ. Then by using the geometric series:

f(z0) + . . .+ f(zs−1)

s
= a0 +

1

s

n∑
′

k=−n

akρ
k ξ

ks − 1

ξk − 1
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Notice that |ξks − 1| ≤ 2 and with λ :=
n∑′

k=−n

∣∣∣ akρkξk−1

∣∣∣ we have

∣∣∣∣∣
n∑
′

k=−n

akρ
k

ξk − 1

∣∣∣∣∣ ≤ 2λ,

and that λ does not depend on s. Hence

|a0| ≤
|f(z0)|+ . . .+ |f(zs−1)|

s
+

2λ

s
.

This holds for all s, hence |a0| ≤ M + ε. This holds for all ε > 0, hence
|a0| ≤M .

If n is arbitrary, apply the result just proved to the Laurent series z−nq(z),
whose maximum for |z| = ρ is equal to ρ−nM .

Theorem 37.24. Suppose f(z) =
∑∞

n=1 anz
n with an ∈ IC is a power series

with convergence radius R > 0. Then there exist an a ∈ IC, |a| = R which is
a singularity for f .

Proof. Suppose the Theorem is wrong. This means, that for all a with |a| =
R there exists a local function f(z, a) around a extending f(z). By the
monodromy Theorem, we get an analytic function f(z) which is well defined
on |z| < R + σ for some σ > 0.1 Let M be the maximum of |f(z)| on
|z| ≤ R + σ. Let p ∈ IC with |p| < R. We develop f(z) around p:

f(z) =
∞∑
k=0

f (k)(p)
(z − p)k

k!
.+ . . .

By Lemma 37.23, it follows |f (k)(p)/k!|σk ≤M , that ist

|f (k)(p)| ≤ M · k!

σk
.

However, also

f (k)(p) =
∞∑
n=k

n(n− 1) · . . . · (n− k + 1)anp
n−k.

We again can apply Lemma 37.23, supposing p is on a circle of radius α < R
with center 0 to conclude:

n(n− 1) · . . . · (n− k + 1) · |an| · αn−k ≤
M · k!

σk
.

1Here we do not need the monodromy theorem, as the extension is given by 1/p(z).
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This holds for all α < R, so(
n

k

)
|an|Rn−kσk ≤M

This holds for k = 0, . . . , n. Adding the results and by the binomial formula:
|an|(R + σ)n ≤ (n+ 1)M., it follows that for all z ∈ IC:

|anzn| ≤M · (n+ 1)

(
|z|

R + σ

)n
It follows that the convergence radius of

∑∞
n=0 anz

n is at least R + σ > R,
which is a contradiction.

From this we give a proof of the Fundamental Theorem of Algebra.

Proof. Suppose the polynomial p(z) = zn + an−1 + . . . + a0 does not have a
zero. Then the power series

1

p(z)
= b0 + b1z + b2z

2 + · · ·

is absolute convergent for all z ∈ IC. We will show that there exist c, r > 0
such that there exist infinitely many k with |bk|rk > c > 0, so that the above
series is not convergent at all, contradiction. To prove this claim, consider

1 = (a0 + a1z + . . .+ an−1z
n−1 + zn) · (b0 + b1z + b2z

2 + · · · )

given for all k ≥ 0:

a0bk+n + a1bk+n−1 + . . .+ an−1bk+1 + bk = 0.

Notice that b0 = 1/p(0) 6= 0. Choose c with 0 < c < |b0| and choose r > 0 so
small that

|a0|rn + |a1|rn−1 + . . .+ |an−1r ≤ 1.

(we can do this by continuity of the left hand side.) Obviously |b0| > cr0.
Given k with |bk| > crk. We will show that there exist an 1 ≤ i ≤ n with
|bki | > crk+i, which would prove the claim. Suppose not. Then

|bk| = |a0bk+n + a1bk+n−1 + . . .+ an−1bk+1|
≤ |a0|crk+n + |a1|crk+n−1 + . . .+ |an−1|r
≤ crk

contradiction.
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38 The Navier-Stokes equations

Read about the Navier-Stokes equations in Dutch on a very introductionary
and informal level in http://www.math.vu.nl/~jhulshof/handoutNS.pdf.
Next we consider these equations on a bounded domain Ω ⊂ IR2 for t ≥ 0
with smooth boundary ∂Ω, given initial data for the velocity

u =

(
u1(t, x1, x2)

u2(t, x1, x2)

)
at t = 0 and no-slip boundary conditions u = 0 on ∂Ω for all t ≥ 0. For the
exercises below you may restrict your attention to the case that

Ω = {(x1, x2) ∈ IR2 : x2
1+x2

2 < 1} with outer normal n =

(
x1

x2

)
in x ∈ ∂Ω.

The Navier-Stokes equations read (with kinematic viscosity equal to unity)

ut + (u · ∇)u+∇p = ∆u, ∇ · u = 0.

The second zero divergence equation has to be imposed on the initial data
for u at t = 0 as well. In view of the Laplacian in the equation and the
boundary condition u = 0 on ∂Ω the natural spaces for solutions to live in
as functions of t are

H1
0 (Ω)2 = {

(
u1

u2

)
: u1, u2 ∈ H1

0 (Ω)} ⊂ (L2(Ω))2 = {
(
u1

u2

)
: u1, u2 ∈ L2(Ω)},

but the zero divergence equation imposes an a priori restriction as explained
next.

If u ∈ (L2(Ω))2 satisfies ∇ · u ∈ L2(Ω) then the normal component n · u
of the velocity is well defined in L2(∂Ω) by a theorem similar to the trace
theorems in Evans, and the Gauss divergence formula∫

Ω

∇ · u =

∫
∂Ω

n · u

holds true for such u. Solutions with finite kinetic energy

E(u) =
1

2

∫
Ω

(u2
1 + u2

2)

actually live in

H = {u =

(
u1

u2

)
: u1, u2 ∈ L2(Ω), ∇ · u = 0 on Ω, n · u = 0 on ∂Ω}.
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If also the first order spatial weak derivatives exist with

E(u) =

∫
Ω

|Du|2 =

∫
Ω

(
(
∂u1

∂x1

)2 + (
∂u1

∂x2

)2 + (
∂u2

∂x1

)2 + (
∂u2

∂x2

)2

)
<∞,

then u ∈ H1(Ω)2 and it is possible to speak of u on ∂Ω as the trace of u and
in particular of its tangential component n × u = n1u2 − n2u1 in the usual
sense.

1. This exercise concerns the projection of

L2
div(Ω) = {w ∈ (L2(Ω))2 : ∇ · w ∈ L2(Ω)}

on the space H above (the subscript div stands for divergence). For
w ∈ L2

div(Ω) let f = −∇ · w ∈ L2(Ω) and g = n · w ∈ L2(∂Ω), and
consider the Neumann problem

(N) −∆p = f in Ω with
∂p

∂n
= g on ∂Ω.

You may think of p in (N) as related to the pressure in the Navier-
Stokes equations.

(a) What is the natural condition on arbitrary f ∈ L2(Ω) and g ∈
L2(∂Ω) to have a solution of (N)? Hint: use the divergence the-
orem, you may argue as if f , g and p are smooth. Does your
condition hold for the particular choice of f and g above? If so,
why? Explain why then the solution p is never unique and can be
chosen to have

∫
Ω
p = 0.

(b) Explain why for f ∈ L2(Ω) and g ∈ L2(∂Ω) we say that p ∈ H1(Ω)
is a weak solution of (N) if

(Nweak)

∫
Ω

∇p · ∇φ =

∫
Ω

fφ+

∫
∂Ω

gφ for all φ ∈ H1(Ω).

Check that this can only hold if your condition in (a) is satisfied,
in which case it suffices to show that that the identity in (Nweak)
holds for every φ ∈ H̃1(Ω) = {p ∈ H1(Ω) :

∫
Ω
p = 0}.

(c) Let H̃1(Ω) be as in (b). Show that

((p, φ)) =

∫
Ω

∇p · ∇φ

defines an inner product on H̃1(Ω) with an inner product norm
that is equivalent on H̃1(Ω) to the full H1-norm defined by

(p, φ)
H1(Ω)

=

∫
Ω

pφ+

∫
Ω

∇p · ∇φ, |p|2
H1(Ω)

= (p, p)
H1(Ω)

,
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(d) Explain why for every f ∈ L2(Ω) and every g ∈ L2(∂Ω) satisfying
your condition in (a) there is a unique p ∈ H̃1(Ω) that satisfies
(Nweak).

(e) Recall that

H = {u =

(
u1

u2

)
: u1, u2 ∈ L2(Ω), ∇·u = 0 on Ω, n·u = 0 on ∂Ω}.

Explain why every w ∈ L2
div(Ω) can be written as w = ∇p + u

with u ∈ H and p ∈ H1(Ω), and that u is uniquely determined by
w. This u is called the Leray projection of w.

2. In this exercise we consider smooth solutions of the Navier-Stokes equa-
tions with zero slip boundary conditions as above (so you can forget
about weak derivatives and all that now).

(a) Write u0 for the initial velocity field of a smooth solution u with
pressure p: then u(x, 0) = u0(x) and u0 must satisfy ∇ · u0 = 0.
We write u(t) for the function x → u(x, t). Integrate the inner
product of

ut + (u · ∇)u+∇p−∆u

with u over Ω and derive that

d

dt
E(u(t) + E(u(t)) = 0,

where E(u) and E(u) are as in the introduction above. In other
words, show that

1

2

d

dt

∫
Ω

|u|2 +

∫
Ω

|Du|2 = 0.

Why does it follow that∫ T

0

∫
Ω

|Du|2 ≤ 1

2

∫
Ω

|u0|2 ?

Hint: write terms out in coordinates, e.g.

u · (u · ∇)u =
2∑

j,k=1

ukuj
∂uk
∂xj

,

and use integration by parts (the boundary terms disappear, as
well as ∇ · u).
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(b) For smooth solutions u and v with pressures p and q respectively
let w = u− v. Subtract the equations for u and v, take the inner
product with w and integrate over Ω to derive that

1

2

d

dt

∫
Ω

|w|2 +

∫
Ω

|Dw|2 = −
∫

Ω

w · (w · ∇)v ≤
∫

Ω

|Dv| |w|2.

Hint: (i) use integration by parts for the equality, the boundary
terms disappear, as well as∇·u, ∇·v, ∇·w, if they show up. Check
that the terms coming from the nonlinear terms in the equations
may be rewritten as a term giving the integral with w and v,
and another integral with u and w which disappears; (ii) for the
subsequent inequality use Ax · x ≤ |A| |x|2 for 2 × 2 matrices A
and 2-vectors x, with |A|2 = A2

11 + A2
12 + A2

21 + A2
22.

(c) Derive from (b) that

d

dt

∫
Ω

|w|2 + 2

∫
Ω

|Dw|2 ≤ 2(

∫
Ω

|Dv|2)
1
2 (

∫
Ω

|w|4)
1
2 .

(d) Insert the inequality∫
Ω

|w|4 ≤
∫

Ω

|w|2
∫

Ω

|Dw|2

in (c) to derive that

d

dt

∫
Ω

|w|2 ≤ 1

2

∫
Ω

|Dv|2
∫

Ω

|w|2.

Hint: in the right hand side you get a product which contains the
factor a =

∫
Ω
|Dw|2. Use the inequality 2ab ≤ a2 + b2 and observe

that a2 als appears on the left hand side.

(e) Derive from (d) and (a) with u replaced by v that∫
Ω

|w(t)|2 ≤
∫

Ω

|w0|2e
1
4

∫
Ω |v0|2 .

(f) Prove the inequality used in (d) for compactly supported smooth
vectorfields on IR2 by first showing that∫ ∞

−∞

∫ ∞
−∞

u(x1, x2)4 dx1dx2 ≤

(

∫ ∞
−∞

∫ ∞
−∞

u2) (

∫ ∞
−∞

∫ ∞
−∞

u2
x1

)
1
2 (

∫ ∞
−∞

∫ ∞
−∞

u2
x2

)
1
2
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for compactly supported smooth functions u. In short

|u|4
4
≤ |u|2

2
|ux1|2 |ux2|2 .

Hint: write u(x1, x2)4 = u(x1, x2)2u(x1, x2)2 and show first that

u(x1, x2)2 ≤
∫ ∞
−∞

u(ξ, x2)ux1(ξ, x2)dξ

and likewise

u(x1, x2)2 ≤
∫ ∞
−∞

u(x1, η)ux2(x1, η)dη.
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39 Geostuff

I will use L for the Lagrangian and not F . We assume that L = L(t, u, p) is as
smooth as we need. Chapter 1 of [J&J] concerned Euler-Lagrange equations
for u = u(t) ∈ IRn. We saw how minimizing

I(u) =

∫ b

a

L(t, u(t), u̇(t)) dt (39.1)

for sufficiently smooth functions u : [a, b] → IRn (with u(a) and u(b) pre-
scribed) leads to the Euler-Lagrange system of differential equations:

d

dt

∂L

∂pi
− ∂L

∂ui
= 0 (i = 1, . . . , n) (39.2)

We also saw the Jacobi equations, obtained from (1.3.6) and the linearised
Lagrangian

φ =
∂2L

∂pi∂pj
πiπj + 2

∂2L

∂ui∂pj
πiηj +

∂2L

∂ui∂uj
ηiηj (39.3)

The Euler-Lagrange equations of (39.3) are the Jacobi equations

d

dt

∂φ

∂πi
− ∂φ

∂ηi
= 0 (i = 1, . . . , n) (39.4)

These Jacobi equations are the linearised Euler-Lagrange equations. Verify
this!

For Lagrangians independent of t we noticed a conservation law. When
you multiply (39.2) by pi(t) = u̇i(t) you get

0 = pi(t)
d

dt

∂L

∂pi
− u̇i(t) ∂L

∂ui
=

d

dt

(
pi
∂L

∂pi

)
−ṗi(t)∂L

∂pi
− u̇i(t) ∂L

∂ui︸ ︷︷ ︸
− dL
dt

=
d

dt

(
pi
∂L

∂pi
− L

)

39.1 Submanifolds of IRd are Riemannian

Chapter 2 deals with the problem of finding the shortest connecting curve
between two given points in an n-dimensional submanifold M of IRd with
d > n. For this will need knowledge of the concept of covariant differentiation
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on M . The nonabstract introduction with submanifolds below provides a
machinery that also works in the abstract setting of general Riemannian
manifolds.

Locally M is given by smooth parameterisations

x = f(u)

(coordinate charts) defined on open connected sets U ⊂ IRn with smooth
transitions between u and ũ on U ∩ Ũ if f : U → M and f̃ : Ũ → M are
two different coordinate patches. A (preferably finite1) collection with this
property that describes the whole of M is called an atlas for M .

Every such parameterisation provides us with locally defined tangent vec-
tor fields

x1 =
∂x

∂u1
, · · · , xn =

∂x

∂un
,

since for every u ∈ U the vectors xi(u) are tangent to M in x(u) ∈ M . The
inner products

gij = gij(u) = xi · xj
are locally defined scalar fields, the coefficients of the Riemannian metric on
M inherited from the inner product in the ambient space IRd.

In terms of local coordinates u1, . . . , un tangent vector fields V on M are
described by

V = V ixi = V i(u)xi(u) = V 1(u)x1(u) + · · ·+ V n(u)xn(u), (39.5)

in which we use a summation convention for repeated lower and upper indices.
Two such vectors fields have inner product

V ·W = V ixi ·W jxj = V iW jxi · xj = V iW jgij

Don’t forget the u-dependence which is usually dropped from the notation
and pay attention to the double use of subscripts: as indices in gij and as
derivatives in xi. The inner product of two tangent vector fields on M defines
a scalar field2 on M . The map

(V,W )→ V ·W

is well defined, independent of the choice of coordinates, and multilinear over
the scalar fields3. In particular, if φ, ψ : M → IR are (smooth) functions,
then

(φV ) · (ψW ) = φψ (V ·W )
1This is related to the concept of compactness
2A real valued function
3Tensor property
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39.2 Covariant differentiation

If we differentiate a vector field V as given by (39.5) we get contributions from
u-dependence in V i(u) and from u-dependence in xi(u). The tangential part
of the resulting derivative is what is by definition the covariant derivative.
The partial derivative of (39.5) with respect to uj can be written as

∂V

∂uj
=
∂V i

∂uj
xi + V ixij, xij =

∂xi
∂uj

=
∂2x

∂uj∂ui
=

∂2x

∂ui∂uj
= xji (39.1)

In the case that M = IRn = IRd with xi = ui, the tangent vectors xi are the
unit base vectors ei so that xij = 0 and the covariant partial derivatives of
V are just the partial derivatives V . The same holds if x(u) in linear in u.
In all other cases we decompose xij as

xij = Γlijxl + normal parts

and take the inner product with xk to get

Γijk := xij · xk = Γlijxl · xk = Γlijglk

Thus Γijk is obtained from Γlij using glk. Introducing gkl = glk by

glkg
km = δml ,

we also obtain Γmij from Γijk:

gmkΓijk = Γlijglkg
km = Γlijδ

m
l = Γmij

The relation between both Γ-symbols is given by

Γijk = Γlijglk, Γmij = gmkΓijk

The metric coefficients are used to raise and lower the exponents4.
Next we determine Γijk. Differentiating gij with respect to uk we get

gij,k =
∂gij
∂uk

=
∂

∂uk
(xi · xj) = xki · xj + xjk · xi = Γkij + Γjki

Note the two cyclic permutations kij and jki of ijk on the right. Using cyclic
permutation, we have the following three equivalent forms of the resulting
statement:

gij,k = Γkij + Γjki

4Just as with tensor coefficients, though the Γ’s are not tensor coefficients
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gjk,i = Γijk + Γkij

gki,j = Γjki + Γijk

Multiplying by −1
2
, 1

2
and 1

2
and adding up we get

Γijk =
1

2
(gjk,i + gki,j − gij,k)

Using the symmetry gij = gji it follows that

Γijk =
1

2
(gjk,i + gik,j − gij,k) , Γmij =

1

2
gmk (gjm,i + gim,j − gij,m) (39.2)

These formula’s define the Christoffel symbols Γkij = Γkji in terms of the metric
and its first order derivatives and can be used to write (39.1) as

∂V

∂uj
=
∂V i

∂uj
xi + V iΓlijxl + normal parts

The tangential part is thus

DujV := (
∂V

∂uj
)T =

(
∂V l

∂uj
+ V iΓlij

)
xl, V = V ixi (39.3)

This is called the covariant derivative of V with respect to uj. Both V and
DujV are tangent vector fields, with components

V i and (DujV )l =
∂V l

∂uj
+ V iΓlij

39.3 Tangent vectors as derivatives

Next we introduce the modern view point on tangent vectors. Since every
tangent vector defines a directional derivative, it has become customary to
identify such first order differential operators with their direction vectors. In
short, we think of

xi =
∂x

∂ui
and

∂

∂ui

as essentially the same objects. To see how this works in a point x0 ∈M we
use integral curves starting at x0, that is, solutions of

γ̇(t) = X(γ(t)), γ(0) = x0 ∈M, (39.1)
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where X is a tangent vector field defined near x0. The differential equation
in (39.1) is called the flow equation for X. Using coordinates u, with u = u0

corresponding to x0, the expressions in (39.1) evaluate as

γ(t) = x(u(t)), γ̇(t) =
∂x

∂ui
(u(t))u̇i(t) = u̇i(t)xi, X(γ(t)) = X i(u(t))xi,

so the system to be solved for u = u(t) to obtain the integral curves is

u̇i = X i(u), u(0) = u0. (39.2)

The solution u = u(t) exists locally and is unique. We have u̇i(0) = X i(u0)
and X0 := X(x0) = γ̇(0) = u̇i(0)xi = X i(u0)xi. On scalar fields (functions)
φ : M → IR, given in local coordinates as

φ = φ(u1, . . . , un),

the vector field X now acts through

d

dt
|t=0φ(u(t)) =

∂φ

∂ui
(u0)u̇i(0) = X i

0

∂φ

∂ui
(u0)

at φ in u = u0, i.e. as the directional derivative

X i
0

∂

∂ui
corresponding to the direction vector X i

0xi

in u = u0. The derivative only depends on the value of the vector field in x0.
Since the point x0 = x(u0) was arbitrary we have

X = X i ∂

∂ui
corresponding to the tangent field X = X ixi = X i ∂x

∂ui
.

The two expressions above are merely different representations of the tangent
vector field X (both in local coordinates):

The components

X i∂x
k

∂ui

of the tangent field X multiply
∂φ

∂xk

in the chain rule formula if φ is extended to a neighbourhood of M in IRd.
As differential operator

X = X i ∂

∂ui
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X acts on scalar fields like φ = φ(u) and produces a scalar field Xφ, the
derivative of φ in the direction of X. This directional derivative is denoted
by

∇Xφ = Xφ, replacing the notation
∂φ

∂X

in calculus texts. We already use the notation ∇X customary for covariant
differentiation. For reasons that should be clear, covariant differentiation of
scalar fields is by definition the same as differentiation of scalar fields.

39.4 Commutators of tangent vector fields

If X and Y are scalar fields on M then the commutator of X and Y is defined
as

[X, Y ] = XY − Y X

meaning that

∇[X,Y ]φ = [X, Y ]φ = X(Y φ)− Y (Xφ) = ∇X(∇Y φ)−∇Y (∇Xφ).

This commutator has a meaning by itself. If γ(t) is the solution of (39.1),
then the linearised flow equation transports the vector Y (x0) along γ(t).
Denoting the transported vector as ξ(t), we may differentiate the difference
of ξ(t) and Y (γ(t)) with respect to t and evaluate the derivative in t = 0.
This defines

(LXY )(x0) = lim
t→0

ξ(t)− Y (γ(t))

t
,

the Lie derivative of Y with respect to X in x0.
In coordinates ξ(t) = ξi(t)xi with ξi(t) is a solution of the linearizsation

of (39.2) around u(t),

ξ̇i = (
∂X i

∂uj
)︸ ︷︷ ︸

in (u(t)

ξj(t), ξj(0) = Y i(u0) (39.1)

Writing
ξ(t)− Y (γ(t)) = ξ(t)− Y (x0)− (Y (γ(t))− Y (x0))

you should verify that

(LXY )(x0) = (XY )(x0)− (Y X)(x0)

so that
[X, Y ] = LXY (39.2)
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Note that [X, Y ] is bilinear over de scalar fields. Verify that

[X, Y ]j = XkY j
k − Y

kXj
k

and that the Jacobi identity

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (39.3)

holds.

39.5 Covariant differentiation of tangent vectors

Next we observe that

X = X i ∂

∂ui

naturally acts covariantly on tangent fields V , if we replace

∂

∂ui
by Duj ,

as defined in (39.3) through

DujV :=

(
∂V l

∂uj
+ V iΓlij

)
xl for V = V ixi.

The result of this action is

Xj

(
∂V l

∂uj
+ V iΓlij

)
xl

and is denoted as

∇XV = Xj

(
∂V l

∂uj
+ V iΓlij

)
∂

∂ui
(39.1)

in the modern notation for tangent vectors as differential operators.
The map

V → ∇XV

is not linear over the scalar fields because

∇XφV = Xj

(
∂φV l

∂uj
+ φV iΓlij

)
xl

= φXj

(
∂V l

∂uj
+ V iΓlij

)
xl +Xj ∂φ

∂uj
V l = φ∇XV + (∇Xφ)V.
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The latter term in this Leibniz rule destroys the tensor property of linearity
over the scalar fields.

Convince yourself that in the non-abstract approach

∇XV = Xj

(
∂V l

∂uj
+ V iΓlij

)
xl

is the tangential5 component of the derivative of V in the direction of X and
verify that

∇X(V ·W ) = ∇XV ·W + V · ∇XW

if W is another tangent vector field on M .

39.6 Second fundamental form

The normal part of the derivative of V in the direction of X is denoted by
II(X, V ), in which II is called the second fundamental form of M . Verify that
it is bilinear over the smooth fields on M . Since the normal part essentially
comes from the mixed derivatives xij, the second fundamental form must be
symmetric. Moreover, if N is a normal vector field on M and N,X, V are
extended smoothly6 to the ambient space IRd then

∇̄X(N · Y ) = ∇̄XN · Y +N · ∇̄XY, (39.1)

in which ∇̄ is the (standard covariant) derivative in IRd. On M the left hand
side of (39.1) is zero, and the second term N · ∇̄XY on the right hand side
only sees the normal part of ∇̄XY which is II(X, Y ). It follows that

∇̄XN · Y = −N · II(X, Y ) on M. (39.2)

This is called Weingarten’s relation. Note that in the codimension 1 case
d = n+ 1 we can choose a unit normal field N and define

h(X, Y ) = N · II(X, Y ) = −∇̄XN · Y = hijX
iY j (39.3)

39.7 Curvature

The equality

∇X∇YZ −∇Y∇XZ = ∇[X,Y ]Z +R(X, Y )Z (39.1)

5 to M
6This can be done, certainly locally, why?
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defines R(X, Y )Z for tangent vector fields X, Y, Z. You may verify that
R(X, Y )Z is multilinear in X, Y , Z over the scalar fields on M . In the case
M = IRn = IRd you will find that R(X, Y )Z ≡ 0. The standard way to write
R(X, Y )Z in local coordinates u is

(R(X, Y )Z)α = Rα
ijkZ

iXjY k. (39.2)

So Z comes first7 and then X and Y . Using (39.1) and writing

Γαij,k =
∂Γij
∂uk

you should verify that8

Rα
ijk = ΓβikΓ

α
βj − ΓβijΓ

α
βk + Γαik,j − Γαij,k (39.3)

and the zero ijk and jk cyclic sums

Rα
ijk +Rα

kij +Rα
jki = 0 = Rα

ijk +Rα
ikj (39.4)

If W is another tangent field then9

Rm(X, Y, Z,W ) = R(X, Y )Z ·W = Rα
ijkZ

iXjY kgαlW
l = RlijkW

lZiXjY k,
(39.5)

which has the symmetries

Rm(X, Y, Z,W ) +Rm(Y, Z,X,W ) +Rm(Z,X, Y,W ) = 0,

Rm(X, Y, Z,W )+Rm(Y,X,Z,W ) = 0 = Rm(X, Y, Z,W )+Rm(X, Y,W,Z)

(the second one obtained from Rm(X, Y, Z, Z) = 0), implying

Rm(X, Y, Z,W ) = Rm(Z,W,X,Z)

In the 2-dimensional case n = 2 the only possible nonzero entries of Rijk are

R1212 = R2121 = −R1221 = −R2112

In the codimension 1 case

Rlijk = hikhlj − hijhlk
7As if we would have prefered the notation ZR(X,Y )
8note the order ijk in the minus terms and the j ↔ k relation with the plus terms
9 lijk = dead body, as if we would have prefered the notation W · ZR(X,Y )
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consists of all the 2× 2 determinants you can get from the matrix hij. Note
that similarly

(W ·X)(Y · Z)− (W · Y )(X · Z) = (gikglj − gijglk)︸ ︷︷ ︸
Glijk

W lZiXjY k, (39.6)

in which Glijk has the same symmetry properties as Rlijk (and depends only
on G1212 if n = 2).

For submanifolds you can verify from the definitions that

Rm(X, Y, Z,W ) = II(X,W )II(Y, Z)− II(X,Z)II(Y,W ), (39.7)

which in the codimension 1 case (39.3) reduces to

Rm(X, Y, Z,W ) = h(W,X)h(Y, Z)− h(W,Y )h(X,Z),

so
Rm(X, Y, Z,W ) = (hikhlj − hijhlk)︸ ︷︷ ︸

Rlijk

W lZiXjY k, (39.8)

Gauss computed this expression for Rlijk from xijk = xikj, see Chapter 10
in Schaum’s Differential Geometry book by Martin Lipschutz. The Gauss
curvature of a surface in IRd is the scalar ratio between (39.7) and (39.6). In
IR3 this is the scalar ratio between (39.8) and (39.6).

39.8 Geodesic curves

A smooth curve γ(t) ∈M may require several coordinate patches to describe
it. For the moment we assume that it can be described by one coordinate
patch. If

γ : [a, b] 3 t→ u(t)→ x(u(t)) ∈M

is such a curve in M , then its velocity is given by

γ̇ =
∂x

∂u1
u̇1 + · · ·+ ∂x

∂un
u̇n =

n∑
i=1

u̇i
∂x

∂ui
=

n∑
i=1

u̇ixi.

Think of γ̇ as a vector at the point x = γ(t) in M . For every t this vector
is tangent to M , and written as a linear combination of the tangent vectors
obtained from the parameterisation:

x1 =
∂x

∂u1
, . . . , xn =

∂x

∂un
.
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Its length l is given by

l =

∫ b

a

|γ̇(t)| dt =

∫ b

a

√
γ̇(t) · γ̇(t) dt =

∫ b

a

√
xiu̇i · xju̇j dt

=

∫ b

a

√
u̇iu̇jgij(u) dt

We will work with another quantity, called the energy, which involves an
L as in Chapter 1. Since I prefer to have u in L, my u’s are the γ’s in the
book. My γ(t) is what is c(t) in the book. The energy is defined by

E =
1

2

∫ b

a

|γ̇(t)|2 dt =
1

2

∫ b

a

γ̇(t) · γ̇(t) dt =
1

2

∫ b

a

xiu̇
i · xju̇j dt

=
1

2

∫ b

a

u̇iu̇jgij(u) dt =

∫ b

a

L(u(t), u̇(t)) dt,

in which

L = L(u, p) =
1

2
pipjgij(u). (39.9)

Playing with the estimate

∫ b

a

|γ̇(t)| dt =

∫ b

a

1 |γ̇(t)| dt ≤

√∫ b

a

12 dt

√∫ b

a

|γ̇(t)|2 dt

and reparameterisation of γ to make |γ̇| constant you should easily conclude
that minimizers of l are minimizers of E and vice versa if we keep [a, b] fixed.

The Euler-Lagrange equations for E involve the derivatives of gij and
come out as

üi + Γiαβu̇
αu̇β = 0 (39.10)

and are called the geodesic equations. Indeed,

Γiαβ =
1

2
gik (gαk,β + gβk,α − gαβ,k) ,

the symbols computed in (39.2). You should repeat this calculation without
looking at the notes above. What is the conservation law for this system?

A nice example is a surface M which is described by a single set of coor-
dinates u ∈ IR2 with a metric

gij(u) = g(|u|)δij (39.11)
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in which u → g(|u|) is smooth and positive10. You can write the geodesic
equations as in the book (2.1.27). In a special case the example is related to
stereographic projection through

u1 =
x1

1− x3
, u2 =

x2

1− x3
,

which you may prefer as

u =
x

1− z
, v =

y

1− z

without indices.

• Verify that large circles on x2 + y2 + z2 correspond to circles in the
uv-plane. Hint: describe the large circles as z = ax + by and avoid
goniometric functions.

• The large circles not contained in this description are the vertical great
circles which correspond to lines through the origin in the uv-plane.
Assuming unit speed for both the vertical great circles and lines through
the origin derive the formula for g(|u|).

We return to (39.11) with general g(|u|).

• Why are geodesics through the origin straight lines?

• Take a geodesic line parametrized by t such that t = 0 corresponds to
(0, 0) and that the speed in (0, 0) is equal to 1. Use the conservation
law to derive a first order equation for R(t) = |u(t)| and solve it.

• Examine how long it takes for the geodesic curve to reach infinity.
What is the condition on g(|u|) to reach infinity in finite time? This
should involve some integral with g. Do the same in dimension n > 2?
Is there a difference?

• Can you cook up an example for which the geodesic cannot cross |u| =
1? Can you classify these examples?

• Incidentally, what is the Gauss curvature for metrics of the form (39.11)
in IR2?

10 implying 0 = g′(0) = g′′′(0) = g′′′′′(0) = · · ·
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39.9 The Jacobi equations

Consider the Lagrangian (39.9).

• Show that the Jacobi equations (39.4) for (39.9) are

η̈i + 2Γijku̇
j η̇k + Γijk,lu̇

ju̇kηl = 0 (39.12)

Both u̇i(t) and ηi(t) define vector fields along γ(t) = x(u(t)) in M ∈ IRd

tangent to M through

γ̇(t) = u̇i(t)xi(u(t)), η(t) = ηi(t)xi(u(t))

The Jacobi equations are much more transparent if we work with the tan-
gential parts DtV of the time derivatives of such vector fields

V (γ(t)) = V i(t)xi(u(t))

• Derive that

DtV = (DtV )jxj with V̇ j + V αΓjαβu̇
β

• Derive that the geodesic equation (39.10) may be written as

Dtγ̇ = 0, γ̇ = u̇ixi

• Derive that (39.12) may be written as

(D2
t η)i + u̇αRi

αβkη
βu̇k = 0, i.e. D2

t η +R(η, γ̇)γ̇ = 0
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40 Newton’s method the hard way

Some time ago I was asked to give a talk on the work of Nash. I apologise for
doing something else instead. On a family of theorems that bear his name
and proofs Nash never wrote. In these notes I describe how Newton’s method
can be adapted in the case that the map

u→ u− f ′(u)−1f(u) (40.1)

is not defined as a map from a Banach space X to itself. The resulting
theorems are called HARD Implicit Function Theorems. My purpose here is
to demystify the terminology and present a simple proof of convergence for a
modification of Newton’s method in such a case. Observe that a direct proof
of the Inverse Function Theorem for a continuously differentiable function
f amounts to solving the equation f(u) = v for u given small v under the
assumption that f(0) = 0, using the map

u→ u+ f ′(0)−1(v − f(u)) (40.2)

which is contractive if f ′(0)−1 : X → X exists as a continuous linear map.
The proof of the Implicit Function Theorem for solving equations like

f(u, v) = 0 in the form u = u(v) if f(0, 0) = 0 and the partial derivative of f
with respect to u is invertible in (u, v) = (0, 0) is similar. To show that (40.2)
produces a local solution u = u(v) which is continuously differentiable the
only regularity on f that has to be assumed is that u→ f ′(u) is continuous,
as only f ′(u) is needed in the calcutions and estimates. Newton’s method,
which employs a suitable inverse of f ′(u) for all u in some (say the unit) ball
B in X, relies an Taylor’s theorem with a quadratic remainder and therefore
the assumption that also u→ f ′′(u) be continuous is required.

40.1 Newton’s method: a convergence proof

I will modify the treatment in [KP]1 which begins with a somewhat alter-
native treatment of Newton’s method in the standard case. So to warm up
consider an equation of the form f(u) = 0 in which f : B → X is a twice con-
tinuously differentiable function defined on the open unit ball B in a Banach
space X, with first and second order derivative satisfying bounds

|f ′(u)| ≤M1 and |f ′′(u)| ≤M2 ∀u ∈ B. (40.3)

The general case of Banach spaces is really not that different from the case
in which X = IR, which you may think of in what follows below. Simply
take B = (−1, 1) and replace all norms by absolute values.

1Krantz & Parks, The Implicit Function Theorem, Birkhäuser 2003.

628



What we need is that Taylor’s theorem with a second order remainder,

f(un) = f(un−1) + f ′(un−1)(un − un−1)︸ ︷︷ ︸
linear aproximation

+Qf (un−1, un), (40.4)

in which

|Qf (un−1, un)| ≤ M2

2
|un − un−1|2, (40.5)

applies to a sequence of iterates un ∈ B. For the standard Newton method
one does not explicitly need the bound on f ′(u) in (40.3) which says that the
linear map f ′(u) : X → X satisfies

|f ′(u)v| ≤M1|v| ∀u ∈ B ∀u ∈ X, (40.6)

but a similar bound
|L(u)| ≤ C (40.7)

for maps L(u), that act as right inverses of f ′(u) in the sense that

f ′(un−1)L(un−1)f(un−1) = f(un−1), (40.8)

is essential. Writing

pn = |un − un−1| and qn = |f(un)| (40.9)

the Newton scheme

un = un−1 − L(un−1)f(un−1) (n ∈ IN), (40.10)

starting with u0 = 0, then defines un ∈ B as long as

p1 + p2 + · · ·+ pn < 1, (40.11)

and the inequalities

pn ≤ Cqn−1 and qn ≤
1

2
M2p

2
n (40.12)

are immediate from (40.4,40.5,40.10). Note that (40.10) kills the linear ap-
proximation in (40.4). The inequalities in (40.12) are complemented by

q0 = |f(0)| and p1 ≤ Cq0 = C|f(0)|. (40.13)
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40.2 The optimal result

Clearly (40.12) and (40.13) combine as

pn ≤ µp2
n with µ =

1

2
MC and p1 ≤ C|f(0)|, (40.14)

and the condition to be stated is which P̄ = P̄ (µ) guarantees that the impli-
cation

C|f(0)| < P̄ =⇒
∞∑
n=1

pn < 1 (40.15)

holds. The larger P̄ the stronger the statement in the sense that larger
|f(0)| are allowed to obtain a solution u = ū ∈ B of f(u) = 0 via (40.10)
with u0 = 0. Note that with C|f(0)| ≤ P̄ the same conclusion will hold
if only one of all the inequalites in the estimates below is strict, which will
inevatibly be the case of course.

Obviously the smallest P̄ we can get follows from replacing the three
inequalities in (40.14) and (40.15) by inequalities. This leads to

pn = µp2
n−1 for n ∈ IN; p1 = P̄ ;

∞∑
n=1

pn = 1. (40.16)

Via ξn = µpn and ξn = ξ2
n−1 this is easily seen to be equivalent to

µ = G(µP̄ ) with G(ξ) = ξ + ξ2 + ξ4 + ξ8 + ξ16 + · · · (40.17)

but this does not yield a simple formula for P̄ = P̄ (µ).

40.3 A suboptimal result

A rough estimate

G(ξ) < ξ + ξ2 + ξ3 + ξ4 + ξ5 + · · · = ξ

1− ξ
(40.18)

leads to a simple but suboptimal formula:

P̄ =
1

1 + µ
or µ =

1

P̄
− 1. (40.19)
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40.4 Alternative proof of convergence

The alternative approach to (40.12) and (40.13) in [KP] is to derive an esti-
mate of the form

pn ≤ e−γλ
n

(40.20)

via induction starting from

p1 ≤ C|f(0)| < P̄ = e−γλ, (40.21)

with choices of γ and λ that guarantee both

∞∑
n=1

e−γλ
n ≤ 1 (40.22)

as well as that the induction step can be done via

pn−1 ≤ e−γλ
n−1

=⇒ pn ≤ µp2
n−1 ≤ µe−2γλn−1 ≤ e−γλ

n︸ ︷︷ ︸
should hold for all n≥1

,

which is the case if

lnµ ≤ γλn−1(2− λ) ∀n ≥ 1.

40.5 The optimal alternative result

For a given µ this is equivalent to

lnµ ≤ γλ(2− λ) and λ ≤ 2 (40.23)

if we make the obvious restriction that γ and λ be positive. Conditions
(40.21) and (40.23) suggest α = γλ and λ as the more relevant parameter so
we have to pick α > 0 and 1 < λ ≤ 2 with

lnµ ≤ α(2− λ),
∞∑
n=0

e−αλ
n ≤ 1 and P̄ = e−α maximal. (40.24)

For µ > 1 the inequalities define a set in the first quadrant of the λ, α-plane
bounded by the two curves given by

lnµ = α(2− λ) and
∞∑
n=0

e−αλ
n

= 1, (40.25)

which intersect in one point.
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This point defines the minimal value of α = − ln P̄ via

1 =
∞∑
n=0

e−αλ
n

=
∞∑
n=0

P̄ λn =
∞∑
n=0

P̄ (2+ lnµ
ln P̄

)n

if µ > 1. The curve defined by

1 =
∞∑
n=0

P̄ (2+ lnµ
ln P̄

)n and µ ≥ 1 (40.26)

hits the curve defined by (40.17) in µ = 1 and lies below (40.17) of course,
but above (40.19) in view of

µ =
1

P̄
− 1 =⇒

∞∑
n=0

P̄ (2+ lnµ
ln P̄

)n =
∞∑
n=0

P̄ (1+
ln(1−P̄ )

ln P̄
)n <

∞∑
n=0

P̄ 1+n
ln(1−P̄ )

ln P̄︸ ︷︷ ︸
a geometric series

= 1.

For µ ≤ 0 the optimal choice of P̄ via (40.24) is given by
∞∑
n=0

P̄ 2n .

40.6 A suboptimal alternative result

A more explicit formula is again obtained via a rough estimate
∞∑
n=1

e−γλ
n ≤

∞∑
n=1

e−γ(1+n(λ−1))

︸ ︷︷ ︸
a geometric series

=
e−γλ

1− e−γ(λ−1)
=

e−α

1− eγe−α
(40.27)

and replacing (40.24) by

lnµ ≤ α(2− λ), λ ≥ α

ln(eα − 1)
and P̄ = e−α maximal.

This leads to

µ = eα(2−λ) =
1

P̄ 2−λ =
1

P̄
2+ ln P̄

ln( 1
P̄
−1)

= P̄
ln(P̄ )−2 ln(1−P̄ )

ln(1−P̄ )−ln(P̄ )

so that

1 ≤ µ =
1

P̄
2+ ln P̄

ln( 1
P̄
−1)

<
1

P̄
− 1 (40.28)

defines another curve with

P̄ ≤ 3−
√

5

2
,

which is below the three curves above, but to leading coincides with them in
the limit µ→∞ and P̄ → 0.
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40.7 A lousy alternative result

The even rougher estimate used in [KP] via

∞∑
n=1

e−γλ
n ≤

∞∑
n=1

e−nγ(λ−1)

is to be avoided as at some point below the treatment of ill-behaved Newton’s
methods will show.

40.8 A much better suboptimal alternative result

Actually the first rough estimate above works better with α dan with γ, as
I only noticed May 21. Directly in terms of γ and λ we have

∞∑
n=1

e−γλ
n

=
∞∑
n=1

e−γλλ
n−1 ≤

∞∑
n=1

e−γλ(1+(n−1)(λ−1)) =
e−γλ

1− e−γλ(λ−1)
≤ 1

(40.29)
if

2− λ ≤ ln(eγλ − 1)

γλ
=

ln(eα − 1)

α
,

so that we arrive at

lnµ ≤ α(2−λ), α(2−λ) ≤ ln(eα−1) and P̄ = e−α maximal. (40.30)

This is the optimal estimate using the Bernoulli type inequality

λn ≥ 1 + n(λ− 1). (40.31)

With equality in the final inequality in (40.29) we arrive at

lnµ ≤ ln(eα − 1) = ln(
1

P̄
− 1),

which for µ > 1 coincides with (40.19) and we can forget about the annoying
(40.28) above. Note that factoring out another λ in the exponent in (40.29)
will and cannot help to improve this result, which says that if µ > 1 the
bound

|f(0)| ≤ 1

C(µ+ 1)

suffices.
This bound may be compared with the bound in [KP], where all constants

are named M , for unclear reasons M > 2 is assumed, and the 1
2
-coefficient
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in the Taylor-remainder term is omitted. Since µ = 1
2
CM our bounds looks

similar to their bound |f(0)| ≤M−5. In the next section the comparison will
be a true pain, as [KP] have a formulation in which again all constants are
called M with apparently M > 1, and the bound on some norm of f(0) (the
wrong norm actually) involving M−307. Comparing to the lectures notes of
Schwartz from 60 years ago this is hardly an improvement as Schwartz had
M−202 (also for the wrong norm).
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41 Nash’ modification of Newton’s method

Now that we have seen several small variants of the method to obtain con-
vergence for Newton’s method, we consider the problem of solving f(u) = 0
in B ⊂ X in the case that f : B → Z and L(u) : Z → Y with X, Y and
Z different Banach spaces that we assume to belong to a family of spaces
denoted by Ck, which we think of as function spaces. Here k denotes the
number of possibly fractional derivatives that elements u ∈ Ck have. Think
of k for X, l for Z and m for Y . The goal is to have conditions that guarantee
the existence of a solution to f(u) = 0 with k-norm smaller than 1, provided
f(0) has a norm bounded by some power of M , where M is a universal bound
for all constants related to the derivatives of f .

Both [KP] and Schwartz require a very strong norm of f(0) to be bounded,
but the treatment below will show that a bound on the l-norm suffices. It
should be noted that [KP] more or less copied from Schwartz with some
additional details explained. Both formulate a statement for the case that
k > l, but give a not completely correct proof for the case that k = l > m
(without mentioning the difference). The main additional assumption is a
natural affine bound for |L(u)f(u)|m̄ in terms of |u|k̄, for m̄ and k̄ sufficiently
large and k̄ − m̄ = k −m. The ratio

N =
k̄ − k
k −m

(41.1)

measures the required higher regularity of the Newton map for the modified
scheme described below to still do the job.

Below the norms u→ |u|k on Ck are assumed to be monotone increasing
in k and we assume that there are linear so-called smoothing operators S(t)
parametrized by t ≥ 1 that satisfy

|S(t)u|k ≤ Kklt
k−l|u|l and |(I − S(t))u|l ≤

Kkl

tk−l
|u|k (41.2)

for all k > l in a sufficiently large range as needed in the particular imple-
mentation of the modified Newton method presented next. Thus S(t) maps
C l to Ck, with an estimate for the ratio between the norms that grows worse
as S(t) approaches the identity I for t→∞, when I is considered as the em-
bedding I : Ck → C l. It is convenient to write the norms of S(t) and I−S(t)
with subscripts indicating the norms used for u, S(t)u and (I−S(t))u. Thus
(41.2) says that

|S(t)|kl ≤ Kklt
k−l and |(I − S(t))|lk ≤

Kkl

tk−l
. (41.3)
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Besides (41.3) we assume (now also) a bound M lk
1 on |f ′(u)|lk and, as before,

bounds M lk
2 on |f ′′(u)|lk and Cml on |L(u)|ml for |u|k ≤ 1.

41.1 The modified scheme

The idea of Nash was to modify Newton’s scheme into

un = un−1 − S(tn−1)L(un−1)f(un−1), (41.4)

with a suitable choice of tn → ∞ as n → ∞. In (41.4) the new factor
Sn−1 = S(tn−1) maps L(un−1)f(un−1) back to (the strict subset of smooth
functions of) the original domain of f . This comes with a cost which is
estimated using the norm of the smoothing operator Sn−1 in the chain

un−1 ∈ X = Ck f−→ Z = C l L(un−1)−−−−→ Y = Cm Sn−1−−−→ un ∈ X = Ck.

Before we do so let’s examine how (40.4) is modified when combined with
(41.4). We have

f(un) = f(un−1) + f ′(un−1)(un − un−1)︸ ︷︷ ︸
vanishes with (40.10)

+Qf (un−1, un)

= f ′(un−1)(I − Sn−1)L(un−1)f(un−1)︸ ︷︷ ︸
because of (41.4)

+Qf (un−1, un),

so that, with
pn = |un − un−1|k and qn = |f(un)|l,

the estimate

qn ≤M lk
1 |I − Sn−1|km|L(un−1)f(un−1)|m︸ ︷︷ ︸

new error like term

+
1

2
M lk

2 p
2
n (41.5)

holds.

41.2 The new error term

The third factor in the error like term in (41.5) will have to be controled
using some assumption on the map

u→ L(u)f(u)

which was not needed in the case of (40.10) and that should guarantee that
quadratic term in (41.5) will still allow us to establish a conclusion like
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(40.15). Clearly this is impossible if m ≤ k because we can only make
|I − Sn|km small if k < m. Nash’ solution was to replace m by a (much)
larger m̄ and assume an otherwise natural affine estimate of the form

|L(u)f(u)|m̄ ≤ Am̄k̄(1 + |u|k̄) (41.6)

with
k̄ − m̄ = k −m,

which requires an additional estimate for

rn = 1 + |un|k̄ (41.7)

to be used in combination with

qn ≤M lk
1 |I − Sn−1|km̄︸ ︷︷ ︸

controled by (41.3)

rn−1 +
1

2
M lk

2 p
2
n (41.8)

and the estimate for pn. Via (41.4) the latter now reads

pn ≤ |Sn−1|kmCmlqn−1 (41.9)

because |L(un−1)f(un−1)|m ≤ Cmlqn−1.
The additional estimate needed for rn also follows from (41.4). In view

of

|un − un−1|k̄ ≤ |Sn−1|k̄m̄|L(un−1f(un−1)|m̄ ≤ |Sn−1|k̄m̄Am̄k̄(1 + |un−1|k̄)

we have

1 ≤ rn ≤ 1 + Am̄k̄

n∑
j=1

|Sj−1|k̄m̄rj−1. (41.10)

The “error” terms accumulate but can be kept under control as we shall see
below.

The system of inequalities (41.9,41.8,41.10) and initial inequalities for q0,
r0 = 1 and r1 allows again estimates of the form (40.20), provided k̄ − k =
m̄−m is sufficiently large in terms of (41.1). The idea is to get the first term
in (41.8) controled by the right hand side of

p2
n ≤ e−2γλn

in the induction argument, so that the norm |Sn|km in (41.9) can be chosen
not to large so as still to have (40.20) with n if it already holds with n−1. To
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do so we need a control on |Sn−1|km of the same form and this is established
by setting

tn−1 = eβλ
n−1

(41.11)

with β > 0 to be chosen in terms of γ. Note that this gives λn in the
exponents of the exponential bounds for Sn and I − Sn.

Here we choose to keep λ as a parameter in a range as large as possible,
like we did in the analysis of (40.10). Clearly we can only complete the
argument if we also specify a bound on rn to be established in the course
of the argument, and this bound has to be of the same form as the bound
chosen for Sn. Thus we look for a proof that

pn ≤ e−γλ
n

and rn ≤ eδλ
n

(41.12)

with δ > 0. We note that the proof presented in [KP] the choice δ = γ and
λ = 3

2
dates back to Schwartz’s lecture notes. As we shall see below this is

not quite the optimal choice.

41.3 The system of inequalities

With (41.11) we have the system of inequalities

pn ≤ Kkme
(k−m)βλn−1

Cmlqn−1; (41.13)

qn ≤M lk
1 K

km̄e(k−m̄)βλn−1

Am̄k̄ rn−1︸︷︷︸
≤eδλn−1

+
1

2
M lk

2 p2
n︸︷︷︸

≤e−2γλn

; (41.14)

1 ≤ rn ≤ 1 + Am̄k̄Kk̄m̄︸ ︷︷ ︸
µ3

n∑
j=1

e(k̄−m̄)βλj−1

rj−1︸︷︷︸
≤eδλj−1

, (41.15)

and we aim for a proof of (41.12) via induction, using the underbraced esti-
mates in the three inequalities above as induction hypothesis. In (41.14) the
estimate of the first term is controled by the estimate of the second term if

e(k−m̄)βλn−1

eδλ
n−1 ≤ e−2γλn ,

requiring
(m̄− k)β ≥ δ + 2γλ, (41.16)

which says that in the λ, β-plane we must be above a line that comes down
as m̄ is increased.

638



Combining the first two inequalities we arrive at

pn ≤ e(k−m)βλn−1

(µ1e
(k−m̄)βλn−2

rn−2 + µ2p
2
n−1) rn ≤ 1 + µ3

n−1∑
j=0

e(k̄−m̄)βλjrj,

(41.17)
the constants µ123 given by

µ1 = KkmCml︸ ︷︷ ︸
C

M lk
1 Kkm̄Am̄k̄︸ ︷︷ ︸

A

, µ2 =
1

2
KkmCml︸ ︷︷ ︸

C

M lk
2 , µ3 = Kk̄m̄Am̄k̄︸ ︷︷ ︸

Ā

.

(41.18)

41.4 Estimating the increments

Under the assumption that (41.16) holds, the induction hypotheses for pn−1

and rn−2 produce the desired inequality for pn from (41.17) if

(µ1 + µ2)e(k−m)βλn−1

e−2γλn−1 ≤ e−γλ
n

.

Thus we must have

ln(µ1 + µ2) ≤ −(k −m)βλn−1 + 2γλn−1 − γλn

for all n ≥ 2. As in the case of the standard Newton scheme, this leads to

ln(µ1 +µ2) ≤ λ(γ(2−λ)− (k−m)β) with (k−m)β ≤ γ(2−λ), (41.19)

a sharp upper bound for β that we need to stay away from if we don’t want
to impose that µ1 + µ2 ≤ 1.

As sufficient condition for

∞∑
n=1

pn < 1

we can use the optimal condition found using Bernoulli’s inequality, namely

λγ(2− λ) ≤ ln(eγλ − 1). (41.20)

41.5 Estimating the error terms

For the inductive construction of the upper bound for rn we set

b = (k̄ − m̄)β = (k −m)β > 0 (41.21)
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and conclude from the inequality in (41.17) that (shifting the index)

rn ≤ 1 + µ3

n−1∑
j=0

ebλ
j

rj ≤ 1 + µ3

n−1∑
j=0

ebλ
j

eδλ
j

in view of the induction assumption for (all) smaller n. Thus we need the
inequality

1 + µ3

n−1∑
j=0

e(b+δ)λj ≤ eδλ
n

(41.22)

for all n ≥ 2. Recall that we start with r0 = 1 ≤ eδ and

1 ≤ r1 ≤ eδλ (and also p1 ≤ eγλ of course) (41.23)

via a smallness assumptions on q0 still to be discussed.
Dividing by the right hand side, (41.22) is equivalent to

e−δλ
n

+ µ3(e(b+δ−δλ)λn−1

+ e−δλ
n
n−2∑
j=0

e(b+δ)λj) ≤ 1 (41.24)

in which we have separated the probably dominant term with j = n − 1
from the sum. Neglecting the sum in (41.24) a sufficient (and in any case
necessary) condition for the induction step to work for all n ≥ 2 would be
that

lnµ3 + (b+ δ − δλ)λn−1 ≤ 0 with b ≤ δ(λ− 1), (41.25)

so that in particular we now need to impose two inequalities on b, namely

b < δ(λ− 1) and b < γ(2− λ), (41.26)

the latter being the (strict) inequality from (41.19).
These two bounds severely restrict the bound in (41.16), which in terms

of b becomes
m̄− k
k −m

b ≥ δ + 2γλ, (41.27)

and this does not really depend on how we turn the necessary condition
(41.25) into a sufficient condition, which we do next, rewriting it as

e−δλ
n

+ µ3(e(b+δ−δλ)λn−1

+
n−2∑
j=0

e(b+δ−δλn−j)λj) ≤ 1.
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In view of (41.26) and using Bernoulli’s inequality (40.31) the left hand side
is smaller than

e−δλ
2

+ µ3(e(b+δ−δλ)λ +
n−2∑
j=0

e(b+δ−δλ2)λj) <

e−δλ
2

+ µ3(e(b+δ−δλ)λ +
∞∑
j=0

e(b+δ−δλ2)(1+j(λ−1))) <

e−δλ
2

+ µ3(e(b+δ−δλ)λ +
eb+δ−δλ

2

1− e(λ−1)(b+δ−δλ2)
),

in which we used that b+ δ − δλ2 < b+ δ − δλ < 0. Thus we arrive at

e−δλ
2

+ µ3e
(b+δ−δλ)λ(1 +

e−(b+δ)(λ−1)

1− e(λ−1)(b+δ−δλ2)
) ≤ 1 (41.28)

Note that the first term on the right hand side of (40.31) is essential here.
Without this first term the numerator, which is the first term (j = 0) in the
geometric series, would be 1 and we be stuck, as there would be no way to
get a statement without an a priori bound on µ3. We note that in [KP] the
proof is without the 1 in (40.31) but an accidental mistake of computing the
series with j = 1 as the first term “allows” to conclude. Technically speaking
that proof is incorrect1.

The quickest way to finish is to estimate the sum of the geometric series
by a fixed constant, rewriting it as

e−s

1− es−S
=

eS

es(eS − es)

with
s = (b+ δ)(λ− 1) ≤ δλ(λ− 1) = s0 < S = δλ2(λ− 1).

Provided
2es0 ≤ eS or ln 2 ≤ δλ(λ− 1)2,

this expression is monotone decreasing in s on [0, s0] and thus

e−(b+δ)(λ−1)

1− e(λ−1)(b+δ−δλ2)
≤ 1

1− e−δ(λ−1)λ2 ≤ 2.

We conclude that

e−δλ
2

+ 3µ3e
(b+δ−δλ)λ ≤ 1 suffices if ln 2 ≤ δλ(λ− 1)2, (41.29)

1And it is not a proof of the theorem actually stated.
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and the first inequality in (41.29) certainly holds if it holds with the first
exponential replaced by the larger second exponential. Thus we arrive at

ln(1 + 3µ3) ≤ λ(δ(λ− 1)− b) and ln 2 ≤ δλ(λ− 1)2 (41.30)

as the final condition needed.

41.6 Sufficient conditions for a convergence result

Summing up, with the condition on q0 still to be imposed we arrive at

λγ(2− λ) ≤ ln(eγλ − 1), (41.31)

ln 2 ≤ δλ(λ− 1)2, (41.32)

(m̄− k)β ≥ δ + 2γλ, (41.33)

(k −m)β < γ(2− λ) and (k̄ − m̄)β < δ(λ− 1) (41.34)

as conditions on the parameters that we still have to choose.
The first inequality, (41.31), is to have the sum of the increments, and

thereby the solution, bounded by 1 in the l-norm. Of course it can be replaced
by just asking that

∞∑
n=1

e−γλ
n ≤ 1.

The second, (41.32), was a technical condition to bound the sum of the
geometric series in (41.28) by 2. The third, (41.33), allows to bound the error
term in estimate (41.14) for qn by the bound on p2

n that has to be established.
It involves the choice of sufficiently large m̄ and k̄ with k̄ − m̄ = k −m.

The last two conditions are strict inequalities that have be chosen suf-
ficiently strict depending on the constants related to f , to allow for an in-
ductive proof of the desired estimates (41.12) for pn and rn. Thus, given
µ1, µ2, µ3, we need to choose 1 < λ < 2 and γ, β, δ > 0 such that

λ(γ(2− λ)− (m− k)β) ≥ ln(µ1 + µ2); (41.35)

λ(δ(λ− 1)− (m̄− k̄)β) ≥ ln(1 + 3µ3). (41.36)

After a simultaneous rescaling of γ, β, δ, this is always possible once the first
5 conditions are satisfied. The inequalities in (41.34) being strict is essential
for convergence of Nash’ modified Newton scheme.
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Of course we still have to formulate the necessary sufficient bound on
q0 = |f(0)|l, given the constants in (41.18) and the choice of parameters
above. Recall that

µ1 + µ2 = KkmCml︸ ︷︷ ︸
C

(M lk
1 Kkm̄Am̄k̄︸ ︷︷ ︸

A

+
1

2
M lk

2 ) = C(M1A+
1

2
M2)

and
µ3 = Kk̄m̄Am̄k̄ = Ā,

with C,M1,M2, A, Ā constants related to f and the smoothing operators.
From here on we drop the superscripts from the bounds M1 and M2 on the
first and second derivative of f : Ck → C l.

41.7 Sufficient convergence condition on initial value

Finally we examine the initial inequalities we need. For p1 we need, since
u0 = 0, that

p1 = |u1|k = |S0|km|L(0)|ml|f(0)|l ≤ e(k−m)βKkmCml︸ ︷︷ ︸
C

|f(0)|l ≤ e−γλ,

while via

|u1|k̄ ≤ |S(0)|k̄m|L(0)|ml|f(0)|l ≤ Kk̄me
(k̄−m)βCml|f(0)|l ≤ eδλ

we need
1 +Kk̄mCml︸ ︷︷ ︸

C̄

e(k̄−m)β|f(0)|l ≤ eδλ

for r1. Thus

Cq0 ≤ e−(k−m)βe−γλ and C̄q0 ≤ e−(k̄−m)β(eδλ − 1) (41.37)

are sufficient conditions on
q0 = |f(0|l

to have a solution of f(u) = 0 with |u|k < 1, once the parameters have been
chosen according to Section 41.6 to make the induction steps work in the
proof of the desired estimates (41.12) for pn and rn.
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41.8 The optimal choice of parameters

At this point we compare (41.35) and (41.36) to (40.23). The strict inequal-
ities in (41.34) are really strict in the sense that the gaps have to be taken
sufficiently large large given the explicit constants related to f and S(t).
The other two inequalities are not strict. Recalling that k−m = k̄− m̄, the
coefficient

m̄− k
k −m

=
m̄−m
k −m

− 1 =
m̄−m
k̄ − m̄

− 1 =
k̄ − k
k −m

− 1 = N − 1 (41.38)

has to be sufficiently large for the set of allowable b, as defined by (41.21),
to be nonempty. Note that in Nash’ strategy to get around the ill-posedness
of Newton’s method, (41.1) is the natural definition of N as the ratio of the
required increase of smoothness by k̄− k to the loss of smoothness by m− k
in u→ L(u)f(u) .

The minimal largeness condition on N is obtained by taking the right
hand sides of the inequalities in (41.34) equal to one another, so as to maxi-
mize the allowable upper bound for β. Thus we choose 1 < λ < 2 such that

γ(2− λ) = δ(λ− 1) whence λ =
2γ + δ

γ + δ
(41.39)

and (41.33,41.34) become

4γ2 + 3γδ + δ2

γ + δ
≤ (N − 1)b < (N − 1)

γδ

γ + δ
(41.40)

for
b = (k −m)β = (k̄ − m̄)β

in terms of γ, δ,N , subject to (41.31,41.32) which reduce to

e
2γ+δ
γ+δ

δ
γ+δ + 1 ≤ eγ

2γ+δ
γ+δ and ln 2 ≤ δ

2γ + δ

γ + δ

(
γ

γ + δ

)2

. (41.41)

In particular (41.40) requires

N >
4γ

δ
+ 4 +

δ

γ
≥ 8, (41.42)

the minimum 8 being realised by

δ = 2γ. (41.43)
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The further choice of parameters depends on the constants which are as
indicated in (41.18), at the end of Section 41.6 and in (41.37):

C = KkmCml; C̄ = Kk̄mCml; A = Kkm̄Am̄k̄; Ā = Kk̄m̄Am̄k̄; (41.44)

µ1 + µ2 = C(M1A+
1

2
M2); µ3 = Ā. (41.45)

We collect these constants in one single constant Θ as

Θ =
3

4
max(lnC + ln(M1A+

1

2
M2), ln(1 + 3Ā)) (41.46)

and, depending on N , the remaining parameters γ, b have to be chosen to
control these constants via

Θ ≤ 2γ

3
− b (41.47)

and

14γ

3
≤ (N − 1)b <

2γ

3
(N − 1), e

8
9 + 1 ≤ e

4γ
3 , ln 2 ≤ 8γ

27
, (41.48)

which is (41.40,41.41) with δ = 2γ. The last inequality now implies the one
preceding it.

For the initial condition q0 we arrive via (41.39) at

Cq0 ≤ e−γ
2γ+δ
γ+δ e−b and C̄q0 ≤ (eδ

2γ+δ
γ+δ − 1)e−(k̄−m)β =

(eδ
2γ+δ
γ+δ − 1)e−(k̄−m̄)βe−(m̄−m)β = (eδ

2γ+δ
γ+δ − 1)e−(N+1)b,

so that with δ = 2γ the conditions on q0 reduce to

Cq0 ≤ e−
4γ
3 e−b and C̄q0 ≤ (e

8γ
3 − 1)e−(N+1)b. (41.49)

Setting

ρ =
2γ

3

we arrive at

Θ ≤ ρ− b, 7ρ ≤ (N − 1)b, ρ ≥ 9

4
ln 2,

lnC + ln q0 ≤ −2ρ− b, ln C̄ + ln q0 ≤ ln 80− (N + 1)b,

as sufficient conditions. Note that we have used the lower bound for ρ to
relax the bound on C̄q0.
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Choosing

N > 8 and ρ =
N − 1

7
b

and using the last lower bound for ρ we arrive at

b ≥ max(
63

4

ln 2

N − 1
,

7Θ

N − 8
) and q0 ≤ min(

1

C
e−

2N+5
7N

b,
80

C̄
e−(N−1)b)

(41.50)
as sufficient conditions, to be used as: given Θ choose N > 8 and b = (k−m)β
sufficiently large to make the condition on q0 follow and thereby obtain a
solution of f(u) = 0 with |u|k < 1.

41.9 Continuity

Given the constants related to f and the smoothing operators we constructed
a solution in the open unit k-ball, that is, with |u|k < 1. We did not prove
or state that the solution is unique, but it is well-defined as the limit of an
explicitly constructed sequence shown to be convergent if |f(0)|k is sufficiently
small. The following issue relates to the continuity of the inverse function of
f , if it were to exist, since we should naturally also ask for a condition |f(0)|k
guaranteeing the constructed solution to have |u|k ≤ ε. This only changes
the condition on the sum of the increments and leads to

γλ(2− λ) ≤ ln(eγλ − 1

ε
)

leading to

Θ ≤ 2γ

3
− b, 14γ

3
≤ (N − 1)b <

2γ

3
(N − 1), e

8
9 +

1

ε
≤ e

4γ
3 , ln 2 ≤ 8γ

27
,

in stead of (41.47,41.48). The conditions on γ rewrite as

γ ≥ max(
3

4
ln(

1

ε
+ e

8
9 ), 2

27
8 ) ∼ ε−

3
4

as ε → 0. This forces a larger choice of b and thereby via (41.49) a smaller
(exponentially small in terms of ε in fact) bound on q0 for the Nash scheme
to converge within the ball of k-radius ε, as was to be expected of course.
The fact that the limit u is a solution of f(u) = 0 is immediate from (41.14).

Note that for the standard Newton method the constructed solution of
f(u) = 0 will have |u| < ε if we take equalities in (40.30) and replace the −1
by −1

ε
. The upper bound P̄ than has to be replaced by P̄ε = ε

1+µε
and the

condition on q0 becomes q0 ≤ CP̄ε.
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42 The Nash embedding theorem

The Schwartz’s lecture notes contain a nice but nonconstructive argument
to apply the above together with convexity arguments and the Hahn-Banach
Theorem to prove that the n-dimensional torus with any nonstandard Rie-
mannian metric embeds in some IRN. To be explained here. See Chapter 39.
Requires a deeper discussion of the smoothing operators used in the proof of
Theroem 32.19 and the Fourier transfrom.
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43 Hartman-Grobman stelling

Some material prepared for this very enjoyable event (see also Section 14):

www.universiteitleiden.nl/agenda/2017/04/nationaal-wiskunde-symposium

In [HM] hebben we uitgebreid gekeken naar de Methode van Newton voor het
oplossen van vergelijkingen, met als eerste voorbeeld het snel benaderen van
algebräısche getallen, bijvoorbeeld

√
2, dat een vast punt is van de afbeelding

x
F−→ F (x) =

1

2
(x+

2

x
),

een afbeelding die ongeveer 3000 jaar oud is, en later herontdekt is via

f(x) = x2 − 2 en F (x) = x− f ′(x)−1f(x) = x− f(x)

f ′(x)
.

De mooie eigenschappen van het discrete dynamisch systeem gedefinieerd
door

xn = F (xn−1) (n ∈ IN)

worden deels verklaard door het feit

F ′(x) =
f(x)f ′′(x)

f ′(x)2

gelijk is aan 0 in nulpunten van f(x) en

F (x) = x ⇐⇒ f(x) = 0

voor elke x met f ′(x) 6= 0. Een curieus voorbeeldje in Hoofdstuk 6 van The
Beauty of Fractals van Peitgen en Richter is

f(x) =
x

1− x
en F (x) = x2,

en dat is er eentje uit een curieuze familie, bijvoorbeeld

f(x) =
x

(1− x)
1
7 (1 + x+ x2 + x3 + x4 + x5 + x6)

1
7

en F (x) = x8,

maar dat terzijde. De afbeeldingen

x→ x2 en x→ 1

2
(x+

2

x
)
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hebben vaste punten waar hun afgeleide 0 is en het is niet moeilijk jezelf ervan
te overtuigen dat dit leidt tot snelle convergentie de rij xn naar evenwicht,
als je begint met x0 in de buurt van een evenwicht.

Neem je zomaar een functie F om een dynamisch systeem te maken zoals
hierboven, en is F (0) = 0, dan bepaalt de afgeleide F ′(0) in het algemeen of
x = 0 een (lokaal) stabiel of onstabiel evenwicht is, zoals het voorbeeld

x→ λx

met λ ∈ IR bij inspectie meteen laat zien. Een voor de hand liggende vraag
is dan of de dynamische systemen gedefinieerd door

x→ F (x) en x̃→ F ′(0)x̃

niet eigenlijk hetzelfde zijn via een conjugatie:

x
φ−→ x̃

F ↓ ↓ F ′(0)

F (x)
φ−→ F ′(0)x̃

Dus is er een inverteerbare afbeelding φ waarmee

F ′(0)φ(x) = φ(F (x))

voor x in een zo groot mogelijke buurt van x = 0? Als we F (x) schrijven als

F (x) = λx+ a(x)

dan is de vraag dus of we gegeven λ ∈ IR en a : IR → IR met a′(0) = 0 de
functie φ : IR→ IR kunnen vinden zodanig dat

λφ(x) = φ(λx+ a(x))

in de buurt van x = 0, en dit kunnen we proberen op te lossen door middel
van

φn(x) =
φn−1(λx+ a(x))

λ
beginnend met φ0(x) = x.

Als we een a nemen met a′(0) = 0 en a(x) = 0 voor |x| buiten een interval
gedefinieerd door |x| ≤ η met η wellicht nog te kiezen, dan zien we dat de
onbekende functie φ voor |x| ≥ η wel gegeven moet worden door φ(x) = x.
Hoewel? Is het duidelijk dat gegeven λ ∈ IR uit

λφ(x) = φ(λx)
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voor alle x ∈ IR volgt dat φ(x) = x voor alle x ∈ IR? Niet meteen dus. Maar
φ(x) = x doet het wel.

Terzijde, als φ differentieerbaar is volgt (als λ 6= 0) dat

φ′(x) = φ′(λx)

voor alle x ∈ IR, en daarmee zijn heel veel φ′ waarden gelijk aan elkaar, tenzij
|λ| = 1. Als φ′ continu is in 0 moet wel te bewijzen zijn dat φ′(x) = φ′(0)
voor alle x. En φ′(0) = 1 ligt voor de hand als normaliserende voorwaarde.

Of we voor voor a(x) 6≡ 0 zo’n differentieerbare φ wel maken is echter zeer
de vraag. In het iteratieproces helpt de λ in de noemer wellicht als |λ| > 1 is.
Weer terzijde, het voorbeeld met a(x) = x2 laat zien dat zonder de aanname
dat a(x) ≡ 0 voor |x| groot er weinig hoop is, want we krijgen

φ1(x) = x+
x2

λ
,

φ2(x) = x+

(
1

λ
+ 1

)
x2 +

2x3

λ
+
x4

λ2
,

φ3(x) = x+

(
1

λ
+ 1 + λ

)
x2 +

(
2

λ
+ 2 + 2λ

)
x3 +

(
1

λ2
+

1

λ
+ 6 + λ

)
x4

+

(
6

λ
+ 4

)
x5 +

(
2

λ2
+

6

λ

)
x6 +

4x7

λ2
+
x8

λ3
,

φ4(x) = x+

(
1

λ
+ 1 + λ+ λ2

)
x2 +

(
2

λ
+ 2 + 4λ+ 2λ2 + 2λ3

)
x3

+

(
1

λ2
+

1

λ
+ 7 + 7λ+ 6λ3 + λ4 + 7λ2

)
x4 + · · ·+ x16

λ4
,

enzovoorts.
De Stelling van Hartman Grobman gaat in het simpelste geval om de

vraag of voor de afbeelding

(x, y)
F−→ (ξ, η) = (λx+ a(x, y), µy + b(x, y))

het stelsel
λφ(x, y) = φ(λx+ a(x, y), µy + b(x, y))

µψ(x, y) = ψ(λx+ a(x, y), µy + b(x, y))

kunnen oplossen naar de functies φ, ψ onder de aanname dat

0 < |µ| < 1 < |λ|,
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teneinde de afbeelding F te conjugeren met de afbeelding

(x̃, ỹ)→ (ξ̃, η̃) = (λx̃, µỹ).

Dit zijn twee vergelijkingen, in de eerste is de onbekende de functie φ,
in de tweede de functie ψ. Die voor φ lijkt op de vergelijking waarmee we
begonnen en waarvoor de geschetste aanpak kans van slagen heeft als |λ| > 1.
De aannamen op a(x, y) en b(x, y) zijn nu zoals die op a(x) hierboven, dus

ax(0, 0) = ay(0, 0) = bx(0, 0) = by(0, 0) = 0,

en a(x, y) en b(x, y) tenminste continu differentieerbaar. Met die conditie is
het stelsel

ξ = λx+ a(x, y)

η = µy + b(x, y)

in de buurt van (0, 0) op te lossen naar x, y in de vorm

x =
1

λ
ξ + α(ξ, η)

y =
1

µ
η + β(ξ, η)

met α(ξ, η) en β(ξ, η) continu differentieerbaar in de buurt van (0, 0) en

αξ(0, 0) = αη(0, 0) = βξ(0, 0) = βη(0, 0) = 0.

De eerste vergelijking houden we zoals die was, de tweede schrijven we in
ξ, η. Beide vergelijkingen hebben dan dezelfde vorm:

φ(x, y) =
1

λ
φ(λx+ a(x, y), µy + b(x, y))

ψ(ξ, η) = µψ(
1

λ
ξ + α(ξ, η),

1

µ
η + β(ξ, η))

Om deze vergelijkingen op te lossen moeten we dus eerst weten hoe we de
eerdere vergelijking voor φ : IR→ IR oplossen.

Als |a(x)| ≤ ε|x| dan volgt

|φ1(x)− φ0(x)| = |1
λ

(λx+ a(x))− x| = |a(x)

λ
| ≤ ε

λ
|x|,

en dan

|φ2(x)− φ1(x)| = |1
λ
φ1(λx+ a(x))− 1

λ
φ0(λx+ a(x))|
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≤ ε

|λ|2
|λx+ a(x)| ≤ ε(|λ|+ ε)

|λ|2
|x|,

waarna

|φ3(x)− φ2(x)| = |1
λ
φ2(λx+ a(x))− 1

λ
φ1(λx+ a(x))|

≤ ε(|λ|+ ε)

|λ|3
|λx+ a(x)| ≤ ε(|λ|+ ε)2

|λ|3
|x|.

Zo wordt duidelijk dat

|φn(x)− φn−1(x)| ≤ ε(λ+ ε)n−1

|λ|n
|x|,

niet genoeg om de rij φn(x) convergent te krijgen, maar als ook geldt dat
a(x) = 0 voor |x| ≥ η dan kunnen we met 0 < δ < 1 de schattingen aanpassen
als

|φ1(x)− φ0(x)| ≤ ε

|λ|
η1−δ|x|δ,

|φ2(x)− φ1(x)| ≤ ε

|λ|2
η1−δ|λx+ a(x)|δ ≤ ε

|λ|2
η1−δ(|λ|+ ε)|x|δ,

en dan wordt duidelijk dat

|φn(x)− φn−1(x)| ≤ εη1−δ (|λ|+ ε)δ(n−1)

|λ|n
|x|δ.

Uniforme convergentie volgt als

(|λ|+ ε)δ < |λ|.
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44 Airy functions

I did the calculations below while reading Chapter 8 in Peter Olver’s new
PDE book with a little help of E.J. Hinch’s nice little Cambridge Applied
Math textbook on perturbation methods. Just goes to show how beautiful
(also applied) complex analysis is.

The Airy function is defined by

Ai(ξ) =
1

2π

∫ ∞
−∞

ei(ξx+x3

3
)dx,

an integral barely convergent. The Airy function plays the same role in the
theory for ut + uxxx = 0 as the Gaussian e−

1
2
x2

for ut = uxx. Both functions
define the spatial profile of the fundamental solution.

Replacing ξ ∈ IR by ζ ∈ IC the Airy function is a complex analytic
function of

ζ = ξ + iη = ρeiψ.

Replacing also x ∈ IR by
z = x+ iy ∈ IC

one may deform the “real” contour C defined by z = z(t) = t with −∞ <
t < ∞ to another contour γζ that connects two points at infinity. This can
be done (without changing the outcome) as long as the integrals of

ei(ζz+
z3

3
) = eΦ(z;ζ)

over the connecting arcs |z| = R between C and the new contour γζ go to
zero as R→∞.

To answer the question

Ai(ρ)eiψ ∼ ? as ρ→∞ (for ψ fixed),

one chooses the new contour to be one along which the absolute value of
the integrand, eRe Φ(z;ζ), is peaked and has fast decay as |z| → ∞, and along
which Im Φ(z; ζ) = φζ is a ζ-dependent constant, so that

Ai(ζ) =
1

2π

∫
γζ

ei(ζz+
z3

3 )dz =
1

2π

∫
γζ

eRe Φ(z;ζ)︸ ︷︷ ︸
real,positive

dz eiφζ ,

in which the integrand is real, although dz = dx + idy will typically still
make the integral complex. The factor eiφζ contains the “stationary phase”
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φζ . If Mζ is the maximum of Re Φ(z; ζ) along γζ , realised in some z = mζ ,
one may also factor out eMζ and write

Ai(ζ) =
eMζ+iφζ

2π

∫
γζ

e−f0(z;ζ)dz︸ ︷︷ ︸
→ ? as |ζ|→∞

,

in which f0(z; ζ) ≥ 0 along γζ . Typically f0(z; ζ) has a unique global mini-
mum zero along γζ and f0(z; ζ) → +∞ as |z| → ∞ along γψ. Note though
that the integrand is likely to be ill-behaved as ρ = |ζ| → ∞, also because
the contour γζ may disappear in the limit. The resolution of this latter com-
plication may be prepared by scaling x before going to complex variables and
making the optimal choice of γζ .

Thus, returning to the definition of Ai(ζ) one writes Ai(ρeiψ) =

1

2π

∫ ∞
−∞

ei(ρe
iψx+x3

3 )︸ ︷︷ ︸
scalex=ρ

1
2 u

dx =
ρ

1
2

2π

∫ ∞
−∞

eiρ
3
2 (eiψu+u3

3
)du =

ρ
1
2

2π

∫ ∞
−∞

eρ
3
2 Ψ(u)du,

in which you should now view u as u = Rew with w = u + iv ∈ IC. The
effect of this scaling is that the level lines of Im Ψ(w) are independent of ρ.

One has

Ψ(w) = i(eiψw +
w3

3
) = f(u, v;ψ) + ig(u, v;ψ),

with

f(u, v;ψ) = −v cosψ − u sinψ + v(−u2 +
v2

3
)

and

g(u, v;ψ) = u cosψ − v sinψ + u(
u2

3
− v2).

These harmonic functions have mutually perpendicular level curves. It is
convenient to think of the level curves of the imaginary part g(u, v;ψ) as
orbits of

u̇ =
du

dt
= fu =

∂f

∂u
= − sinψ − 2uv

v̇ =
dv

dt
= fv =

∂f

∂v
= − cosψ − u2 + v2,

a system of ordinary differential equations for u = u(t) and v = v(t). In fact,
Cauchy-Riemann gives

df

dt
= fuu̇+ fvv̇ = f 2

u + f 2
v > 0 ,

dg

dt
= guu̇+ gvv̇ = gufu + gvfv = 0.
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Figure 6: orbits for ψ = π
24

Thus the only orbits of interest as possible contours are the stable manifolds
of saddle points, with the maximum of the real part f along the contour
occurring in the saddle point.

This is illustrated for small positive ψ by Figure 1 which pictures the pos-
sibly relevant level curves of g(u, v; π

24
). The red curve is the stable manifold

of

mψ = (uψ, vψ) = (− sin
ψ

2
,+ cos

ψ

2
)

and asymptotes to 3v2 = u2. In particular it has u ranging from −∞ to +∞,
and may be written as the graph of a function v = ϕ(u;ψ). The other stable
manifold, that of

mψ+2π = (uψ+2π, vψ+2π) = (+ sin
ψ

2
,− cos

ψ

2
),

the green curve on the right, fails this condition and has a vertical asymptote.
The other branch of this level curve is the green curve on the left which is
not a stable manifold of either two saddles. Neither of these two orbits is of
direct use in relation to the Airy function, but this will change as ψ is taken
larger. Note that although Ai(ρeiψ) is 2π-periodic in ψ, the parametrisation
of the saddle point mψ is only 4π-periodic.

Deforming the contour as explained above,

Ai(ρeiψ) =
ρ

1
2

2π

∫ ∞
−∞

eρ
3
2 (f(u,ϕ(u;ψ);ψ)(1 + iϕ′(u;ψ))du︸ ︷︷ ︸

I(ρ,ψ)

eρ
3
2 (− 2i

3
(4 cos2 ψ

2
−1) sin ψ

2
),
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in which the phase factor has been made precise. It remains to examine the
integral I(ρ, ψ) in the limit ρ→∞. Clearly the most important information
comes from the (second order) Taylor expansion

f = f(u, ϕ(u;ψ);ψ) = Mψ − a2
ψ(u− uψ)2 + · · ·

with minor contributions coming from the higher order terms and the expan-
sion of ϕ′(u;ψ). Setting

u = uψ + p

one sees that to leading order the asymptotic expansion of the integral must
be given by

I(ρ, ψ) ∼ eMψρ
3
2

∫
e−a

2
ψρ

3
2 p2︸ ︷︷ ︸

scale s=aψρ
3
4 p

dp ∼ eMψρ
3
2

aψρ
3
4

∫
e−s

2

ds︸ ︷︷ ︸
√
π

+ · · · ,

so that

Ai(ρeiψ) =
1

2ρ
1
4
√
π

eMψρ
3
2

aψ
eρ

3
2 (− 2i

3
(4 cos2 ψ

2
−1) sin ψ

2
)(1 +O(ρ−

3
2 ))

as ρ → ∞. Notice the exponential decay combined with the increasingly
rapid oscillations because of the phase factor.

At first sight you might expect an O(ρ−
3
4 ) error estimate but since the

exponential function in the integrand expands as

e
−s2+b3

p3

ρ
3
4

+b4
p4

ρ
6
4

+b5
p5

ρ
9
4

+···
= e−s

2

(1 + (b3
p3

ρ
3
4

+ . . . ) +
1

2
(b3

p3

ρ
3
4

+ . . . )2 + · · · )

the higher order terms in the expansion of Ai(ρeiψ) involve the integrals∫
sne−s

2

ds (n = 3, 4, . . . )

of which the odd ones vanish. Therefore a contribution of the first b3-term
appears only in combination with the first order term in the expansion of
ϕ′ψ(uψ;ψ) (the second order term in the expansion of ϕψ(uψ;ψ)). It is an
exercise to make the expansion more precise.

One has

Mψ = −2

3
(4 cos2 ψ

2
− 3) cos

ψ

2
,
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and by direct but tedious calculation the stable manifold is given by

v = ϕψ(u) = ϕψ(−s+p) =
−sc+ p

√
1− 4

3
sp+ 1

3
p2

−s+ p
(c = cos

ψ

2
, s = sin

ψ

2
).

You should recognise a discriminant under the square root, which for the
level curve going through the saddle has the property that it is everywhere
positive, except in the saddle point mψ. Expansion gives

ϕψ(−s+ p) = c+
−1 + c

s
p+

1

3

2c− 1

c+ 1
p2 + . . . .

For ψ = 0 one has

v = ϕ0(u) = 1 +

√
1 +

1

3
u2 = 1 +

1

6
u2 − 1

72
u4 + · · ·

and

f(u, ϕ0(u)) = −2(1 +
4

9
u2)

√
1 +

1

3
u2 = −2

3
− u2 − 5

36
u4 + · · · ,

so that

a0 = 1, M0 = −2

3
, A0 = 0,

and

Ai(ξ) ∼ e−
2
3
ξ

3
2

2
√
πξ

1
4

as ξ → +∞, give or take a mistake in the constants, without oscillations.
Increasing ψ there are changes as ψ crosses π

3
and 2π

3
. For all 0 ≤ ψ < 2π

3

it still holds that

Ai(ρeiψ) =
ρ

1
2

2π

∫ ∞
−∞

eρ
3
2 (f(u,ϕ(u;ψ);ψ)(1 + iϕ′(u;ψ))du eρ

3
2 (− 2i

3
(4 cos2 ψ

2
−1) sin ψ

2
).

Figure 2 shows the relevant orbits for ψ = 15π
24

, with the same stable manifold
defining the contour, and the same asymptotics still valid, but with a different
sign for Mψ, as Figure 3 shows. The sign change occurs at π

3
. Thus for

π
3
< ψ < 2π

3
there is exponential growth of Ai(ρeiψ) as ρ → ∞, while the

nonzero phase factor accounts for increasingly rapid oscillations.
At ψ = 2π

3
, when the growth is maximal (and no oscillations, see Figure

8), the diagram (and the Maple automatic colour coding) changes. All orbits
in Figure 4 are in the stable or unstable manifolds of the saddle points.
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Figure 7: orbits for ψ = 15π
24

The appropriate contour now consists of 3 orbits: the 2 orbits in the stable
manifold of m 2π

3
(one of which is in the unstable manifold of m 8π

3
), and one

orbit in the stable manifold of m 8π
3

. Can you see which one? You should
convince yourself that M 8π

3
only enters the asymptotics beyond any relevant

order.
Only as ψ is increased to ψ = π both Mπ and M3π are on par: Mπ =

M3π = 0. The phases are then φπ = 2
3

and φ3π = −2
3
, and the two stable

manifolds are given by

v =
(u+ 1)

√
u(u− 2)

u
√

3
(u < 0) , v =

(u− 1)
√
u(u+ 2)

u
√

3
(u > 0).

You can now compute the expansion using both contours, with u running
from −∞ to 0 for the first integral and from 0 to ∞ for the second. Note
the symmetry in Figure 7.

Observe that for 2π
3
< ψ ≤ π the contours are different. In Figures 5

you see the red curve turning blue after the turning point, and as it escapes
to infinity along the negative v-axis it is joined by the green curve which is
the stable manifold of the other saddle point. As in the case that ψ = π,
the appropriate contour consists in fact of two contours: the sum of the
integrals along both stable manifolds defines Ai(ρeiψ). For ψ < π the main
contribution comes from the contour on the left. Solving a cubic equation
this contour can be written as a graph u = ϕ(v), but the main contribution
can be computed as above, still writing v = ϕ(u) near the saddle point.

A similar program works for the solution of ut + 1
3
uxxx = 0 that starts

658



Figure 8: Mψ and Mψ+2π

Figure 9: orbits for ψ = 16π
24

= 2π
3
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Figure 10: orbits for ψ = 17π
24

Figure 11: orbits for ψ = 23π
24
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Figure 12: orbits (stable manifolds: blue curves) for ψ = 24π
24

= π

Figure 13: Amplitude Mψ (red) and phase φψ, changes at ψ = 0, π
3
, 2π

3
, π.
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from a “wave packet”

u0(x) = e−
x2

4a eik0x,

along lines x = ct+ ξ. One then has

u(t, ct+ ξ) =
1√
2π

∫ ∞
−∞

eik(c+ 1
3
k2)t+iξk−a(k−k0)2

dk =
1√
2π

∫ ∞
−∞

etΦdk.

Replace k by z = x+ iy (not the same x of course) and write

Φ = Φ(z) = Φ(z; t) = Φ(z; t, ξ, k0, a) = f + ig

with

f = −ty(c+ x2 − 1

3
y2) + a(−(x− k0)2 + y2)− ξy

and

g = tx(c+
1

3
x2 − y2)− 2a(x− k0)y + ξx.

Then as before on may rewrite

u(t, ct+ ξ) =
1√
2π

∫ ∞
−∞

eΦ(x;t)dx =
1√
2π

∫
γ

eΦ(z;t)dz

in which γ consists of orbits in stable manifolds of a suitable gradient flow
of f , which is defined by

ẋ =
dx

dτ
=

1

t

∂f

dx
= −2xy − 2a

t
(x− k0),

ẏ =
dy

dτ
=

1

t

∂f

dy
= −c− x2 + y2 +

2ay − ξ
t

.

Unlike in the analysis of the Airy function integral, there is now no need
to scale x and y, because in the limit t → ∞ the diagram in the x, y-plane
is well defined. For c = 1 it is the same as in Figure 7 and for c = −1 it
coincides with Figure 9 (with u, v replaced by x, y). Unlike the u, v-diagram
the x, y-diagram varies with the parameter under consideration, as the role
of ρ is now played by t. One computes the relevant unstable manifold(s)
directly from solving g = φ, which is a quadratic equation in y, asking that
the discriminant

D =
4

3
x2(x2 + 3c)t2 + 4x(ξx− φ)t+ 4a2(x− k0)2

of this equation is positive except in the saddle point, thus first determining
simultaneously the saddle point and the phase φ by solving

D =
dD

dx
= 0.
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Figure 14: u, v-plane for ψ = 0, the vertical axis also consist of orbits

The phase φ then drops out of

x
dD

dx
−D = t2x4 + (a2 + ξt+ ct2)x2 − k2

0a
2 = 0,

which determines the square of the positive solution x = xc > 0 uniquely in
terms of the parameters t, c, ξ, a, the y-coordinate y = yc. The phase φc and
the value Mc of f in the saddle point (xc, yc) are then given by

yc(t) =
a(k0 − xc)

xct
, φc(t) = −2tx3

c

3
− 2a2k0(xc − k0)

xct
,

and

Mc(t) = −a(xc − k0)2 − a3(xc + 2k0)(xc − k0)2

3x3
ct

2
.

For the values of y, φ,M in the other saddle point replace xc by −xc. Note
that xc = xc(t) and likewise for yc, φc,Mc (the other dependencies are also
suppressed in the notation). Observe the different behaviours as t → ∞ for
c < 0 and c > 0.

At this point I found it convenient to continue the calculations for the
stable manifold with xc implicitly defined by the quartic xdD

dx
− D and all

other quantities explicitly in terms of xc. With

x = xc + u, y = yc + v,

the real and imaginary parts of Φ rewrite as

f = Mc + Fc, F = Fc(t) = −t(2xcuv + v(u2 − v2

3
))− ak0

xc
(u2 − v2),
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g = φc +Gc, G = Gc(t) = t(xc(u
2 − v2) + u(

u2

3
− v2))− 2ak0uv

xc
,

the latter defining the stable manifold as the graph v = ϕc(u) = ϕc(u; t)
obtained from solving G = 0 for v, the discriminant having the desired
behaviour: positive except for u = 0. For c > 0 this gives a globally defined
function and deforming contours as before it follows that

u(t, ct+ ξ) =
eMc(t)+iφc(t)

√
2π

∫ ∞
−∞

eFc(u,ϕc(u;t);t)(1 + iϕ′c(u; t))du.

Note that c has disappeared completely from the formula’s, except for the
dependence through xc.

The integral depends only on the formula’s for Fc and Gc, ϕc being defined
by solving G = 0, i.e.

(xc + u)tv2 +
2ak0u

xc
v − tu2(xc +

u

3
) = 0

and simplifying the discriminant using the quartic for xc. This gives

v = ϕc(u) =
u

xc(xc + u)

(
−ak0

t
+ xcR

)
,

in which

R =

√√√√√c+ 2x2
c +

ξ

t
+
a2

t2︸ ︷︷ ︸
positive

+
4xcu

3
+
u2

3
.

The derivative appears in the integral as

ϕ′c(u) = − ak0

t(xs + u)2
+
u(2xc + u)

3R(xc + u)
,

and the exponent in the integral rewrites as

Fc(u, ϕc(u; t); t) = −2

9

tRu2 (3xc + 2u)2

(xc + u)2 +
2

3

ak0u
2 (3xc + 2u)

(xc + u)2

−2

3

k0
2a2 (Rxct− ak0)u2 (3xc + u)

t2xc3 (xc + u)3

Clearly these formula’s suggest putting

u = xcs, k0 =
b

a
, t = bτ, ξ = bη
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This scaling of u makes each term separate as far the integration variable
and t are concerned, except for the R-terms. One now has to distinguish
between c < 0 (the case discussed by Olver) when u(t, ct+ ξ) appears as the
sum of 2 integrals involving the stable manifolds of both saddles, and c > 0,
when u(t, ct+ ξ) appears as one single integral.

With xc going to
√
−c if c < 0, both integrals can be handled as in the

Airy case, and the final expansion will depend on c. It may be handy to split
the exponential in 3 separate exponentials before you proceed. From the c-
dependence there should be a connection with the group velocity discussion
by Olver, as we see below. On the other hand, when c > 0 (this case is not
discussed by Olver) txc goes to a constant so xc → 0. Note that all 3 terms
involve s2, but with different signs. This is really an instructive example for
understanding the method!

Now to back to WHY we did this analysis observe that the prefactor in
the integral expression for

u(t, ct+ ξ)

contains
eMc

which behaves very differently for c < 0 and c > 0.
For c > 0 it is the second term in the expression for Mc(t) above that

dominates and goes to infinity because txc goes to a constant, and this leading
order term then goes to −∞ linearly in t. Modulo the details of the analysis
of the integral it follows that u(t, ct+ ξ)→ 0 exponentially fast as t→∞.

On the other hand, if c < 0 then xc →
√
−c and Mc(t)→ −a(

√
−c−k0)2

which is maximal and equal to zero for c = −k2
0. Thus only for this value of c

the solution is of order one along the line x = ct+ξ as t→∞, with the more
precise asymptotics following from a more detailed analysis of the integral, as
in the Airy functions case, with contributions from both saddle points, and
combining both phases and 2

3
c

3
2 t appearing in the imaginary part. Olver’s

point in the section about dispersion relations is that this group velocity −c
is 3 times larger as you would expect from looking at the single frequency
solution with a = 0, and he did so by one single calculation starting from
the dispersion relation. Read again what he did after the exam, and pay
attention to the factor 1

3
in the third order equation ut + 1

3
uxxx = 0 that I

solved starting from a wave packet centered at k = k0 rather than from a
single wave with k = k0.
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1. This is an exercise about applying the Fourier transform to solve the
equation ut + uxxx = 0 on the real line with initial data u(0, x) = δ(x),
the Dirac δ-function, and to investigate the behaviour of the solution
for x → −∞. The Fourier transform of a function f = f(x) and the
inverse transform are defined by

f̂(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikxdx, f(x) =
1√
2π

∫ ∞
−∞

f̂(k)eikxdk,

respectively whenever f and f̂ are sufficiently nice. The improper in-
tegrals are to be understood in the principal value sense∫ ∞

−∞
= lim

R→∞

∫ R

−R

and are often easiest evaluated using complex integration over appro-
priate contours.

(a) Explain why δ̂(k) = 1√
2π

.

(b) Show using integration by parts that (̂f ′)(k) = ikf̂(k).

(c) Let u be a smooth solution of ut + uxxx = 0 which decays to zero

sufficiently fast as |x| → ∞ to have (û)t = (̂ut). Here û = û(t, k)
denotes the Fourier transform of the function x→ u(x, t). Denote
the initial value of u by u0, that is, u0(x) = u(0, x). Show that

û(t, k) = û0(k)eik
3t

(d) Show that the inversion formula formally applied to the case that
û0(k) = δ̂(k) = 1√

2π
defines a solution formula

u(t, x) =
1

(3t)
1
3

Ai(
x

(3t)
1
3

)

in which

Ai(ξ) =
1

2π

∫ ∞
−∞

ei(ξx+x3

3
)dx.

(e) Use the methods above to determine the asymptotic behaviour of
Ai(ξ) for ξ → −∞.
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45 Al of niet metrische topologie

Een aardig dictaatje is hier te vinden, uit de tijd dat Leiden de R nog in de
naam had:

http://www.few.vu.nl/~jhulshof/NOTES/anal.pdf

Hieronder neem ik het over met wat aanvullingen en correcties:
Onze genormeerde ruimten X, waaronder IR, IR2 en ook C([a, b]) met de

maximumnorm, maar helaas niet R([a, b]) met de 1-norm, zijn voorbeelden
van metrische ruimten met het afstandsbegrip gedefinieerd door de metriek

(x, y)
d−→ d(x, y) = |x− y|, (45.1)

een afbeelding1 d van X×X naar [0,∞) met de eigenschappen dat voor alle
x, y, z ∈ X geldt dat

(i) d(x, y) = 0 ⇐⇒ x = y; (ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ d(x, z) + d(z, x). (45.2)

Iedere niet-lege deelverzameling A van X is zo een metrische ruimte, waarbij
we de algebraische vectorruimte operaties nu vergeten.

Definition 45.1. Een metrische ruimte is een niet-lege verzameling X met
een afbeelding d : X ×X → [0,∞) waarvoor (i),(ii) en (iii) uit (45.2) hier-
boven gelden voor alle x, y, z ∈ X.

Exercise 45.2. De ε,N -definitie van d(xn, xm) → 0 als m,n → ∞ definieert wat
een Cauchyrij in X is. Geef die definitie. Geef ook de definitie van het convergent zijn
van de rij xn in X.

We gebruiken hieronder de notatie xn → x voor x1, x2, x3, . . . , x ∈ X
zonder er steeds n → ∞ bij te zetten en spreken over ook een rij xn zonder
te vermelden dat n ∈ IN (of een andere deelverzameling van IZ van de vorm
m+ IN met m ∈ IZ, bijvoorbeeld IN0).

Exercise 45.3. Een flauwe opgave om aan de de notaties, definities en axioma’s te
wennen: laat zien dat als xn → x en xn → y (alles in X) voor de limieten x en y
geldt dat x = y. De limiet van een convergente rij is dus uniek.

1De d van distance, a van afstand doen we maar niet.

667



Met convergente rijen kunnen we voor metrische ruimten X en Y zeggen
wat het voor een afbeelding

F : X → Y

betekent om continu te zijn in a ∈ X.

Definition 45.4. Een afbeelding F van een metrische ruimte X naar een
(niet per se andere) metrische ruimte Y heet continu in a ∈ X als de impli-
catie

xn → a =⇒ F (xn)→ F (a)

geldt voor elke rij xn in X. Als dit het geval is voor elke a ∈ X dan zeggen
we dat F : X → Y continu is.

Exercise 45.5. Als X,Y, Z metrische ruimten en

X
F−→ Y en Y

G−→ Z

afbeeldingen dan is de afbeelding

X
G◦F−−−→ Z gedefinieerd door X

F−→ Y
G−→ Z

continu in a ∈ X als F continu is in a en G continu is in b = F (a). Hint: triviaal, leg
uit.

Definition 45.6. Een metrische ruimte heet rijkompakt als elke rij in X een
convergente deelrij heeft, en volledig als elke Cauchyrij in X convergent is
(in beide gevallen met limiet in X dus).

Exercise 45.7. Bewijs dat rijkompakte metrische ruimten volledig zijn.

Exercise 45.8. Als X en Y metrische ruimten zijn, met X rijkompakt, dan is iedere
continue F : X → Y uniform continu, i.e.

∀ε > 0∃δ > 0∀x, a ∈ X : d(x, a) ≤ δ =⇒ d(F (x), F (a)) ≤ ε.

Bewijs dit door een eerder bewijs over te schrijven.

Exercise 45.9. Als X een rijkompakte metrische ruimte is, dan heeft iedere continue
F : X → IR een globaal maximum en een globaal minimum op X. Bewijs ook dit
door een eerder bewijs over te schrijven.
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Continuiteit kunnen we ook met open verzamelingen beschrijven. In het
standaardjargon heet een deelverzameling G ⊂ X van een metrische ruimte
X gesloten als voor iedere rij xn in G met xn → x ∈ X de limiet x in G zit
(je kan G niet uit door limieten te nemen). Een verzameling O ⊂ X heet
open2 als zijn complement gesloten is.

Exercise 45.10. Bewijs dat in een Banachruimte iedere rijkompakte deelverzamel-
ing begrensd en gesloten is en dat in IRn ook de omgekeerde uitspraak geldt.

Uit Opgave 45.9 en Opgave 45.10 volgt dat de stelling over maxima en
minima van continue functies op gesloten begrensde deelverzamelingen van
IRN.

Theorem 45.11. Laat K ⊂ IRN begrensd en gesloten zijn en F : K → IR
continu zijn. Dan zijn er a, b ∈ K met F (a) ≤ F (x) ≤ F (b) voor alle x ∈ K.
De punten a en b heten de minimizer en de maximizer voor F , en de waarden
F (a) en F (b) het minimum en het maximum van F .

Exercise 45.12. De collectie G van alle gesloten deelverzamelingen van een metrische
ruimte X heeft drie belangrijke eigenschappen:

(i) ∅ ∈ G, X ∈ G; (ii) G1, G2 ∈ G =⇒ G1 ∪G2 ∈ G;

en (voor elke indexverzameling I)

(iii) Gi ∈ G ∀i ∈ I =⇒ ∩i∈IGi ∈ G.

Bewijs dit via de definitie dat G ∈ G als voor iedere rij xn in G met xn → x ∈ X voor
de limiet geldt x ∈ G.

Exercise 45.13. De collectie O van alle open deelverzamelingen van een metrische
ruimte X heeft de volgende eigenschappen:

∅ ∈ O, X ∈ O; O1, O2 ∈ O =⇒ O1 ∩O2 ∈ O;

en (voor elke indexverzameling I)

Oi ∈ O ∀i ∈ I =⇒ ∪i∈IOi ∈ O.
2Minder gelukkige naamgeving, sorry, is niet anders.
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Bewijs dit via de definitie dat O ∈ O als

Oc = {x ∈ X : x 6∈ O} ∈ G.

Exercise 45.14. Laat zien dat in een metrische ruimte X een deelverzameling
O ⊂ X open is dan en slechts dan als voor elke a ∈ O er een r > 0 is zo dat

B̄r(a) = {x ∈ A : d(x, a) ≤ r} ⊂ O.

Bewijs ook dat B̄r(a) gesloten is.

Om te weten welke verzamelingen open zijn moet je dus weten wat de
gesloten bollen B̄r(a) zijn maar niet eens dat. Heb je bijvoorbeeld twee
normen en noemen we de bijbehorende bollen B̄r(a) en K̄s(a) dan krijgen
we precies dezelfde open verzamelingen als elke B̄r(a) met r > 0 altijd een
K̄s(a) bevat met s > 0 en omgekeerd. Is X een vectorruimte over IR met
twee normen dan noemen we die normen equivalent als ze dezelfde collectie O
definieren. Via Opgave 45.12 leidt dat tot deze karakterisatie van equivalente
normen op X.

Exercise 45.15. Als twee normen

x→ |x|1 en x→ |x|2

dezelfde collectie O van open verzamelingen definieren dan zijn er constanten A1 en
A2 zo dat voor alle x ∈ X geldt

|x|1 ≤ A2|x|2 en |x|2 ≤ A1|x|1 .

Bewijs dit. Terzijde, omgekeerd geldt ook en is makkelijker.

Exercise 45.16. Laat zien dat in een metrische ruimte X een deelverzameling
O ⊂ X open is dan en slechts dan als voor elke a ∈ O er een r > 0 is zo dat

Br(a) = {x ∈ A : d(x, a) < r} ⊂ O.

Bewijs ook dat Br(a) open is.
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Theorem 45.17. Laat X en Y metrische ruimten zijn en F : X → Y . Dan
is F continu dan en slechts dan als alle inverse beelden van open verzamelin-
gen in Y open zijn in X.

Exercise 45.18. Wel een kluifje: bewijs Stelling 45.17. Triviaal daarna is dat als
X,Y, Z metrische ruimten zijn en

X
F−→ Y en Y

G−→ Z

continue afbeeldingen, dat de afbeelding

X
G◦F−−−→ Z gedefinieerd door X

F−→ Y
G−→ Z

continu is. Waarom? Zie nog even Opgave 45.5.

In IR2 hebben we behalve the standaardnorm

|x| =
√
x2

1 + x2
2 =
√
x · x voor x =

(
x1

x2

)
,

afkomstig van het standaardinprodukt

x · y =

(
x1

x2

)
·
(
y1

y2

)
= x1y1 + x2y2,

de normen

|x|p = p
√
|x1|p + |x2|p voor p ≥ 1 en |x|∞ = max(|x1|, |x2|).

Als deze normen zijn equivalent.

Exercise 45.19. Bewijs dat al deze p-normen equivalent zijn en teken in het x1, x2-
vlak de gesloten eenheidsbollen B̄p = {x ∈ IR2 : |x|p ≤ 1} voor p = 1, 2 en p = ∞,
en voor nog twee p’s naar keuze. Blader nog even terug naar Opgave 45.15 en de
karakterisatie daaronder en boven van open verzamelingen met behulp bollen, gesloten
of open, zoals Bp

ε (ξ) = {x ∈ IR2 : |x− x0|p < ε} met ξ ∈ IR2 en ε > 0.

Exercise 45.20. De bollen B1 en B∞ zijn ook te beschrijven als doorsnijdingen
van open halfvlakken van de form K = {x ∈ IR2 : f(x) < b} met f : IR2 → IR lineair
gegeven door f(x) = a1x1 + a2x2 en a1, a2, b ∈ IR. Laat dat zien.
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Exercise 45.21. Een alternatieve manier om te zeggen dat een O ∈ IR2 open is te
zeggen dat er voor elke ξ ∈ O drie3 open halfvlakken K1,K2,K3 zijn zoals in Opgave
45.20, waarvoor geldt

ξ ∈ K1 ∩K2 ∩K3 ⊂ O.

Waarom definieert dit dezelfde open verzamelingen? Geef ook zo’n definitie van open
in IR3.

Exercise 45.22. Een verzameling W in een genormeerde ruimte X heet zwak open
als er voor elke ξ ∈W geldt dat er er eindig veel open halfvlakken zijn zo dat geldt

ξ ∈ K1 ∩ · · · ∩Kn ⊂W.

Bewijs dat voor deze zwak open verzamelingen W dezelfde eigenschappen gelden als in
Opgave 45.13. Met eindige doorsnijdingen van open halfvlakken is dus een topologie
te maken: een collectie van “open” verzamelingen die voldoet aan de “axioma’s” in
Opgave 45.13. In het geval dat X = IRn zijn alle normen op X en deze topologie
equivalent.

https://www.youtube.com/watch?v=fmTcSGukO4o

Exercise 45.23. Bewijs dat iedere norm x → |x| op IR2 equivalent is met de 2-
norm. Hint: laat eerst zien dat x→ |x| op S = {x ∈ IR2 : x2

1 + x2
2 = 1} een positief

minimum en maximum heeft.

Exercise 45.24. Laat X1 en X2 genormeerde ruimten zijn. Bewijs dat

X1 ×X2 = {x = (x1, x2) : x1 ∈ X1, x2 ∈ X2}

met de voor de hand liggende bewerkingen weer een genormeerde ruimte is met (equiv-
alente) normen (voor p ≥ 1)

x→ p
√
|x1|p + |x2|p en x→ max(|x1|, |x2|).

33 = 2 + 1.
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Exercise 45.25. Laat X1 en X2 genormeerde ruimten zijn en X = X1×X2. Bewijs
dat iedere f ∈ X∗ van de vorm

x = (x1, x2)
f−→ f1(x1) + f2(x2)

is met f1 ∈ X∗1 , f2 ∈ X∗2 . Met andere woorden X∗ = X∗1 ×X∗2 .

Exercise 45.26. Laat X1 en X2 genormeerde ruimten zijn en f ∈ X∗ = X∗1 ×X∗2 .
Bepaal de norm van f in X∗ als voor de norm op X = X1×X2 de norm x→ |x1|+|x2|
genomen wordt. Zelfde vraag voor x→ max(|x1|, |x2|).
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46 Terug naar het platte vlak

Written for different audience, mathematics in the plane to prepare
for Hilbert space. In dit hoofdstuk verzamelen we op informele wijze onze
basiskennis over het platte vlak, met in ons achterhoofd de gedachte dat we
later niet in twee maar in meer dimensies willen denken en werken: 3, 4, . . . ,
tot en met aftelbaar oneindig. Bij het schrijven van dit hoofdstuk beginnen
we in taal die hopelijk ook aansluit bij de schoolles, en nemen we soms
ook dat perspectief als het gaat om wat we met inproducten van vectoren
formuleren. Wie voor de klas staat of gaat staan heeft daar wellicht profijt
van. De meeste opgaven zijn bedoeld als onderdeel van de uitleg. Convexe en
gesloten deelverzamelingen, Cauchyrijen, en projecties zijn de belangrijkste
begrippen die langskomen.

46.1 Punten en vectoren in het platte vlak

Exercise 46.1. Neem pen en blanco papier en teken een xy-vlak1.

Zo, nu kunnen we aan de slag. Met en in een plat vlak waarin elk punt P
gegeven is door 2 reële coördinaten, zeg a ∈ IR en b ∈ IR. De assen labelen we
met x en y. Het punt P is dus het punt met x = a en y = b. We nummeren
in deze notatie dus met het alfabet en zolang we in het vlak zitten is dat
geen probleem. Ook in de 3-dimensionale ruimte kunnen we met 3 assen en
x = a, y = b, z = c prima uit de voeten maar vanaf dimensie 4 is het alfabet
op als we beginnen bij x.

Op enig moment zullen we dus liever vanaf het begin met x1 = a1 en
x2 = a2 willen werken. Een punt P gegeven door x1 = a1 en x2 = a2

kunnen we dan gewoon x noemen, soms dik gedrukt als x, hetgeen met pen
en papier weer vervelend is. Daarom ook vaak de notatie x = (x1, x2) voor
een willekeurig, onbekend of variabel punt in het vlak, en vaak a = (a1, a2)
voor een gegeven (vast) punt2 in het vlak. De assen zijn dan de x1-as en de
x2-as.

De punten (1, 0) en (0, 1) markeren we door er een 1 bij te zetten waarmee
de schaalverdeling op de assen vast ligt. Beide punten zien we als liggend op
afstand 1 tot de oorsprong (0, 0), zonder fysische eenheid3. Het punt (1, 1)
heeft met Pythagoras dan afstand

√
2 tot (0, 0).

1Suggestie: x-as horizontaal naar rechts, y-as verticaal omhoog.
2Dat we ook weer kunnen variëren natuurlijk.
3In de schoolpraktijk wordt vaak 1 cm als afstand tussen (0, 0) en (1, 0) aangehouden.
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Van een punt kun je een vector maken. In de tekening door een lijntje
te trekken van de oorsprong O = (0, 0) naar een punt a = (a1, a2) met een
pijlkopje in a. Het pijltje associëren we met de vector

~a =

(
a1

a2

)
,

en de lengte van het pijltje is met Pythagoras weer gelijk aan
√
a2

1 + a2
2.

Correspondentie met de tekening of niet, de (Euclidische) norm van a en ~a
is bij afspraak gelijk aan en genoteerd als

|a| = |~a| =
√
a2

1 + a2
2,

en voldoet aan de driehoeksongelijkheid. Er geldt voor alle ~a,~b ∈ IR2 dat

|~a+~b| ≤ |~a|+ |~b|,

het derde axioma voor de eigenschappen waar normen aan moeten voldoen.

Exercise 46.2. De eerste twee norm-axioma’s zijn |~a| > 0 als ~a niet de nulvector
is en |t~a| = |t||~a| voor t ∈ IR en ~a ∈ IR2. Verifieer dat de Euclidische norm aan de
norm-axioma’s voldoet.

We denken aan ~a als een pijltje dat we op kunnen schuiven4 zodat de
staart in een ander punt komt te liggen. Bijvoorbeeld in het punt b, zodat
de kop van het pijltje in het punt

c = a+ b = (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2)

komt te liggen, waarbij we dan de vector

~c = ~a+~b =

(
a1

a2

)
+

(
b1

b2

)
=

(
a1 + b1

a2 + b2

)
hebben. De vector ~a ligt dan met zijn staart in b en met zijn kop in c. Dat
kan natuurlijk ook andersom, met de staart van ~b in a en de kop van ~b in c.
De afstand tussen c en b is dus de lengte van het pijltje ~a = ~c−~b: de norm
van de vector ~a = ~c−~b.

We switchen regelmatig heen en weer tussen rij- en kolomnotatie en tussen
punten en vectoren, al naar gelang het zo uitkomt. Een in de tijd bewegend

4In het platte vlak geen probleem maar google op Gauss en kromming.
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punt x heeft op elk moment een snelheid ~v die we ons vanwege de fysische
interpretatie het liefst met de staart in x voorstellen. En als het handig is
dan zien we x ook als ~x. Bijvoorbeeld in

~x = ~s+ t~v =

(
s1

s2

)
+ t

(
v1

v2

)
=

(
s1

s2

)
+

(
tv1

tv2

)
=

(
s1 + tv1

s2 + tv2

)
,

de formule5 voor een punt dat beweegt over een rechte lijn l door het punt s
met snelheidsvector ~v.

Exercise 46.3. De lijn l door s ∈ IR2 met richtingsvector ~v ∈ IR2 kan ook gegeven
worden door een vergelijking van de vorm

a1x1 + a2x2 = c

voor de punten x = (x1, x2) op de lijn l. Voor welke lijnen kan dat met c = 1? Bepaal
voor die lijnen de bijbehorende a1 en a2.

Naast de vectoroptelling is in de vectorvoorstelling van een rechte lijn
met steunvector ~s en richtingsvector ~v ook de scalaire vermenigvuldiging
gebruikt. Voor iedere t ∈ IR en ~v ∈ IR2 is t~v gedefinieerd zoals je zou
verwachten. De formule voor ~c = ~a +~b gaat via ~c = ~x, ~a = ~s en ~b = t~v over
in de vectorvoorstelling van de lijn, waarin ~x de met t variërende vector is
bij het punt x.

In de formules mogen alle punten in het platte vlak voorkomen. En alle
punten dat zijn alle punten van de vorm x = (x1, x2) met x1, x2 ∈ IR. Het
platte vlak past daarmee weliswaar niet in ons universum maar gelukkig
wel in ons hoofd, waar het de naam IR2 gekregen heeft, met de 2 van 2-
dimensionaal.

Ieder element uit de verzameling IR2 wordt gegeven door een geordend
reëel getallenpaar dat we aan kunnen geven met de letters die we willen, en
met de notatie die we willen. Nummerend met het alfabet of met indices 1
en 2, achter elkaar of boven elkaar als

v1

(
1
0

)
+ v2

(
0
1

)
= v1~e1 + v2~e2

geschreven, of eventueel ook als

v1 + iv2,

5Vectorvoorstelling van een lijn.
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als maar duidelijk is dat v1 de eerste, en v2 de twee coördinaat is. De laatste
twee vormen suggereren alvast de correspondentie

1 ↔ ~e1 =

(
1
0

)
i ↔ ~e2 =

(
0
1

)
en de representatie van de complexe getallen IC als het (complexe) vlak IR2

met een wat rare notatie6.

46.2 Kortste afstanden

De kortste verbinding tussen twee punten in het vlak is de rechte lijn. In
welk vlak? In het vlak dat we in ons hoofd hebben via de introductie van
IR2 in Sectie 46.1. Welke punten? Iedere a en b in die IR2. Welke rechte lijn?
Geen rechte lijn, maar het lijnstuk

{ta+ (1− t)b : 0 ≤ t ≤ 1},

een stuk van de rechte lijn door steunvector b met richtingsvector ~a−~b.
Er zijn geen andere paden van b naar a met een kortere afgelegde weg, een

in het dagelijks leven op het Groningse platte land geboren uitspraak over
alle paden van b naar a, waarin twee begrippen voorkomen die wiskundig
gezien hier nog niet eens gedefinieerd7 zijn. Maar die kortste afgelegde weg
moet natuurlijk wel gelijk zijn aan wat we de afstand tussen a en b noemen.
Kortom, kortste afstanden gaan hier niet nog even niet over de weg van a
naar b. Er is maar een afstand tussen a en b en dat is

d(a, b) = |a− b| =
√

(a1 − b1)2 + (a2 − b2)2 = |~a−~b|,

de lengte van de vector ~a−~b.
Over de kortste afstand tussen a en b hoeven we het dus in het platte

vlak niet te hebben. Daar is een formule voor die we als vanzelfsprekend
zien. En die formule definieert een afstandsbegrip dat voldoet aan axioma’s:
de axioma’s van een metriek8.

Maar wat is de kortste afstand tussen een niet-lege deelverzameling A
van IR2 en een punt b? Met andere woorden, als de functie fb : IR2 → IR
gedefinieerd wordt door

fb(x) = d(x, b) = |~x−~b|,
6En extra algebra gebaseerd op de afspraak dat i keer i is i2 = −1.
7Om welke twee begrippen gaat het?
8Wat is een metriek? Zoek op.
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wat kun je dan zeggen over de waardenverzameling

W = {fb(x) : x ∈ A} ?

Heeft deze deelverzameling van IR een kleinste element?
Wel, de waardenverzameling W is niet leeg en naar beneden begrensd

door 0. Op grond van de axioma’s (of eigenschappen) van de reële getallen
heeft W dus een grootste ondergrens9 d die we vanaf nu de afstand van b to
A noemen:

d = d(b, A) = inf W = inf
x∈A

d(x, b).

Dus ook als de kleinste waarde niet bestaat, of als we dat niet a priori weten,
is zo de afstand d tussen b en A wiskundig gedefinieerd. Of d nu wordt
aangenomen door d(x, b) voor een x in W of niet.

De wiskundige definitie vertelt ons dat voor iedere10 positieve gehele n er
een xn ∈ A is met

d(b, A) ≤ d(b, xn) < d(b, A) +
1

n
,

want iedere n waarvoor zo’n x niet bestaat zou een grotere ondergrens voor
W zijn. Of je de wiskundige de afstand d ook echt kan vinden als horende
bij een a ∈ A via d = d(a, b) is maar de vraag natuurlijk.

Een strategie om aan de kleinste waarde d te komen is om de rij xn con-
vergent te kiezen. Als dat kan dan heeft de rij een limiet a. Als vervolgens
blijkt dat a in A ligt volgt hopelijk ook dat d(b, A) = d(b, a). En blijft vervol-
gens nog de vraag of het punt in A waarin de kleinste afstand aangenomen
wordt uniek is. Het gaat dus om twee zaken. Het vinden van convergerende
minimaliserende rijen in A en daarna de vraag om daar altijd dezelfde limiet
bij hoort.

Maar soms kun je d meteen uitrekenen. Hoewel?

Exercise 46.4. Wat is de kortste afstand tussen a = (1, 1) en de lijn met vergelijking
3x1 + x2 = 1?

Exercise 46.5. De kortste afstand tussen a = (1, 1) en de deelverzameling E ⊂ IR2

gegeven door 9x2
1 + x2

2 ≤ 1 is niet zo eenvoudig uit te rekenen. Probeer het maar.
Maar is het punt in E met minimale afstand tot a uniek denk je? Waarom? Maak
een plaatje.

9Ander woord: infimum.
10We mijden hier de ε > 0, for all practical purposes is 1

n net zo goed.
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Exercise 46.6. Reflecteer11 op wat het begrip loodrecht met het begrip afstand te
maken heeft.

Exercise 46.7. Teken voor verschillende (reële) waarden van a en b in je xy-vlak
de vectoren12 (

a

b

)
en

(
−b
a

)
en reflecteer op het begrip loodrecht. Kun je andere paren vectoren in het vlak be-
denken waarop het begrip loodrecht van toepassing is?

Exercise 46.8. Een deelverzameling K ⊂ IR2 heet convex als met elk tweetal
punten a en b in K ook het lijnstuk

{ta+ (1− t)b : 0 ≤ t ≤ 1}

dat a en b verbindt in K ligt. Kunnen er twee punten in K zijn die fO(x) = |x|
minimaliseren op K? Maak een plaatje dat je helpt om de vraag te beantwoorden.

46.3 Vlakke meetkunde met het inprodukt

Bij het maken van deze opgaven heb je ongetwijfeld rechte hoeken en driehoeken
getekend en de (Stelling van) Pythagoras weer gebruikt, en wellicht al het
inwendige produkt van vectoren gebruikt. Het standaard inwendige produkt
in IR2 wordt gedefinieerd door(

a

b

)
·
(
x

y

)
= ax+ cy,

hetgeen voor elke keuze van de 2-vectoren(
a

b

)
en

(
x

y

)
een reëel getal definieert, dat vastgelegd wordt door de vier reële getallen
a, b, x, y. De opgaven hebben je overtuigd dat twee vectoren in IR2 loodrecht
op elkaar staan precies dan als hun inwendig produkt nul is.

11Minimum op de rand, denk ook aan multiplicatoren van Lagrange.
12Al of niet met de staart in de oorsprong O.
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Loodrecht is hier een begrip dat je buiten de wiskunde kende en nu in
de wiskunde van betekenis hebt voorzien, en wel in het abstracte platte vlak
in je hoofd, en de meetkunde die je daarin hebt leren bedrijven, al of niet
gebruikmakend van twee onderling loodrecht voorgestelde coördinaatassen,
gemarkeerd met 0 en 1.

De afstand van (0, 0) tot a = (a1, a2) is met Pythagoras gelijk aan
√
~a · ~a,

de wortel uit het inwendige produkt van de bijbehorende vector ~amet zichzelf.
Zo hebben we de begrippen afstand en loodrecht die we uit de dagelijkse
werkelijkheid kennen in verband gebracht met het standaard inwendig pro-
dukt in IR2, ons model voor het platte vlak. Dit verband zit stevig tussen
onze oren, wat het verder ook moge betekenen. Wiskundige uitspraken doen
we vanaf nu in termen van IR2 met zijn vectoroptelling en het standaard
inwendige produkt.

Exercise 46.9. Bewijs dat |~a ·~b| ≤ |~a||~b|, met andere woorden, dat

(a1b1 + a2b2)2 ≤ (a2
1 + a2

2)(b21 + b22).

Hint: breng alles naar de rechterkant, doe de algebra en herken het kwadraat. Doe
vervolgens ook

(a1b1 + a2b2 + a3b3)2 ≤ (a2
1 + a2

2 + a2
3)(b21 + b22 + b23),

en overtuig jezelf ervan dat (even wat combinatoriek)

(

n∑
k=1

a2
k)(

n∑
k=1

b2k)− (

n∑
k=1

akbk)
2

de som is van n(n−1)
2 kwadraten.

Exercise 46.10. Teken twee vectoren ~a en ~b waarvoor ~a ·~b = 0 en schuif een van
de twee vectoren op en wel zó dat de kop van deze ene vector in de staart van de
andere vector ligt (en een rechthoekige driehoek ontstaat). Werk (~a+~b) · (~a+~b) uit
tot de bekende formule voor |~a|, |~b| en |~a+~b|.

Exercise 46.11. Leid met Opgave 46.9 en Opgave 46.10 nog een keer af dat de
norm aan de driehoeksongelijkheid |~a+~b| ≤ |~a|+ |~b| voldoet, ook voor ~a ·~b 6= 0.
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Exercise 46.12. Teken twee vectoren ~a en ~b waarvoor niet per se ~a ·~b = 0 en schuif
een van de twee op zó dat de kop van deze ene in de staart van de ander vector ligt
(en een driehoek ontstaat). Werk (~a + ~b) · (~a + ~b) en doe hetzelfde voor ~a en −~b.
Beide uitdrukkingen bevatten ~a · ~b maar na sommatie vallen deze kruistermen weg.
Formuleer wat bekend staat als de parallellogramwet.

Exercise 46.13. Een elegant bewijs van de Stelling van Pythagoras zonder vec-
toren maar met bijvoorbeeld vierkanten heeft iedereen wel eens gezien natuurlijk. Zie
bijvoorbeeld

http://www.few.vu.nl/~jhulshof/RYB.mov

Is er ook zo’n elegant bewijs13 van de parallellogramwet?

46.4 Projecteren op convexe verzamelingen

Vlakke en Euclidische meetkunde betreffen tamelijk expliciete zaken. Denk
aan lijnen, vlakken etc. Teken een lijn in het vlak en doe wat. Het plaatje is
altijd hetzelfde. Projecteren op een lijn, iedereen kan het. Bij projecteren op
convexe verzamelingen gaat over een veel grotere klasse van verzamelingen
maar met de algebra van het inprodukt is goed te begrijpen hoe dat gaat.
Die algebra is niet beperkt tot het platte vlak. Maar nu eerst even wel.

Exercise 46.14. Als b ∈ IR2 en K ⊂ IR2 niet leeg en convex is, dan heeft iedere
minimaliserende rij xn ∈ K met d(xn, b)→ d de eigenschap dat

d(xn, xm)→ 0 as m,n→∞

en dat kun je algemeen bewijzen. Neem zonder beperking der algemeenheid b = O en
d(xn, O) dalend, en laat dit zien door voor m > n met de parallellogramwet |xn−xm|2
af te schatten op εn = 4(d + 1

n)2 − d2). Hint: je hebt alleen nodig dat het midden
van elk lijnstuk tussen twee punten in K weer in K zit (t = 1

2 in de definitie).

Onze meetkundige kennis is in de opgaven hierboven in uitspraken over
vectoren en inwendige produkten vertaald, met als opmerkelijk conclusie het
resultaat in Opgave 46.14 dat zegt dat de minimaliserende rij een Cauchyrij14

13Vast wel, maar ik heb het zelf nog nooit gezien.
14Wat was dat ook al weer?
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is. Net als in IR zijn in IR2 Cauchyrijen convergent. De limiet a, waarvoor
geldt dat

d(xn, a)→ 0 as n→∞,
hoeft natuurlijk niet per se in A te liggen, maar doet dat wel als A gesloten
is.

Exercise 46.15. A ⊂ IR2 heet gesloten als iedere convergente rij xn in A ook
zijn limiet in A heeft. Als A niet gesloten is dan zijn er dus convergente rijen in A
waarvan de limiet niet in A ligt. Bewijs dat de afsluiting A, dat is A verenigd met al
die limieten, altijd gesloten is.

Exercise 46.16. Voor iedere niet-lege convexe K ⊂ IR2 en voor iedere b ∈ IR2

bestaat er een a ∈ K met d(b, a) = d(b,K). Bewijs dit met de voorafgaande resultaten
en laat zien dat a uniek is. Concludeer dat b → a een afbeelding PK : IR2 → K
definieert. Laat ook zien (PK(~a)−~a) · (~x−PK(~a)) ≥ 0 voor alle x ∈ K en maak een
plaatje om de betekenis van deze uitspraak meetkundig te begrijpen.

Exercise 46.17. Laat zien dat de afbeelding PK een contractie is in de zin dat voor
alle x, y ∈ IR2 geldt dat d(PK(x), PK(y)) ≤ d(x, y). Hint: deze is lastig, spelen met
het inprodukt, te leuk om voor te zeggen. Let op, voor variabele punten in K heb je
nu een andere letter nodig.

Exercise 46.18. Pas de vorige opgave toe op het geval K = l, met l de lijn door s
met richtingsvector ~v en geef een formule voor Pl. Hint: waarom wordt de ongelijkheid
in Opgave 46.16 nu een gelijkheid voor alle x ∈ l? Gebruik dit en reken Pl(b) gewoon
uit voor gegeven b.

Exercise 46.19. Neem in de vorige opgave s = O en laat zien dat de nulverzameling

N(Pl) = {x ∈ IR2 : Pl(x) = 0}

van Pl weer een lijn is, zeg lijn m, en dat m en l loodrecht op elkaar staan in dat vlak
in je hoofd.
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46.5 Andere inprodukten en bilineaire vormen

Het standaard inwendig produkt van

~x =

(
x1

x2

)
and ~y =

(
y1

y2

)
is een voorbeeld van een bilineaire functie, ook wel bilineaire vorm genoemd.
Zulke bilineaire vormen B : IR2 × IR2 → IR zijn altijd te schrijven als

B(~x, ~y) = a11x1y1 + a12x1y2 + a21x2y1 + a22x2y2,

dit vanwege wat je in de volgende opgave nu uitwerkt.

Exercise 46.20. Laat zien dat als B : IR2 × IR2 → IR voldoet aan

B(~x1 + ~x2, ~y) = B(~x1, ~y) +B(~x2, ~y);

B(~x, ~y1 + ~y2) = B(~x, ~y1) +B(~x, ~y2);

B(t~x, ~y) = B(~x, t~y) = tB(~x, ~y),

voor alle t ∈ IR en ~x, ~x1, ~x2, ~y, ~y1, ~y2 ∈ IR2, dat B gegeven wordt door15

B(~x, ~y) =
2∑

i,j=1

aijxiyj ,

en dat B(~x, ~y) = B(~y, ~x) voor alle ~x, ~y ∈ IR2 gelijkwaardig is met aij = aji voor alle
i, j ∈ {1, 2}.

Kortom, B(~x, ~y) is van de vorm

B(~x, ~y) = A~x · ~y,

waarbij A : IR2 → IR2 de lineaire afbeelding is gegeven is door

A

(
x1

x2

)
=

(
a11x1 + a12x2

a21x1 + a22x2

)
=

(
a11 a12

a21 a22

)(
x1

x2

)
,

en de symmetrie van B equivalent is met de symmetrie van de lineaire af-
beelding A en de bijbehorende matrix (aij):

B(~x, ~y) = B(~y, ~x) ⇔ A~x · ~y = ~x · A~y ⇔ aij = aji

15Let op: xi en yj zijn nu componenten van ~x en ~y.
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Een symmetrische bilineaire vorm definieert een inwendig produkt als de
bijbehorende kwadratische vorm positief definiet is, dat wil zeggen

A~x · ~x > 0 as ~x 6= ~0 =

(
0

0

)
,

en in dat geval heet A zelf ook positief16 definiet17. Voorlopig zullen we in
de notatie geen onderscheid maken tussen A als lineaire afbeelding en A als
matrix. We schrijven dus ook

A =

(
a11 a12

a21 a22

)
en spreken over ook positief definiete (symmetrische) matrices.

Kwadratische vormen zijn homogene poynomen van graad twee in de
variabelen. Een kwadratische vorm Q : IR2 → IR wordt dus gegeven door

Q(~x) = Q(x) = Q(x1, x2) = q11x
2
1 + q12x1x2 + q22x

2
2 =

2∑
1≤i≤j=2

qijxixj

en is altijd te schrijven als Q(x1, x2) = B(~x, ~x) = A~x · ~x, met

aii = qii and aij = aji =
1

2
qij (i < j).

Omdat

m = min
|x|≤1

Q(x) = min
|x|=1

Q(x) and M = max
|x|≤1

Q(x) = max
|x|=1

Q(x)

bestaan als (op de rand aangenomen18) minimum en maximum van Q op de
gesloten disk gegeven door

x2
1 + x2

2 ≤ 1,

definieert een symmetrische A dus een (niet-standaard) inwendig produkt als
m > 0.

Exercise 46.21. Neem aan dat 0 ≤ m ≤M . Laat zien dat

m~x · ~x ≤ A~x · ~x ≤M ~x · ~x

voor alle ~x ∈ IR2. Wat kun je zeggen zonder de aanname op de tekens van m en M?

16Echt iets anders dan aij > 0 voor i, j = 1, 2.
17Impliciet is A dus symmetrisch verondersteld.
18Mini- en maximaliserende rijen x1, x2, . . . kunnen convergent gekozen worden.
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De rand van de disk is een cirkel die kunnen we parametriseren met

x1 = cos(t) and x2 = sin(t),

waarin de functies cos en sin uniek gedefinieerd zijn door bijvoorbeeld19

cos t = cos(t) =
∞∑
n=0

(−t)2n

(2n)!
= 1− t2

2!
+
t4

4!
− t6

6!
+ · · ·

sin t = sin(t) =
∞∑
n=0

(−t)2n+1

(2n+ 1)!
= t− t3

3!
+
t5

5!
− t7

7!
+ · · · ,

met20 sin′ = cos, cos′ = − sin, cos(0) = 1, sin(0) = 0.

Exercise 46.22. Bereken het maximum M en het minimum m van de functie
q : IR→ IR gedefinieerd door

q(t) = Q(cos t, sin t) =

(
a11 a12

a21 a22

)(
cos(t)

sin(t)

)
·
(

cos(t)

sin(t)

)
Hint, herschrijf als q(t) = a cos2 t+ b cos t sin t+ c sin2 t, neem eerst b 6= 0 en herleid
q′(t) = 0 tot een vierkantsvergelijking voor tan t. Verifieer dat in de minimizers

A

(
cos t

sin t

)
= m

(
cos t

sin t

)
geldt, en in de maximizers

A

(
cos t

sin t

)
= M

(
cos t

sin t

)
.

Deze opgave laat zien dat m en M de twee reële eigenwaarden zijn van
de symmetische matrix A. In het geval dat A positief definiet is nummeren
we deze eigenwaarden λ1 = M ≥ λ2 = m > 0. Je ziet21 dat de bijbehorende
eigenvectoren loodrecht staan. In het geval dat M = m zijn alle vectoren
eigenvectoren en kunnen ze loodrecht gekozen worden, ~e1 en ~e2 bijvoorbeeld.

19Zie [HM, hoofdstuk 10].
20De twee differentiaalvergelijkingen en beginvoorwaarden definiëren sin en cos.
21Misschien niet meteen.
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Exercise 46.23. Bewijs direct, dus zonder cosinussen en sinussen, dat voor elke
symmetrische (hier nog twee bij twee) matrix A geldt dat het maximum µ van de ab-
solute waarde van de bijbehorende kwadratische vorm Q op |~x| = 1 wordt aangenomen
in een eigenvector, en dat iedere maximizer een eigenvector is, bij µ of bij −µ (of bij
allebei in bijzonder gevallen).

Exercise 46.24. De eigenvector in Opgave 46.23 bij λ1 = ±µ noemen we ~v1. De
lijn door O met richtingsvector ~v1 noemen we l1. Pas nu Opgave 46.19 toe22 op l = l1
en noem m = l2. Laat zien dat A deze l2 op zichzelf afbeeldt.

46.6 Om te onthouden

Symmetrische twee bij twee matrices komen met paren onderling loodrechte
lijnen die we, zo we willen, als nieuwe coördinaatassen kunnen gebruiken.
Met in die lijnen (eigen)vectoren ~v1 en ~v2 die onderling loodrecht staan en
lengte 1 hebben,

~v1 · ~v1 = ~v2 · ~v2 = 1 and ~v1 · ~v2 = 0,

bij eigenwaarden λ1 en λ2,

A~v1 = λ1~v1 and A~v2 = λ2~v2.

In het bijzondere geval dat A een diagonaalmatrix(
λ1 0
0 λ2

)
is, krijgen we als eigenvectoren de standaardbasisvectoren ~e1 en ~e2.

Het andere belangrijke resultaat is dat we op (gesloten) convexe verza-
melingen kunnen projecteren, Opgave 46.16. Niet benadrukt nog is wat de
essentie was van het bewijs dat je in Opgave 46.23 hebt gegeven. Waar het
resultaat in Opgave 46.16 via Opgave 46.14 en een convergente minimalis-
erende rij tot stand kwam, is in Opgave 46.23 een maximaliserende rij niet
automatisch convergent en moet eerst een convergente deelrij genomen wor-
den. En iedere begrensde rij in IR2 heeft zo’n convergente deelrij. Alles wat
we hier behandeld hebben gaat dus door voor IR3, IR4,. . . , met een kleine
aanpassing bij Opgave 46.19. Pas in IR∞ gaat het een beetje anders.

22De notaties x en ~x liepen al door elkaar heen, liever x = x = ~x vanaf nu?
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46.7 Poolcoördinaten in het (complexe) vlak

We besluiten dit hoofdstuk met een korte herhaling van IR2 gezien als de
verzameling van complexe getallen IC. Het punt (1, 0) zien we als het getal
1 en het punt (0, 1) als het imaginaire getal i. We introduceren IC door de
correspondentie

(x, y) ∈ IR2 ↔ z = x+ yi = x+ iy ∈ IC

met in IC de gebruikelijke rekenoperaties: de complexe optelling en de com-
plexe vermenigvuldiging. Die krijg je door te rekenen met uitdrukkingen als
z = x + iy en c = a + bi alsof het eerstegraads polynomen in i zijn, met de
afspraak dat i2 = −1. De rollen van i en −i zijn daarbij uitwisselbaar want
ook (−i)2 = 1. De coëfficiënten x, y, a, b zijn zelf reëel, en x en a heten de
reële delen van respectievelijk z en c. De imaginaire delen zijn y en b en zijn
net zo reëel als de reële delen.

We gaan ervan uit dat de lezer vertrouwd23 is met deze complexe getallen
en het waarom van de notatie en correspondentie

(cos(t), sin(t)) ↔ exp(it) = cos(t) + i sin(t)

voor het over de eenheidscirkel bewegende punt (cos(t), sin(t)).
Die eenheidscirkel wordt gegeven door |z| = 1, waarbij de absolute waarde

van z = x+ iy per definitie gelijk is aan

|z| =
√
x2 + y2,

meestal r genoemd. Voor elke r > 0 doorloopt het punt

(r cos(t), r sin(t)) ↔ r exp(it) = r(cos(t) + i sin(t))

een cirkel met straal r in het al of niet complexe vlak, en de (tijd) t is per
definitie de hoek in radialen die de met dit punt corresponderende vector
maakt met de positieve x-as. Ieder punt in het vlak wordt zo gegeven door
een r en een t, en elke 2-vector is van de vorm

~x =

(
r cos(t)

r sin(t)

)
= r

(
cos(t)

sin(t)

)
, het scalaire product van r en

(
cos(t)

sin(t)

)
.

Behalve de oorsprong heeft ieder punt x en iedere vector ~x een unieke
r en een unieke t, waarbij je moet afspreken dat de t-waarden module 2π
worden gerekend. En 2π per definitie het reële getal is waarvoor deze laatste
karakterisatie correct is. In (tijd) t = 2π ga je de cirkel rond.

23Zie anderes eventueel [HM, hoofdstuk 11].
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Met behulp van deze poolcoördinaten volgt voor

~c = p

(
cos(s)

sin(s)

)
en ~x = r

(
cos(t)

sin(t)

)
dat

~c · ~x = pr(cos(s) cos(t) + sin(s) sin(t)) = pr cos(s− t),

het product van de twee lengten en de cosinus van wat de ingesloten hoek
wordt genoemd. Is die hoek gelijk aan ±π

2
dan is het inproduct nul en staan

de vectoren loodrecht op elkaar.

Exercise 46.25. De complexe afbeelding z → 1
z laat zich in rechthoekige coördinaten

x, y en in poolcoördinaten r en t bestuderen. Verifieer dat deze afbeelding de samen-
stelling is van z → z, een spiegeling in de x-as, en een andere afbeelding die spiegeling
in de eenheidscirkel wordt genoemd, gegeven door r → 1

r . Construeer gegeven een
punt binnen de cirkel zijn spiegelbeeld in de cirkel met behulp van een bij het gegeven
punt geschikt gekozen raaklijn aan de cirkel.

Exercise 46.26. Merk op dat de uitkomst voor het inwendig product te vergelijken
is met het gewone complexe product van de met de vectoren ~c en ~x corresponderende
c en z. Verifieer dat voor

c = p exp(is) en z = r exp(it)

geldt dat

cz = p(cos(s) + i sin(s))r(cos(t) + i sin(t)) = pr(cos(s+ t) + i sin(s+ t)),

en bepaal het reële deel van cz, waarin z = x − iy de complex geconjugeerde is van
z = x+ iy.
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47 Into Hilbert space

For a different audience, from Euclidean space to Hilbert space and
applications. In IR3, IR4,.... we can do the same algebra as in Chapter 46
for IR2. In IR3 we have a

b
c

 ·
 x

y
z

 = ax+ by + cz or

 a1

a2

a3

 ·
 x1

x2

x3

 =
3∑
i=1

aixi,

in IR42

~a · ~x =
42∑
i=1

aixi for ~a =


a1

a2
...
a42

 and ~x =


x1

x2
...
x42

 ,

in IR∞, dropping the arrows,

a · x =
∞∑
i=1

aixi for a =


a1

a2

a3
...

 and x =


x1

x2

x3
...


Points or vectors, we maken het onderscheid in de notatie tussen x als ~x en
x steeds vaker alleen als het echt nodig is1.

De laatste uitdrukking definieert a ·x soms wel en soms niet, want zonder
restricties op a, x ∈ IR∞ kan het met

a · x =
∞∑
i=1

aixi =
∑
i∈IN

aixi

alle kanten op. En het wordt nog spannender als we de i ∈ IN in vervangen
door bijvoorbeeld t ∈ IR = (−∞,∞) of2 t ∈ [−π, π]. In zulke gevallen is
ook

∑
aan vervanging toe. Overaftelbare3 sommen gaan niet werken en

sommeren moet hier dus wel integreren worden, wat anders? Met de notatie
t → at = a(t) en t → xt = x(t) voor functies a : IR → IR en x : IR → IR
wordt een voor de hand liggend inwendig produkt van de functies a en x nu
gedefinieerd met behulp van de formule

a · x =

∫ ∞
−∞

a(t)x(t)dt,

1Als we niet meer recht kunnen praten wat krom is en rechte pijltjes niet passen.
2Denk ook aan de poolcoördinaten in het platte vlak.
3Waarom niet?
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waarin alle a(t) en x(t) waarden gelijkwaardig voorkomen maar, paradoxaal
wellicht, individueel geen invloed hebben op de uitkomst van de integraal die
a · x definieert. Ook met die uitkomst kan het, bijvoorbeeld voor continue
functies, alle kanten op, net als met a · x voor a, x ∈ IR∞.

Voor 2π-periodieke continue functies heeft deze integraalformule geen
betekenis maar de formule

a · x =

∫ π

−π
a(t)x(t)dt

vaak wel, het standaard inwendig produkt waarmee we werken in het geval
van 2π-periodieke functies a en x, (goed) gedefinieerd voor continue functies
als gewone Riemann integraal4.

Exercise 47.1. Voor n = 1, 2, 3, . . . zijn de 2π-periodieke functies cn en sn gedefinieerd
door cn(t) = cos(nt) en sn(t) = sin(nt). Bereken nog eens cn · cm, cn · sm, sn · sm,
voor m,n = 1, 2, 3, . . . .

Je ziet het niet meteen, maar al deze cosinussen en sinussen staan “loodrecht”
op elkaar, en ze hebben ook allemaal dezelfde “lengte”, de wortel uit het
inprodukt van de functie met zichzelf.

Exercise 47.2. Er is nog een functie die loodrecht staat op al deze cosinussen en
sinussen. Welke functie?

47.1 Standaardassenkruizen

Tja5, wat zijn dat? In het vlak waar we mee begonnen zijn wordt het as-
senkruis gevormd door 2 lijnen: de x-as door de oorsprong O en het punt
(1, 0) en de y-as door O en het punt (0, 1), of wellicht liever de x1-as en de
x2-as. Een punt dat zich over zo’n as beweegt heeft een lange weg te gaan
en kwam van ver. De x-as wordt geparametriseerd door (x, y) = (t, 0), en de
y-as door (x, y) = (0, t), met bijbehorende snelheidsvectoren6

~v1 =

(
1

0

)
en ~v2 =

(
0

1

)
,

4En later via een subtiel proces voor nog veel meer functies.
5Een vraag voor de woensdagmiddag wellicht.
6In de wiskundeles meestal richtingsvectoren genoemd.
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die samen de standaardbasis van IR2 als vectorruimte vormen.
Evenzo bestaat in IR3 het standaardassenkruis uit 3 lijnen, de x- of x1-as,

de y- of x2-as, en de z- of x3-as, met bijbehorende vectoren7

~v1 =

 1
0
0

 , ~v2 =

 0
1
0

 , ~v3 =

 0
0
1

 ,

die samen de standaardbasis van IR3 genoemd worden. Drie vectoren met
lengte 1 die onderling loodrecht staan.

En, we zouden het bijna vergeten, standaard of niet, een basis vormen ze.
Iedere vector ~v ∈ IR3 is vanzelfsprekend uniek te schrijven als

~v = v1

 1
0
0

+ v2

 0
1
0

+ v3

 0
0
1

 =

 v1

v2

v3

 .

Precies zoals in IR2 waar iedere ~v van de vorm

~v = v1

(
1
0

)
+ v2

(
0
1

)
=

(
v1

v2

)
is, met een unieke correspondentie

~v =

(
v1

v2

)
↔ (v1, v2) = v,

waarin links en rechts v1 en v2 hetzelfde zijn.
De vectoren

~e1 =

(
1
0

)
en ~e2 =

(
0
1

)
hebben lengte 1 en staan onderling loodrecht. In termen van het standaard
inwendig produkt:

~e1 · ~e1 = ~e2 · ~e2 = 1 en ~e1 · ~e2 = ~e2 · ~e1 = 0.

Met de gebruikelijke rekenregels volgt nu dat

~v · ~e1 = (v1~e1 + v2~e2) · ~e1 = v1~e1 · ~e1 + v2~e2 · ~e1 = v1;

~v · ~e2 = (v1~e1 + v2~e2) · ~e2 = v1~e1 · ~e2 + v2~e2 · ~e2 = v2,

7Snelheidsvectoren, richtingsvectoren, het zijn maar woorden.
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en

~v = (~v · ~e1)~e1 + (~v · ~e2)~e2 =
2∑
i=1

(~v · ~ei)~ei

voor vectoren ~v ∈ IR2. In iedere IRn met n positief en geheel gaat het
hetzelfde,

~v =
n∑
i=1

(~v · ~ei)~ei,

en pas in IR∞ wordt het wat lastiger.

47.2 Symmetrische matrices

Net als in de twee-dimensionale context heeft iedere symmetrische n × n
matrix

A = (aij)i,j=1,...,n

(een basis van) eigenvectoren ~v1, . . . , ~vn ∈ IRn met

~vi · ~vj = δij =

{
1 als i = j

0 als i 6= j,

bij (reële) eigenwaarden
λ1, . . . , λn,

die gemaakt worden door Opgave 46.23 herhaald toe te passen. Dit geeft in
ieder stap zowel een nieuwe λk als een nieuwe ~vk via

|λk| = max
~v·~v≤1

~v·~v1=···=~v·~vk−1=0

|A~v · ~v|,

waarbij k = 1, . . . , n.
Details van deze constructie komen aan de orde in de context van de stan-

daard aftelbaar oneindig-dimensionale Hilbertruimte die we in IR∞ maken.
Daarvóór komen we voor het eerst over abstracte Hilbertruimten8 H te
praten die we zo snel mogelijk gelijk9 praten aan het standaardvoorbeeld
in IR∞, onder de aanname van separabiliteit van H: het bestaan van een
rij x1, x2, x3, . . . in H die als limieten van zijn convergente deelrijen alle ele-
menten in H heeft.

Kortom, in termen van de dimensie van onze ruimten maken we in één
keer de stap van n = 2 en concreet (IR2) naar n = ∞ en abstract (niet
concreet). Let wel, dat kan alleen voor ruimten met een inwendig produkt.

8Inprodukt ruimten waarin Cauchy rijtjes convergent zijn.
9Lees: isomorf.
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47.3 Reële Hilbertruimten

Een reële Hilbertruimte H is een vectorruimte over IR die naast de vec-
toroptelling en scalaire vemenigvuldiging ook een inwendig produkt

(x, y) ∈ H ×H → (x, y)H = x · y

heeft, met de standaardrekenregels, en de eigenschap dat alle Cauchyrijtjes
(dat zijn rijtjes waarvoor

(xn − xm) · (xn − xm)→ 0

als m,n→∞) in H ook convergent zijn met limiet x ∈ H (i.e.

(xn − x) · (xn − x)→ 0

als n→∞).
De norm wordt gegeven door |x|2H = (x, x)H = x · x en de onderlinge

afstand van bijvoorbeeld xn en xm is

dH(xn, xm) = |xn − xm|H =
√

(xn − xm) · (xn − xm),

waarin dH : H × H → IR+ = [0,∞) de metriek is op H. De subscripts H
laten we voortaan weg, tenzij dat verwarring geeft.

Exercise 47.3. Formuleer en bewijs de ongelijkheid van Cauchy-Schwarz10 (inclusief
de karakterisatie van het geval van gelijkheid), bewijs de driehoeksongelijkheid, en for-
muleer en bewijs nog een keer Pythagoras en de parallellogramwet. Hint: overschrij-
ven uit willekeurig Lineaire Algebra boek. Formuleer ook de axioma’s voor metrische
ruimten en bewijs deze voor d.

Exercise 47.4. Laat H een Hilbertruimte zijn, K ⊂ H een gesloten convexe verza-
meling, en a ∈ H. Bewijs dat er een unieke p ∈ K is die de afstand d(a,K) van a tot
K realiseert middels

|p− a| = inf
x∈K
|x− a| = d(a,K)

en laat zien dat (p − a) · (x − p) ≥ 0 voor alle x ∈ K. Hint: geef eerst de definities
van gesloten, convex en afstand, en gebruik daarna de parallellogramwet, net zoals
in Opgave 46.14. Bewijs ook dat de afbeelding PK : H → K gedefinieerd door
PK(a) = p de eigenschap heeft dat |PK(a)− PK(b)| ≤ |a− b| voor alle a, b ∈ H.

10De ongelijkheid in Opgave 46.9.
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Exercise 47.5. Laat H een Hilbertruimte zijn, L ⊂ H een gesloten lineaire deel-
ruimte. Bewijs dat PL : H → L lineair is en dat

M = N(PL) = {x ∈ H : PL(x) = 0} = L⊥ = {x ∈ H : x · y = 0 ∀ y ∈ L}11,

de kern of nulruimte van PL, ook een gesloten lineaire deelruimte is met M∩L = {0}.
Laat zien dat M + L = H en concludeer dat L⊕M = H: iedere x ∈ H is uniek te
schrijven als x = p+ q met p ∈ L en q ∈M .

De uitspraak over het bestaan van p in Opgave 47.4 is natuurlijk equiva-
lent met de uitspraak over het bestaan van het minimum van

(x− a) · (x− a) = x · x− 2a · x+ a · a,

en daarmee dus equivalent met een uitspraak over minima op K van wat je
parabolische functies zou kunnen noemen:

Exercise 47.6. Laat H een Hilbertruimte zijn, K ⊂ H een gesloten convexe verza-
meling. Dan neemt voor iedere b ∈ H de kwadratische uitdrukking12

|x|2 + b · x

op K in precies één punt een minimum13 aan.

Let op de eerste voeTnoot in Opgave 47.6. Het standaardinprodukt in
IR2 geeft via (

a

b

)
·
(
x

y

)
= ax+ cy =

(
a b

)( x
y

)
︸ ︷︷ ︸

matrix notatie

een representatie van de lineaire functie(
x
y

)
→ ax+ cy =

(
a b

)( x
y

)
︸ ︷︷ ︸

matrix notatie

en omgekeerd is iedere lineaire14 functie van deze vorm. De correspondentie(
a

b

)
↔

(
a b

)
11x · y = 0 voor alle y in L wordt kort geschreven als: x · y = 0 ∀ y ∈ L.
12Het kwadratische stuk kan algemener, het lineaire stuk niet!
13K is i.h.a. niet begrensd, laat staan rijkompakt (iets met convergente deelrijen).
14De constante functie is NIET lineair, tenzij de constante nul is.
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is evident bijectief en lineair. Links staat een 2-vector, rechts een 1 bij 2
matrix waarmee een lineaire afbeelding van IR2 naar IR gemaakt wordt.

In een willekeurige Hilbertruimte is er a priori geen matrixnotatie voor
het maken van lineaire afbeeldingen. Welke lineaire afbeeldingen hebben we
op zo’n Hilbertruimte H als van H verder niets gegeven is, behalve dan dat
het een H is? Wel, in ieder geval is voor elke y ∈ H de afbeelding φy : H → IR
gedefinieerd door15

x→ y · x = φy(x) = φyx =< φy, x > .

Kijk even goed, in de 1 na laatste notatie hebben we de haken weggelaten,
zoals vaker bij lineaire afbeeldingen16, en in de laatste staan φy en x zo te
zien gelijkwaardig tussen strange brackets17, waarbij net als in y · x de rollen
van de tegenspelers verwisseld kunnen worden. Dualiteit heet dat met een
mooi woord.

Voorlopig gebruiken we de notatie die het meest op de schoolnotatie lijkt.
Een functie f van x, in dit geval φy, maak je expliciet18 via f(x), in dit geval
φy(x) = y · x. Dat lijkt expliciet maar is het natuurlijk niet echt als we niet
zeggen wat H is. Expliciet of niet, uit de ongelijkheid van Cauchy-Schwarz
volgt nu dat

|φy(x)| = |y · x| ≤ |y||x|

en dus ook, vanwege de lineairiteit , dat

|φy(x1)− φy(x2)| = |y · (x1 − x2)| ≤ L|x1 − x2| with L = |y|.

Een reëelwaardige functie f op een vectorruimte met een norm, die vol-
doet aan

|f(x1)− f(x2)| ≤ L|x1 − x2|

voor alle x1 en x2 in die genormeerde vectorruimte, heet Lipschitz continu.
Een mooi begrip, dat differentiaalrekening noch epsilons en delta’s nodig
heeft.

Exercise 47.7. Als zo’n (niet per se lineaire) functie een L heeft dan heeft hij ook
een kleinste L. Bewijs dit. Hint: denk aan grootste ondergrenzen (infima).

15Meteen maar met drie notaties.
16en bij cos, sin, tan, . . . .
17Tussen bra en ket, zoals fysici soms zeggen.
18Of niet, en dat veroorzaakt vaak veel verwarring.
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Die kleinste L is dus voor alle Lipschitz continue functies op onze genormeerde
ruimte (laten we die X noemen) gedefinieerd. Daar hoort een zijstapje bij:

Exercise 47.8. Voor elke genormeerde ruimte X vormen de Lipschitz continue
functies f : X → IR een vectorruimte Lip(X) met de vectorbewerkingen gedefinieerd
door

(f + g)(x) = f(x) + g(x) and (tf)(x) = tf(x).

Voor elke f is de kleinste L zoals boven per definitie een soort norm van f , die we
noteren met L = [f ]Lip. Waarom definieert

f → [f ]Lip

geen norm op Lip(X)? En waarom wel op

Lip0(X) = {f ∈ Lip(X) : f(0) = 0}?

Bewijs dat met deze norm elke Cauchyrij fn ∈ Lip0(X) convergent is. Hint: bewijs
dit eerst voor X = IR en schrijf je bewijs nog een keer over voor X = X.

Klein probleempje is natuurlijk dat er misschien maar weinig van die al
of niet lineaire Lipschitz functies op X zijn, als je verder niks van X weet.
Maar op H is dat probleempje er niet. Elke y ∈ H geeft je een φy in Lip0(H)
die nog lineair is ook, en je ziet meteen wat de kleinste L is: op zijn hoogst
|y| en kleiner kan niet, vul maar x = y in. Dat betekent dat we met y → φy
een afbeelding

Φ := H → Lip0(H)

hebben, en het beeld van Φ is bevat in H∗, de (genormeerde) ruimte van
Lipschitz continue lineaire functies f : H → IR, en Φ is zelf weer lineair19:

Exercise 47.9. Verifieer dat Φ : H → H∗ voldoet aan

Φ(x1 + x2) = Φ(x1) + Φ(x2) and Φ(tx) = tΦ(x)

voor alle t ∈ IR en x, x1, x2 ∈ H, en dat [Φ(x)]Lip = |x|.

De vraag nu is of Φ surjectief is: is elke f ∈ H∗ van de vorm φy? Bekijk
daartoe20

Nf = {x ∈ H : f(x) = 0}.
19Nu maar eens de axioma’s noemen en verifiëren.
20We schrijven nu Nf i.p.v. N(f), t.b.v. het onderscheid tussen f en PL.
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Exercise 47.10. Bewijs dat Nf ⊂ H een gesloten lineaire deelruimte is.

In het bijzonder bestaat nu dankzij Opgave 47.5 de projectie

PNf : H → N,

ook weer een lineaire afbeelding, en in de volgende opgave gaat het om de
nulruimte van deze projectie op de nulruimte van f .

Exercise 47.11. Bewijs dat M = N(PNf ) een gesloten lineaire deelruimte is die

gegeven wordt door M = {te : t ∈ IR} waarin e ∈ N⊥f met |e| = 1. Laat zien dat f
een veelvoud is van φe: f(x) = f(e)e · x.

Exercise 47.12. Leg uit waarom met het resultaat in Opgave 47.10 de afbeelding
Φ : H → H∗ een lineaire isometrie is.

Lineaire isometriën zijn de mooiste continue afbeeldingen die er bestaan.
De inverse van Φ wordt de Riesz representatie van H∗ genoemd, en via deze
isometrie erft H∗ ook het inwendig produkt van H: de reële Hilbertruimten
H en H∗ zijn als Hilbertruimten hetzelfde, al is het in concrete situaties niet
altijd even handig om hier de nadruk op te leggen.

Het resultaat geldt zonder enige verdere restrictie op H en het is ook niet
nodig om aan te nemen dat H separabel is. We noteren de inverse van Φ als

RH ,

met de ruimte H als subscript aan R = Φ−1 gehangen. Het domein van RH

is zo de deelruimte
H∗ ( Lip0(H).

Exercise 47.13. Gebruik Opgave 47.4 om aan te tonen dat er plenty niet-lineaire
functies in Lip0(H) zijn.
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47.4 De standaard Hilbertruimte

De wat informeel geintroduceerde ruimte IR∞ bestaat uit alle functies f, x, a :
IN → IR, hoe je ze ook wil noemen21. We kunnen deze functies zien als
kolomvectoren ~f met daarin de waarden van f , al protesteert LaTeχ daarbij
zo te zien een beetje. Helemaal op dezelfde hoogte lukt typografisch niet,

f =


f(1)
f(2)
f(3)

...

 =


f1

f2

f3
...

 = ~f,

en ook voor functies f, x, a : {1, 2, 3} → IR oogt

f =

 f(1)
f(2)
f(3)

 =

 f1

f2

f3

 = ~f

niet echt lekker.
Wiskundig gezien praten we de facto over functies f : A→ IR, waarbij A

hier een discrete verzameling is, en de verzameling van deze functies wordt
ook wel genoteerd als IRA. Als je n ∈ IN gedefinieerd hebt als een wat rare
verzameling, via22

1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅, {∅}}}, . . .

of zoiets, dan is de notatie voor IRA consistent23 met die voor IRn.
Elke f ∈ IRA heeft als Pythagoras norm

|f | =
√∑

a∈A

|f(a)|2,

hetgeen voor A = {1, 2, 3} overeenkomt met de Euclidische lengte√
f 2

1 + f 2
2 + f 3

3

van de vector ~f hierboven.
Het ligt voor de hand om IRA en IRB als dezelfde ruimte te zien als er

een bijectie bestaat tussen A en B. Voor eindige verzamelingen A is de
Pythagoras norm natuurlijk op heel IRA gedefinieerd, maar als A oneindig
veel elementen bevat24 dan is dat niet meer het geval.

21Het zijn er meer dan 26.
22Ik schuif wat ik naief in Halmos las wellicht eentje op, boekje niet bij de hand.
23Let wel, 0 = ∅ doet niet mee.
24We zeggen dan gemakshalve dat A oneindig is.
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Exercise 47.14. Stel dat A overaftelbaar is en f ∈ IRA eindige Pythagorasnorm
heeft. Bewijs dat de verzameling

{a ∈ A : f(a) 6= 0}

aftelbaar is en ga na dat het in de somnotatie dan niet nodig is de volgorde van
sommeren vast te leggen25.

In het licht van deze opgave beperken we de aandacht voor oneindige A
tot aftelbare A en die zijn allemaal bijectief met IN. We kunnen de func-
tiewaarden van elementen x, f, . . . ∈ IRIN dan op wat voor manier dan ook
weer (niet allemaal) opschrijven, genummerd als f(n) of xn met n = 1, 2, . . .,
in bijvoorbeeld een kolomvector of rijvector met puntjes.

Onze standaard aftelbaar oneindig-dimensionale Hilbertruimte is nu

l(2) = {x = (x1, x2, . . . ) ∈ IRIN :
∞∑
n=1

x2
n <∞},

spreek uit: (kleine) el twee. Er is ook een grote el twee, namelijk de verza-
meling van kwadratisch integreerbare meetbare functies op een maatruimte,
bijvoorbeeld26 IR, voorzien van de gewone (Lebesgue) lengtemaat27. Die el
twee wordt genoteerd met

L2(IR),

strict genomen geen functieruimte maar een ruimte van equivalentieklassen.
We zeggen dat een (meetbare) functie f en een andere (meetbare) gunctie
g equivalent zijn, notatie f ∼ g, als de verzameling waarop ze verschillen
(uitwendige) maat NUL heeft, en met f bedoelen we stiekem [f ], de equiv-
alentieklasse van alle g waarvoor g ∼ f .

De inwendige produkten zijn, respectievelijk,

x · y = (x, y)l(2) =
∞∑
n=1

xnyn and f · g = (f, g)L2(IR) =

∫ ∞
∞

f(x)g(x)dx,

waarbij de integraalnotatie bij (niet ieders) voorkeur hetzelfde gekozen wordt
als die van de Riemann integraal.

Exercise 47.15. Bewijs dat l(2) volledig is. Dat wil zeggen, laat zien dat Cauchy
rijtjes in l(2) convergent zijn met limiet in l(2).

25Dit heet onvoorwaardelijke convergentie.
26Ander voorbeeld: IR modulo 2π, de facto de eenheidscirkel in IR2.
27Zie “Wiskunde in je vingers” van H&M voor snelle intro maattheorie.
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Als we IN zien als maatruimte voorzien van de telmaat dan wordt kleine
l weer groot. En met recht, want iedere separabele Hilbertruimte H is met
l(2) te identificeren28. Hoe gaat dat? Wel, neem een rijtje a1, a2, a2, . . . in H
dat als limietpunten alle elementen van H heeft. Zet

e1 =
1

|a1|
a1

als a1 6= 0 maar gooi a1 weg als a1 = 0. Hernummer in dat geval de rij en
herhaal deze stap, net zolang29 tot je een a1 6= 0 hebt. Stel vervolgens

y2 = a2 − (a2, e1)e1 and e2 =
1

|y2|
y2

als y2 6= 0, maar gooi a2 weg als y2 = 0 en hernummer in dat geval weer de
rij. Herhaal deze stap, net zolang tot je een y2 6= 0 hebt en daarmee ook een
e2. Stel vervolgens

y3 = a3 − (a3, e2)e2 − (a3, e1)e1 and e3 =
1

|y3|
y3,

als y3 6= 0, maar . . . , enzovoorts. Dit produceert een rij e1, e2, e3, . . . van
vectoren waarvoor

(ei, ej) = δij,

en deze vectoren spannen een lineaire deelruimte op in H.

Exercise 47.16. Bewijs dat

H = {x =

∞∑
n=1

xnen :

∞∑
n=1

x2
n <∞},

waarmee H dus met de standaard Hilbertruimte l(2) geidentificeerd kan worden.

28Indien gewenst.
29Nou ja, als er geen dubbelen in de rij voorkomen dan...
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48 Fourier series: inner product approach

This is from a slow set of notes for real Fourier series only. The series in
(28.1) is called a Fourier sine series. If we change the minus signs into plus
signs in the definition of f7 we get the function defined by

h7(x) = sin x+
sin 2x

2
+

sin 3x

3
+

sin 4x

4
+

sin 5x

5
+

sin 6x

6
+

sin 7x

7
,

which is close to h(x) = π−x
2

for (0, 2π).
The function

g7(x) = cos x− cos 2x

4
+

cos 3x

9
− cos 4x

16
+

cos 5x

25
− cos 6x

36
+

cos 7x

49

is close to

g(x) =
π2

12
− x2

4

on the interval (−π, π). Apparently

x2

4
=
π2

12
+
∞∑
k=1

(−1)k
cos kx

k2
.

The right hand side is called a Fourier cosine series. Substituting x = 0 we
find

π2

12
= 1− 1

4
+

1

9
− 1

16
+

1

25
− · · · .

Exercise 48.1. Let f be an integrable1 2π-periodic function. Show that

σN f(x)− f(x) =
1

2π

∫ π

−π
FN (y) (f(x− y)− f(x)) dy

Show that

σ
N
f(x) =

1

2π

∫ π

−π
F
N

(y)f(x− y) dy.

Exercise 48.2. Derive the equality in (28.12) by writing

sin
x

2
+ · · ·+ sin

(N + 1)x

2

1Riemann or Lebesgue integral.

701



as imaginairy part of a finite geometric sum. Verify that∫ π

−π
FN (x) dx = 2π,

and that FN (x)→ 0 als N →∞, except in integer multiples of 2π. To be precise

0 < δ ≤ x ≤ π =⇒ 0 ≤ FN (x) ≤ 1

N + 1

1

sin2 δ
2

.

For fixed δ this upper bound is small when N is large. Note that FN (x) is even and
2π-periodic. Make plots of FN for some values of N .

Exercise 48.3. Let f be 2π-periodic and continuous. Then is f uniformly contin-
uous and bounded. Why? Prove that σN f converges uniformly to f as N → ∞.

Exercise 48.4. Let f be 2π-periodic, bounded and piecewise continuous, with the
property that in every point the limits from the left and from the right exist. Show
that for every x the sequence σN f(x) converges as N →∞. What’s the limit? Hint:
split de integral in 4 parts.

Exercise 48.5. Let f : [−π, π] → IR be twice continuously differentiable with
f(±π) = f ′(±π) = f ′′(±π) = 0. Show that f is the sum of its (uniformly convergent)
Fourier series in every x ∈ [−π, π]. Hint: use partial integration to show the Fourier
coefficients an en bn make for summable series.

Exercise 48.3 shows that in the space of continuous functions 2π-periodic
functions equipped with the maximum norm

|f |
max

= max
x∈IR
|f(x)|

the Cesàro sums of f converge to f : |σ
N
f − f |

max
→ 0 als N →∞.

Fourier series can be traced back to Daniel Bernouilli, who used them to
solve the wave equation

∂2u

∂t2
=
∂2u

∂x2
.
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Fourier was perhaps the first to give integral expressions for the coefficients,
when he tried to solve the heat equation

∂u

∂t
=
∂2u

∂x2
.

Nowadays we see the functions

1

2
, cosx, sinx, cos 2x, sin 2x, . . . ,

and
. . . , e−3ix, e−2ix, e−ix, e0ix = 1, eix, ei2x, e3ix, . . .

as orthonormal bases in a (Hilbert) space of functions, and the Fourier coeffi-
cients as coordinates with respect to these bases. For a large class of functions
f : (−π, π) → IR the Fourier coefficienten an, bn and cn as coordinates of f
are thus well-defined.

Exercise 48.6. Compute∫ π

−π
cosnx cosmxdx and

∫ π

−π
cosnx sinmxdx

for integer m and n. Hint: if f ′′(x) + λf(x) = 0 and g′′(x) + µg(x) = 0 then∫
(gf ′′ − fg′′)

evaluates as ....... using integration by parts.

Exercise 48.7. Use Exercise 48.6 to show that for f defined by

f(x) =
a0

2
+

N∑
k=1

(an cosnx+ bn sinnx),

it holds that an and bn are given by (28.4) for n ≤ N .

The following programme is meant to get you aquainted with Fourier series.
Use Maple/Mathematica for the plots. The integrals you should do by hand.
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Exercise 48.8. Let f : (0, π)→ IR be given by f(x) = 1 and choose a 2π-periodic
even extension f : IR→ IR. Determine all Fourier coefficients an and bn.

Exercise 48.9. Let f : (0, π)→ IR be given by f(x) = 1 and choose a 2π-periodic
even extension f : IR→ IR.

1. Determine all Fourier coefficients an en bn.

2. Plot f and SN f (for some values of N) in one graph.

3. Investigate numerically what happens to location and value of the maximum of
SN f as N →∞.

4. Simplify SN f in x = π
2 and compare to f(π2 ). Which sum of which series,

assuming SN f(π2 )→ f(π2 ), do you obtain?

5. Same question for x = π
4 .

Exercise 48.10. Let f : (0, π) → IR be given by f(x) = sinx. Choose an even
2π-periodic extension f : IR→ IR.

1. Determine all Fourier coefficients an and bn.

2. Plot f and SN f (voor een aantal waarden van N) in een grafiek.

3. Simplify SN f in x = 0. Compare with f(0). Which sum of which series,
assuming SN f(0)→ f(0), do you obtain?

4. Idem for x = π
2 .

5. Idem for x = π
4 .

Exercise 48.11. Let f : (0, π)→ IR be given by f(x) = cosx and choose an odd
2π-periodic extension f : IR→ IR.

1. Determine all Fourier coefficients an and bn, and plot f and SN f (for some
values of N) in one graph.

2. Compare the behaviour near x = 0 for N large with that in Exercise 48.9.

3. Now take the odd 2π-periodic extension of f(x) = 1− cosx (the difference of
the function in Exercise 48.9 and the function here). Investigate numerically
the behaviour of SN f near x = 0 for large N .
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Exercise 48.12. Let f : (0, π)→ IR be given by f(x) = π − x and choose an odd
2π-periodic extension f : IR→ IR.

1. Determine the Fourier coefficients an and bn, and plot f and SN f (for some
values of N) in one graph.

2. Differentiate SN f(x) with respect to x and call the derivative dN (x). Are there
values of x for which dN (x) converges as N →∞?

Exercise 48.13. Let f : (0, π) → IR be given by f(x) = x(π − x) and choose an
odd 2π-periodic extension f : IR→ IR.

1. Determine the Fourier coefficients an and bn, and plot f and SN f (for some
values of N) in one graph.

2. Simplify SN f in x = π
2 . Compare with f(π2 ). Which sum of which series do

you get if SN f(x)→ f(x)?

3. Differentiate SN f(x) with respect to x and call the derivative gN (x). Show that
gN (x) op IR converges uniformly on IR to a limit function.

4. Determine the limit function numerically.

5. Compare gN (0) with its limit. Which sum of which series do you obtain?

Convergence of Fourier series in the mean was not really discussed so far. Let
an and bn be the Fourier coefficients of a 2π-periodic integrable real valued
function, that is

an =
1

π

∫ π

−π
f(x) cos(nx) dx and bn =

1

π

∫ π

−π
f(x) sin(nx) dx.

To answer questions about convergence, i.e. about whether or not

N∑
n=−N

cne
inx =

a0

2
+

N∑
n=1

(an cosnx+ bn sinnx)︸ ︷︷ ︸
SN (f(x)

→ f(x)

as N →∞, convolutions are of great importance.

But what about S
N
f if we don’t have decay rates for the coefficients? We

consider convergence in the 2-norm. The integral

f · g =

∫ π

−π
f(x)g(x) dx (48.1)
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is called the inner product of the functions f and g. If f · g = 0 we say that
f and g are perpendicular. The 2-norm of f is defined by

|f |2 =
√
f · f, (48.2)

the length of f considered as a vector. Pythagoras could have told us told
us that

f · g = 0 ⇒ |f + g|2
2

= |f |2
2

+ |g|2
2
. (48.3)

Below we write

S
N
g(x) =

c0

2
+

N∑
k=1

(ck cos kx+ dk sin kx). (48.4)

Now let f have real Fourier coefficients ak and bk, and let ck and dk be the
real Fourier coefficients of g. Do the following exercises.

Exercise 48.14. The Cauchy-Schwartz inequality says that |f · g| ≤ |f |2 |g|2 .

1. Prove this inequality for functions f and g with |f |2 = |g|2 = 1 by evaluating
0 ≤

∫ π
−π(f(x)− g(x))2 dx = . . . .

2. Prove the Cauchy-Schwartz inequality. Hint: apply 1 to f(x)/|f |2 and g(x)/|g|2 .

3. Prove that
|f + g|2 ≤ |f |2 + |g|2 . (48.5)

Exercise 48.15. Show that

|SN f |
2
2

= π

(
1

2
a2

0 +

N∑
k=1

(a2
k + b2k)

)

Exercise 48.16. Show that

SN f · SN g = π

(
1

2
a0c0 +

N∑
k=1

(akck + bkdk)

)
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Exercise 48.17. Define RN f = f − SN f and, with

σN f =
1

N + 1
(S0f + S1f + · · ·SN f),

let ρN f = f − σN f .

1. Show that RN f · SN f = 0.

2. Show that RN f · σN f = 0.

3. Show that
|SN f |

2
2

+ |RN f |
2
2

= |f |2
2
,

whence |SN f |2 ≤ |f |2 and (Bessel’s inequality)

1

2
a2

0 +

N∑
k=1

(a2
k + b2k) ≤

1

π

∫ π

−π
f(x)2 dx. (48.6)

4. Show that
|RN f |

2
2

+ |σN f − SN f |
2
2

= |ρN f |
2
2
.

5. In Exercise 48.3 we showed for f continuous and 2π-periodic that σN f → f
uniformly on IR as N →∞. Prove that then also |RN f |2 → 0, so that (Parceval
equality)

1

2
a2

0 +
∞∑
k=1

(a2
k + b2k) =

1

π

∫ π

−π
f(x)2 dx. (48.7)

Hint: use part 4.

6. Show that
f · g = (SN f +RN f) · (SN g +RN g)

= SN f · SN g +RN f ·RN g.

7. For f and g continuous and 2π-periodic show that

1

2
a0c0 +

∞∑
k=1

(akck + bkdk) =
1

π

∫ π

−π
f(x)g(x) dx =

1

π
f · g. (48.8)

Hint: use part 6, Exercise 48.16 and apply the Cauchy-Schwartz inequality to
RN f ·RN g.
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Exercise 48.18. We want to show that Parceval’s equality (48.7) holds for 2π-
periodic peiceswise continuous functions. Let f : IR→ IR be such a function. Show
that there exists a sequence of 2π-periodic continuous functions fk : IR→ IR with

|fk − f |22 =

∫ π

−π
(fk(x)− f(x))2 dx→ 0

as k → ∞. Hint: if f is discontinuous in x0, replace f(x) on the interval (x0 −
1
k , x0 + 1

k ) by a linear function, such that the new function fk is continuous and linear
on (x0 − 1

k , x0 + 1
k ).

Exercise 48.19. Prove (48.7) for f . Hint: the desired equality is equivalent with
|RN f |2 → 0. Write

RN f = f − fk + fk − SN fk + SN fk − SN f = (f − fk) +RN fk + SN (fk − f)

and use (48.5) and Exercise 3 for SN (fk−f) to make |RN f |2 small. Let ε > 0, choose
k large as needed, etc.

A direct construction2 of a Hilbert space H from C(IR2π) is via Cauchy
sequences f1, f2, . . . , using the 2-norm, i.e. sequences with

|fn − fm|2 → 0

as m,n → ∞. We think of such sequences as approximating some f in the
space H under construction. This is just like decimal or binary expansions
approximating real numbers, by which different expansions can define the
same real number, which we can picture on a number line if we like. Of
course the abstract construction by itself is completely independent of the
pictures.

The standard way to visualise a function is as the graph of that function,
in case of f : IR→ IR a subset G of

IR2 = {(x, y) : x, y ∈ IR}

with the property that

∀x∈IR ∃!y∈IR : (x, y) ∈ G.

Here ∃! means there exists precisely one with (in this case) the property that
y ∈ IR and (x, y) ∈ G. This unique y may then be denoted by f(x). The
formal definition of a graph in IR2 is de facto equivalent with the definition
of a function from IR to IR.

2Choices to be made in relation to Section 31.6.
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49 Fourierreeksen

Het ligt voor de hand om de abstracte constructie van H uit C(IR2π) te zien
als gebeurende in het platte vlak IR2, waarbij de grafiek G van een functie
f : IR2π → IR dus de eigenschap moet hebben dat

x1 − x2

2π
∈ IZ =⇒ f(x1) = f(x2),

hetgeen overeenkomt met het oprolbaar1 zijn van het oneindige platte vlak
tot een cylinder waarin de grafiek G keurig over zichzelf heen ligt.

Met of zonder voorstelling, twee verschillende 2-Cauchyrijtjes f1, f2, . . .
en g1, g2, . . . in C(IR2π) moeten hetzelfde element uit de te maken H zijn als
geldt dat

|fn − gn| → 0

voor n→∞. Opgave 49.10 laat bijvoorbeeld zien dat de zaagtandfunctie Z
in de te maken H moet zitten, maar niet iedereen zal dezelfde rij Z1, Z2, . . .
als grafieken getekend hebben. Het is goed om dat nog wat preciezer te
bekijken.

Exercise 49.1. Maak Opgave 49.10 nog een keer maar anders. Teken de grafieken
van een rij functies Z̃n ∈ C(IR2π) waarvoor geldt dat (Z̃n−Z, Z̃n−Z)→ 0 als n→∞.
Kies de rij functies Z̃1, Z̃2, . . . nu zo dat voor alle n ∈ IN geldt dat Z̃n(0) = 1.

Exercise 49.2. Maak Opgave 49.1 maar nu met Z̃n(0) = 0.

Exercise 49.3. Maak Opgave 49.2 maar nu met Z̃n(0) = 2.

Exercise 49.4. Maak Opgave 49.2 maar nu met Z̃n(0) = n.

Exercise 49.5. Laat in Opgaven 49.1,49.2,49.3,49.4 hierboven zien dat |Zn−Z̃n| →
0 als n→∞, waarbij Zn is als in Opgave 49.1.

1Stel je de problemen bij het oprollen even voor....
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Wat deze opgaven laten zien is dat functies in H geen gewone functies
kunnen zijn. Abstract gezien zouden alle benaderende rijen dezelfde Z :
IR2π → IR moeten maken, maar dat lijkt via de opgaven hierboven te leiden
tot de conclusie dat

0 = Z(0) = 1

en meer verwarring. Soortgelijke spelletjes kunnen we spelen met de nulfunc-
tie

x
0−→ 0

zelf.

Exercise 49.6. Maak een rij functies f1, f2, . . . in C(IR2π) waarvoor geldt dat
fn(0) = 1 en |fn| = |fn − 0| → 0.

Iedere rij echte functies fn die we gebruiken om een f in H te maken kan
veranderd worden in een rij f̃n die in een gegeven punt gek gedrag vertoont,
zoals convergeren naar een ‘verkeerde’ limiet, maar wel de eigenschap heeft
dat |fn− f̃n| → 0. We moeten kennelijk af van het idee dat een functie in elk
punt gedefinieerd is. In sommige punten is dat wellicht een artefact, zoals in
Opgave 49.6, maar bij functies als Z is er echt een keuze die gemaakt moet
worden. Of niet, als we afspreken dat functies niet per se in elk punt van
hun definitiegebied gedefinieerd hoeven zijn. Let op, met Z zitten ook alle
verschoven zaagtandfuncties Zp (met p ∈ IR)

x
Zp−→ Z(x− p)

in H, en daarmee ook een grote klasse van functies van de vorm

S =
∞∑
n=1

anZpn ,

waarbij p1, p2, . . . een willekeurige rij punten in IR mag zijn, en elke pn een
probleempunt is voor wat betreft de definitie van S(pn).

Exercise 49.7. Neem aan dat H geconstrueerd is zoals hierboven beschreven. Neem
aan dat p1, p2, . . . en a1, a2, . . . rijen in IR zijn, en dat

∞∑
n=1

|an| <∞.

Waarom moet gelden dat S ∈ H? Hint: laat eerst zien dat S een begrensde functie
is.
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Kortom, behalve de mooie periodieke functies

x
cn−→ cosnx

en
x

sn−→ sinnx

(n ∈ IN), waarvan we ook sommen van de vorm

∞∑
n=1

ancn +
∞∑
n=1

bnsn (49.1)

kunnen nemen, met coefficiënten als in Opgave 49.7, moeten er in de H
die we zoeken een heleboel lelijke functies zitten. Daarbij moeten evident
verschillende functies soms (of vaak) als element van H als dezelfde functie
gezien worden. Waarom? Omdat twee Cauchyrijen f1, f2, . . . en f̃1, f̃2, . . .
in C(IR2π) met de eigenschap dat fn − f̃n → 0 dezelfde f in H moeten
maken, en we in de voorbeelden gezien hebben dat bijvoorbeeld fn(0) en
f̃n(0) verschillende of helemaal geen limieten kunnen hebben.

Exercise 49.8. Maak een Cauchyrij f1, f2, . . . die naar de nulfunctie 0 convergeert
in de inproduktnorm maar waarvoor de rij f1(x), f2(x), . . . niet convergeert, welke
x ∈ IR2π je ook kiest.

De vraag is dus niet alleen welke functie je kiest als de meest natuurlijke
functie binnen een equivalentieklasse van functies die in H niet van elkaar te
onderscheiden zijn, maar ook hoe je überhaupt aan zo’n functie komt als f
in H gedefinieerd is via een Cauchyrij f1, f2, . . . in C(IR2π).

49.1 Standaard Hilbertruimten voor ‘functies’

In wat volgt maken we enerzijds precies welke functies f op te vatten zijn
als f ∈ H en anderzijds waarom we die functies nog wel als functies zien.
Iedere f ∈ H moet daartoe voor bijna2 alle x ∈ IR2π een natuurlijke waarde
hebben, waarbij het gedrag van f in de buurt van elk zulk een x leidend moet
zijn3. Voor de zaagtand Z leidt dit bij het gelijkwegen van wat Z(x) is voor
x < 0 en x > 0 onherroepelijk tot Z(0) = 0 als de natuurlijke keuze voor
Z(0), het gemiddelde van de linker- en rechterlimiet. Maar of zulke limieten

2Wat bijna betekent is de hamvraag.
3Waarom eigenlijk? Wel, we zijn uitgegaan van continue functies.
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voor iedere f in de H die we maken altijd in genoeg punten bestaan is (zeker
a priori) niet zo duidelijk.

Hoe het ook zij, de waarde van f ∈ H in π = −π ∈ S doet er niet toe.
Voor iedere a ∈ IR en iedere functie f : (a− π, a+ π) die we toe willen laten
in H na periodieke uitbreiding van f tot IR→ IR is het niet belangrijk of en
hoe f(a − π) en f(a + π) gedefinieerd zijn. In het bijzonder is de functie Z̃
gedefinieerd

x ∈ (0, 2π)
Z̃−→ π − x

na periodieke uitbreiding tot Z : IR → IR in H gelijk aan de Z uit Opgave
49.10. Waar bij de functies cn en sn het periodiek uitbreiden vanzelf gaat, is
het bij functies als Z vervelend om de formules überhaupt op te schrijven.

De functie Z heeft in ieder geheel veelvoud van 2π een sprong. De eve-
neens oneven blokfunctie blok ∈ H, gedefinieerd door

blok(x) =

{
1 als x ∈ (0, π) ;

−1 als x ∈ [−π, 0),

heeft in ieder geheel veelvoud van π een sprong. De even kartelrandfunctie
Ka ∈ H daarentegen, gedefinieerd door

Ka(x) =

{
π
2
− x als x ∈ (0, π) ;

π
2

+ x als x ∈ [−π, 0),

heeft geen sprongen als we de definitie van Ka uitbreiden met Ka(2πn) = π
2

in de gehele veelvouden 2πn van 2π (n ∈ IZ). Al deze functies zijn instructief
als voorbeeld bij de vraag of ze te schrijven zijn als een oneindige som van
de vorm (49.1). Met name de zaagtand is een bron van leerzaam vermaak
zoals we zullen zien.

Exercise 49.9. Schets de grafieken van Z, blok,Ka, en ook van c1 = cos en s1 = sin.

Ga nog eens na dat de functies

cn√
π
,
sn√
π

(n ∈ IN),
1√
2π

een orthonormaal stelsel vormen, en dat H dus alle ‘functies’ f van de vorm

f = a0
1√
2π

+
∞∑
n=1

an
cn√
π

+
∞∑
n=1

bn
sn√
π

(49.2)
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zou moeten bevatten, meestal geschreven als

f =
a0

2
+
∞∑
n=1

(ancn + bnsn),

als de (net iets andere) rijtjes van coëfficiënten an en bn maar kwadratisch
sommeerbaar zijn.

De vraag of je zo alle f in H krijgt kan beginnen met de vraag of de
oneven functies Z en blok te schrijven zijn als

∞∑
n=1

bnsn,

en de even functie Ka als
∞∑
n=1

ancn.

De sommen moeten hierbij convergent zijn in de 2-norm die hoort bij het
standaard inproduct

f · g = (f, g) =

∫ π

−π
f(x)g(x) dx.

Ons doel is te laten zien dat iedere f in H inderdaad van de vorm (49.2) met

∞∑
n=0

a2
n <∞,

∞∑
n=1

b2
n <∞,

en een karakterisatie van H als L2(IR2π) die los staat van de specifieke keuze
die we met (49.2) maken.

49.2 Functies op de cirkel

Als we afspreken dat twee getallen in IR eigenlijk hetzelfde zijn als ze een
geheel veelvoud van 2π verschillen dan maken IR en 2π de verzameling IR2π,
een verzameling waarin op natuurlijke manier de optelling is gedefinieerd.
Dat gaat net als in IZn, de verzameling die we krijgen uit de verzameling IZ
van gehele getallen en een vast getal n ∈ IN, door af te spreken dat twee
gehele getallen gelijk zijn als ze een geheel veelvoud van n verschillen. Zoals
vaak

IZn = {0, 1, . . . , n− 1}
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wordt geschreven, met 0 = n, kunnen we ook

IR2π = [0, 2π)

schrijven, maar we geven er de voorkeur om IR2π in de schrijfwijze te laten
corresponderen met [−π, π), waarbij −π = π. Deze π is hier een positief
reëel getal, waarvoor we op enig moment de π die we van de cirkel kennen
zullen nemen, maar dat hoeft nu nog even niet. Net als IZn is IR2π met de
voor de hand liggende optelling een commutatieve groep4.

Functies f : IR → IR die 2π-periodiek zijn kunnen we ook opvatten als
functies f : IR2π → IR, en omgekeerd. De verzameling van continue 2π-
periodieke functies noemen we

C(IR2π).

Ieder tweetal functies gedefinieerd op dezelfde verzameling, dus ook f en g
in C(IR2π), kunnen we bij elkaar optellen5 middels

x
f+g−−→ f(x) + g(x)

als definitie van f + g ∈ C(IR2π). Met

x
tf−→ tf(x)

voor t ∈ IR en f ∈ C(IR2π) is ook de scalaire vermenigvuldiging gedefinieerd
en zo is C(IR2π) een vectorruimte6 over IR, waarop

f · g = (f, g) =

∫ π

−π
f(x)g(x) dx

een inwendig produkt7 definieert, maar C(IR2π) is met dit integraalinprodukt
geen Hilbertruimte, zoals de volgende opgave laat zien.

Exercise 49.10. De zaagtandfunctie Z wordt gedefinieerd door

Z(x) =

{
π − x als x ∈ (0, π] ;

−x− π als x ∈ [−π, 0),

4Google: Abelian group.
5Evenzo is natuurlijk ook fg gedefinieerd via x

fg−→ f(x)g(x).
6En met de vermenigvulding een algebra.
7Let op, met (f, g)

·−→ f · g = (f, g) is de haakjesnotatie soms verwarrend.
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en door Z(0) = 0. Met deze keuze voor Z(0) behoort Z tot C0(IR2π), de ruimte8 van
functies f : IR2π → IR die continu zijn in iedere x ∈ IR2π, behalve eventueel in x = 0,
maar waarvoor wel geldt dat

f(0) =
1

2

(
lim
x↓0

f(x) + lim
x↑0

f(x)

)
,

waarbij linker- en rechterlimiet dus allebei bestaan. Op C0(IR2π) is (f, g) → f · g ook
een inprodukt. Teken de grafieken van een rij functies Z1, Z2, . . . in C(IR2π) waarvoor
geldt dat (Zn − Z,Zn − Z)→ 0 als n→∞.

De rij Z1, Z2, . . . is convergent in C0(IR2π) met betrekking tot de inpro-
duktnorm

f → |f | =
√

(f, f) =

(∫ π

−π
|f |2
) 1

2

omdat |Zn−Z| → 0 als n→∞, en dus is de rij Z1, Z2, . . . ook een Cauchyrij
in C(IR2π) met die inproduktnorm, die echter in C(IR2π) geen limiet heeft9.
Om van C(IR2π) met de inproduktnorm een Hilbertruimte te maken, die we
de naam

L2(IR2π)

willen geven, moeten we alle limieten van Cauchyrijtjes aan C(IR2π) toevoe-
gen, maar hoe doe je dat?

49.3 Dat andere inprodukt met afgeleiden

De deelruimte V van H die de rol gaat spelen zoals in de eerdere voorbeelden
met H = l(2) wordt gedefinieerd door het inprodukt

((f, g)) = (f ′, g′),

hetgeen niet voor alle f en g in H gedefinieerd is, net zoals het inprodukt in
Opgave 30.31 niet voor alle x en y in l(2) gedefinieerd is. Informeel wordt V
gegeven door

V = {f ∈ H : f ′ ∈ L2(−π, π)},
waarbij met f ook f ′ steeds 2π-periodiek wordt uitgebreid tot een functie
gedefinieerd op heel IR.

Dat uitbreiden is makkelijk, en komt in de opgaven hieronder eerst nog
aan de orde, ook ter voorbereiding van wat een stuk lastiger is: wat betekent
het dat f ′ als meetbare en kwadratisch integreerbare functie bestaat?

8De notatie C0 is alleen voor nu even.
9Waarom niet?
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Exercise 49.11. Ga na dat (ook) voor functies f in L2(−π, π) met f(−π) 6= f(π)
er geen problemen zijn met de uitbreiding f naar een f ∈ H.

Exercise 49.12. Zijn er functies f in L2(−π, π) waarvoor aan f(0) geen betekenis10

kan worden gegeven?

Exercise 49.13. Er is maar één 2π-periodieke oneven11 functie Ka die voldoet aan
Ka(x) = 1 voor 0 < x < π. Schets de grafiek van Ka en maak een rij 2π-periodieke
oneven continue functies Ka1,Ka2 . . . waarvoor geldt dat |Kan−Ka|2 → 0 als n→∞.
Hint: schets eerst de grafieken van Kan.

Exercise 49.14. Bewijs dat een oneven 2π-periodieke functie wordt vastgelegd door
zijn functiewaarden op het interval (0, π). Hint: gebruik de regels f(−x) = −f(x) en
f(x) = f(x+ 2π). Wat is f(0)? En f(π)?

Leuke functies om over na te denken, maar zulke functies komen we niet
tegen als we een zinvolle definitie van de uitspraak dat f ′ bestaat in bijvoor-
beeld L2(0, π) kunnen geven. Wel is het zo f ′ best zelf zo’n functie kan zijn.
Bijvoorbeeld als je f definieert als

f(x) =

∫ x

0

S(s) ds,

met een begrensde S zoals eerder gemaakt in Opgave 49.7. Iedere primitieve
functie

F (x) =

∫ x

0

f(s) ds

van een f in H is natuurlijk in principe kandidaat om tot V te behoren.

10Lees: een betekenisvolle waarde kan worden toegekend?
11Ka(−x) = −Ka(x) voor alle x ∈ IR.

716



Exercise 49.15. Verifieer dat zo’n F een begrensde (2π-periodieke) functie is als
f ∈ H, en dat het essentieel is dat in de definitie van H is opgenomen dat voor f ∈ H
moet gelden dat12 ∫ π

−π
f(x)dx = 0 !

De ruimte V krijgen we nu als bestaande uit de primitieve functies van
functies in H, waarbij de spreekwoordelijke constante wel goed gekozen moet
worden.

Exercise 49.16. Als f ∈ H dan is F periodiek. Waarom? Ga na dat er voor elke
f ∈ H precies één constante C is waarvoor x→ F (x)− C in H zit.

We weten nu dus wat V moet zijn. De ruimte

{F ∈ L2
loc(IR) : (∀x ∈ IR) F (x) = F (x+ 2π), f = F ′ ∈ L2

loc(IR)}

is gelijk aan
{F ∈ L2

loc(IR) : f = F ′ ∈ H}
de ruimte van alle primitieven F van functies f ∈ H, en V krijgen we door
voor iedere primitieve F precies die constante te nemen waarmee de primi-
tieve gemiddeld nul wordt. Dus

V = {F ∈ L2
loc(IR) : f = F ′ ∈ H,

∫ π

−π
F (x) dx = 0}

De kwadratisch integreerbare periodieke functies f : IR→ IR vormen een
nul-dimensionale vectorruimte waarover nog wel het een en ander te vertellen
is. Dat zullen we hier niet doen. Periodieke functies kunnen natuurlijk wel
lokaal kwadratisch integreerbaar zijn. We schrijven

L2
loc(IR) = {f : IR→ IR : f ∈ L2(I) voor elke begrensd interval I ⊂ IR},

maar de periodieke functies in L2
loc(IR) vormen geen vectorruimte13. En

L2
loc(IR) zelf is wel een vectorruimte maar geen genormeerde ruimte, althans

niet met een natuurlijke Maar

H = {f ∈ L2
loc(IR) : (∀x ∈ IR) f(x) = f(x+ 2π);

∫ π

−π
f(x)dx = 0}

120! = 1, maar hier roept het uitroepteken wel.
13Waarom niet?
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wel, de ruimte van 2π-periodieke kwadratisch integreerbare14 periodieke func-
ties, met inprodukt

(f, g) =

∫ π

−π
f(x)g(x) dx,

waarbij we de ruimte nu beperken tot functies die gemiddeld nul zijn.
De constante functies zijn in deze H buitengesloten, omdat ze in het

verhaal dat gaat volgen een vervelend buitenbeentje zijn. Bijgevolg van deze
keuze zitten er in H ook geen positieve functies trouwens. Wel in H zitten
de functies cn en sn uit Opgave 46.22 en net als elke functie in H zijn deze
door beperking tot het interval (−π, π) op te vatten als element van

H̃ = {f ∈ L2(−π, π) :

∫ π

−π
f(x) dx = 0},

een ruimte die we voor gemak met H identificeren door iedere f ∈ H̃ weer
uit te breiden tot heel IR middels f(x) = f(x+ 2π) voor alle x.

49.4 Blipfuncties

Het formulevoorschrift

x
blip−→

{
exp(− 1

x
) for x > 0

0 for x ≤ 0,

definieert de functie blip : IR→ [0, 1) die met goed recht zowel oogverblindend
mooi als gruwelijk lelijk genoemd15 mag worden.

Exercise 49.17. Schets de grafiek van blip en onderzoek het gedrag van blip′(x) als
x ↓ 0. En van blip′′(x). En van alle afgeleiden van blip. Concludeer dat alle afgeleiden
van blip als continue functies van IR naar IR bestaan!

Exercise 49.18. Je kunt blip ook schalen. Definieer blipn door

blipn(x) = blip(nx) = exp(− 1

nx
)

en bepaal limn→∞ blipn(x) voor elke x ∈ IR. De limietfunctie heet de Heaviside16

functie, hier genoteerd als He(x). Deze functie is niet continu in x = 0. De waarde

14D.w.z. f is meetbaar en
∫ π
−π f(x)2dx <∞.

15De naam blip heb ik gezien in een mooi boek, weet niet meer welk.
16Google Heaviside.
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van He(0) als limietwaarde van blipn(0) is 0, maar net zo vaak wordt He(0) = 1
2 of

He(0) = 1 genomen. Of zelfs He(0) = [0, 1].

Exercise 49.19. De functies blip en He zitten niet in L2(IR). Waarom niet? Maar
He− blip wel. Waarom? En He− blipn ook. De affiene ruimte

He+ L2(IR) = {f = He+ g : g ∈ L2(IR)}

is voorzien van de 2-metriek

d(f, g) =

(∫ ∞
−∞
|f(x)− g(x)|2 dx

) 1
2

een volledige metrische ruimte17. Laat zien zien dat d(blipn, He)→ 0 als n→∞.

Exercise 49.20. Definieer de functies blokn door

blokni(x) = blipn(x)blipn(π − x)

en laat zien dat
lim
n→∞

blokn(x) = χ(0,π)(x)

voor alle x ∈ IR. Waarom geldt dat blokn → χ(0,π) in 2-norm?

Exercise 49.21. Dezelfde vragen als in Opgave 49.20 maar nu voor blokn gedefinieerd
door

blokni(x) = blipn(x− 1

n
)blipn(π − 1

n
− x),

Opgave 49.21 laat zien dat χ(0,π), opgevat als

Exercise 49.22. Het is goed om op een rijtje te zetten hoe je zeker weet dat elke
f ∈ L2(−π, π) te benaderen is met een rij functies f1, f2, . . . in

C∞c (−π, π),

17Wat is dat?
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de ruimte van van functies f : (−π, π) → IR die oneindig vaak differentieerbaar zijn
en identiek nul zijn in de buurt van x = 0 en x = 2π. Benaderen betekent hier dat
fn → f in de 2-norm. Het speciale geval om eerst te begrijpen is

f(x) = χI(x) =

{
1 als x ∈ I

0; als x 6∈ I,

met I een interval.

49.5 Intermezzo: out of Hilbertspace

De 2-norm is een bijzonder geval van

f → |f |p =

(∫ π

−π
|f(x)|p dx

) 1
p

,

waarmee voor 1 ≤ p <∞ de p-norm op C[−π, π] wordt gedefinieerd, en

|f |∞ = max
x∈[−π,π]

|f(x)|,

de maximumnorm van f . Deze p-normen (1 ≤ p ≤ ∞) zijn te vergelijken
met

|x|p =

(
N∑
j=1

|xj|p
) 1

p

,

de p-norm van x = (x1, . . . , xn) ∈ IRN.

Exercise 49.23. Terug naar de overgeslagen calculussommetjes, bewijs (de ongelijk-
heid van Hölder)

|x · y| ≤ |x|p|y|q
voor 1 ≤ p, q ≤ ∞ die voldoen aan

1

p
+

1

q
= 1,

en x = (x1, . . . , xn) en y = (y1, . . . , yn) in IRN. Hint: leg eerst uit waarom het geen
beperking is om aan te nemen dat |x|p = |y|q = 1.
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Exercise 49.24. Bewijs dat x→ |x|p een norm is op IRN.

Exercise 49.25. Bewijs dat |x|p → |x|∞ als p→∞.

Exercise 49.26. Verzin en maak de analoge opgaven voor

f →
(∫ π

−π
|f(x)|p dx

) 1
p

,

de p-norm op C[−π, π].
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50 Welke fundamenten?

Deze oude inleiding was bedoeld voor een breed publiek. De eerstejaars
wiskunde student kan voor de lol lezen wat ik hier schrijf. Ik begin met de
verzameling IR van de reële getallen en aftelbare sommen van die getallen.
Als het onderstaande goed leesbaar is dan kun je rustig op weg met wat er
verder komt in dit boek. Zo niet, dan zou het groene boekje met Ronald
Meester1 je wat op weg kunnen helpen. In dat boekje, dat vanaf nu [HM]
heet, kwamen we vanuit getallenrepresentaties als

1

3
=

3

10
+

3

100
+

3

1000
+

3

10000
+

3

100000
+ · · · =

∞∑
n=1

3

10n
= 3

∞∑
n=1

1

10n

op natuurlijke wijze tot het inzicht dat ieder (reëel) getal van de vorm

k +
∞∑
n=1

dn
10n

(50.1)

is. In (50.1) is k ∈ IZ, de verzameling van de gehele getallen. De decimalen
zijn

dn ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

waarbij n de verzameling IN van de positieve2 gehele getallen doorloopt, ook
wel de natuurlijke getallen genoemd.

De verschillende notaties hierboven voor het rationale getal dan wel de
breuk 1

3
kunnen tot enige controverse leiden. De breuk 1

3
heeft immers net als

iedere andere breuk een teller en een noemer, in dit geval teller 1 en noemer
3. Evenzo heeft de breuk 2

6
teller 2 en noemer 6. De breuken 1

3
en 2

6
zijn

echter als rationale getallen gelijk aan elkaar. Mag je nu van het rationale
getal 1

3
zeggen dat zijn teller 1 en zijn noemer 3 is? Van mij wel, maar daar

wordt soms anders over gedacht. Dus daarom hierbij de afspraak dat we
stilzwijgend het rationale getal altijd als breuk met een minimale noemer3 in
IN schrijven als we het over teller en noemer van het rationale getal hebben.

Ook de naam “reeks” voor de uitdrukking met het somteken Σ leidt tot
controverses, alsmede het gebruik van het symbool∞ boven op dat somteken.
Wat het eerste betreft zou ik liever zoveel mogelijk over aftelbare sommen
willen spreken, maar niet te vergeten dat de term “reeks” nu eenmaal door
iedereen gebruikt wordt in zinsdelen als “de som van de reeks”.

1vuuniversitypress.com/15-voor-auteurs/overige-content/108-wiskunde-in-je-vingers
2NB, 0 is niet positief, IN = {n ∈ IZ : n > 0}, IR+ = {x ∈ IR : x > 0}.
3Ontbind teller en noemer in priemfactoren en streep gemeenschappelijke factoren weg.
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Het gebruik van het symbool ∞ is wellicht te vermijden door∑
n∈IN

in plaats van
∞∑
n=1

te schrijven, maar dan is de volgorde waarin de termen in de som bij elkaar
op worden geteld niet meer zo eenduidig specificeerd als in de meer gebruike-
lijke notatie. Die wordt namelijk doorgaans uitgesproken als de som van de
termen in de reeks, waarbij n loopt vanaf het getal 1 tot (en niet tot en met)
oneindig4. In het derde hoofdstuk komen we hier nog op terug.

Tenslotte merken we op dat de schrijfwijze in (50.1) niet altijd uniek is
omdat getallen van de vorm

k +
m∑
n=1

dn
10n

(50.2)

nu eenmaal twee representaties hebben, bijvoorbeeld

1 =
9

10
+

9

100
+

9

1000
+

9

10000
+

9

100000
+ · · · =

∞∑
n=1

9

10n
, (50.3)

wellicht het eerste voorbeeld van een zogenaamde meetkundige reeks dat
ieder kind in het basisonderwijs hopelijk wel eens te zien krijgt.

Het simpelste voorbeeld van zo’n meetkundige reeks betreft de rij breuken

1

2
,
1

4
,
1

8
,

1

16
,

1

32
,

1

64
. . . ,

met in de noemers de getallen uit de eerste rij getallen die ik ooit van mijn
vader leerde, toen ik een jaar of 22 was. Als we die rij beschrijven met

an =
1

2n

met n de verzameling IN doorlopend, dan is de bijbehorende som gelijk aan
het getal 1. Nog altijd de mooiste som die er bestaat. Een eindeloze rij
getallen die optellen tot 1. Wat wil je nog meer?

50.1 Academisch speelkwartier: kolomcijferen

We kiezen nu voor een wat basaler perspectief dan gebruikelijk om meer
inzicht te krijgen in wat de reële getallen zijn. Deze inventariserende5 sub-
sectie kan overgeslagen worden bij eerste lezing6, maar een opmerking van Jan

4Rekenen met ∞ doen wij hier niet.
5We gaan niet recht op een doel af nu.
6En ook bij tweede lezing.
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Wiegerinck zette me aan het denken, ook in relatie tot Opgave 1.7 in [HM].
Hoe rekenen we met (eerste maar positieve) getallen in de vorm (50.1)? Een
rekenvraag die we nu rekenend en redenerend willen beantwoorden zonder
over verzamelingen van getallen te spreken.

Terzijde, helemaal consequent is de schrijfwijze in (50.1) niet. De k is
duidelijk anders dan de rest van de termen in deze aftelbare som7. Als we
ons beperken tot de positieve reële getallen, die we als verzameling8 gezien
aanduiden met IR+, dan is het eleganter om het “Romeinse” perspectief
van eenheden, tientallen, tienden, honderdtallen, hondersten, duizendtallen,
duizendsten, etc alleen te combineren met de “Arabische” cijfers

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Met

tien = 10, honderd = 10× 10 = 100, duizend = 10× 10× 10 = 1000,

enzovoorts, en op zijn kop

een tiende =
1

10
, een honderste =

1

100
, een duizendste =

1

1000
,

und so weiter, is het niet heel raar om bijvoorbeeld

8× 1000 + 7× 100 + 6× 10 + 5× 1 + 4× 1

10
+ 3× 1

100
+ 2× 1

1000

als corresponderend met een punt op een lijn van hier tot ginder te zien. Bij
zo’n punt hoort een getal dat we noteren als

8765,4321 (50.4)

in onze decimale notatie van vandaag de dag, met ook (hier 5 keer) de gewone
eenheid 1, en een Nederlandse komma waarachter in dit geval vier cijfers
staan.

Over getallen als (50.4) hoeven verder geen misverstanden te bestaan.
Links van de komma tellen de decimalen van rechts af de 1-tallen, 10-tallen,
10 × 10-tallen, 10 × 10 × 10-tallen, en rechts van de komma vanaf links de
1
10

-tallen, 1
10

-tallen, 1
10
× 1

10
-tallen, 1

10
× 1

10
× 1

10
-tallen, 1

10
× 1

10
× 1

10
× 1

10
-tallen.

Aan beide kanten van de komma breekt het af, maar rechts is dat niet nodig.
In principe kunnen we er nog een rij cijfers achter plaatsen, en een groter
getal maken, bijvoorbeeld

8765,432143214321 of 8765,43219999999999999999999999999,

7Som van een eindeloze rij, zoals Marjolein Kool dat zo mooi noemt.
8Getallen in verzamelingen willen stoppen is een beetje een beroepsafwijking.
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getallen die allebei groter zijn dan 8765,4321 en kleiner dan 8765,43211.
Omdat het in negen gelijke stukken verdelen van het lijnstuk tussen het

beginpunt van diezelfde lijn van hier tot ginder, en het punt waar

0× 1000 + 0× 100 + 0× 10 + 1× 1 + 0× 1

10
+ 0× 1

100
+ 0× 1

1000
= 1

staat, negen lijnstukken geeft waarvan het eerste nog net niet loopt tot

0× 1000 + 0× 100 + 0× 10 + 1× 1 + 1× 1

10
+ 1× 1

100
+ 1× 1

1000
= 0,1111,

zien we dat er geen reden is waarom elk punt op de lijn een afbrekende
getalrepresentatie zou moeten hebben. Wat heet, één negende correpondeert
omherroepelijk met een representatie als in (50.4) waarbij er voor de komma
alleen maar 0-en staan, en achter de komma alleen maar 1-en, zonder dat
het rechts afbreekt9.

Dat
9× 0,111111111 . . . = 9× 0,1 gelijk is aan 1,

is een conclusie die we willen trekken als resultaat van de herhaalde optelling

0,1 + 0,1 + 0,1 + 0,1 + 0,1 + 0,1 + 0,1 + 0,1 + 0,1 = 0,9 = 1.

Op dat optellen komen we zo terug, en op 0,9 = 1 indirect ook. Bij een (met
de nog te speciferen regels) decimaal geschreven getal 0,9 optellen verhoogt
het gehele getal voor de komma met 1.

Verdelen we hetzelfde lijnstuk niet in negen maar in 99 gelijke stukken,
dan zien we

0,01010101010101010101010101 . . . (50.5)

als getalrepresentatie voor één negenennegentigste verschijnen. De puntjes
geven hier aan dat de decimale ontwikkeling niet eindigt. Tegenwoordig
schrijven we

1

9
= 0,1,

1

99
= 0,01,

1

999
= 0,001,

met links steeds een rationaal getal en rechts de decimale representatie van
dat getal, dat we met liefde ook een breuk mogen noemen, een breuk met
teller 1 en en een noemer met alleen maar 9-ens.

We zien in (50.5) dat de 0 als cijfer erg handig is, de 0 die correspondeert
met nul vingers op de twee gebalde vuisten van je handen waar je geen
ruzie mee wil krijgen. Het tellen zelf begint met 1, eindigt op de vingers bij
tien = 10, en gaat daarna verder met 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

9En links eigenlijk ook niet, al schrijven we die nullen nooit op.
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21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, en een
kind kan al lerend voor het slapen gaan zien en begrijpen hoe dat zo altijd
maar doorgaat als dromenland geen redding brengt. De eindeloze rij van de
natuurlijke getallen, beginnend met 1, wordt zo ondubbelzinnig vastgelegd
door de aftelling in het decimale stelsel.

Getallen uit die rij kunnen we optellen en vermenigvuldigen (in wezen her-
haald optellen). Dat doen we cijferend met de getallen onder elkaar gezet, on-
handig vanaf links of handig vanaf rechts per kolom. Die methodes10 werken
ook voor het rekenen met de positieve kommagetallen die we krijgen door
voor de komma van het kommagetal het cijfer 0 of een natuurlijk getal te
zetten, en achter de komma een natuurlijk getal opgevat als een rij cijfers,
met voor dat getal al of niet nog een aantal nullen.

De natuurlijke getallen zelf zijn geen kommagetallen. Door getallen als
123456789 gelijk te zien aan een nepkommagetal 123456789,0 is dat snel ver-
holpen, maar dit wordt in de natuurkunde11 terecht als een minder gelukkige
en te mijden conventie gezien. Afbrekende kommagetallen kunnen wellicht
beter vermeden worden, en de niet afbrekende kommagetallen zijn nu net de
kommagetallen die we nog missen, en waar we zeker ook mee willen rekenen
en cijferen. Dat cijferen moet dan wel vanaf links als je er even over nadenkt.

Tellen we bijvoorbeeld het getal dat gerepresenteerd wordt door (50.5)
achtennegentig keer bij zichzelf op dan zien we dat 99 keer 1

99
niet alleen

gelijk is aan 1 maar ook aan

0,9 = 0,99999999999999999999999999 . . . ,

en deze decimale representatie kan de meestal toch onbereikbare eenheid 1
best vervangen, als we afspreken dat decimale representaties van positieve
reële getallen naar links altijd, maar naar rechts nooit doorlopen met alleen
maar 0-en. Een onhandige conventie wellicht, maar omdat het cijferen hier
toch alleen maar onhandig vanaf links kan niet eens zo gek eigenlijk.

Bovendien is elk natuurlijk getal nu op een natuurlijke manier ook een
echt kommagetal. Met 0,9, 1,9, 2,9, 3,9, 4,9, 5,9, 6,9, 7,9, 8,9, 9,9, 10,9,
11,9, 12,9, 13,9, 14,9, 15,9, 16,9, 17,9, 18,9, 19,9, 20,9, 21,9, 22,9, 23,9, 24,9,
25,9, 26,9, 27,9, 28,9, 29,9, 30,9, 31,9, 32,9, 33,9, 34,9, 35,9, 36,9, 37,9, 38,9,
39,9, 40,9, 41,9, 42,9, komen we ook op weg in de rekenkunde. Ook al bekt
het niet zo lekker, we gaan rekenen met deze niet afbrekende kommagetallen
zoals ze ons gegeven worden.

10In het PO heeft de onhandige methode veelal de voorkeur gekregen.
11Waar de laatste decimaal meestal met meetnauwkeurigheid te maken heeft.
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50.1.1 Optellen

De vraag is nu of we met alle ons gegeven kommagetallen kunnen rekenen
zoals je zou verwachten, en of rekenen dan (zoals tegenwoordig in het ba-
sisonderwijs) onhandig cijferen12 kan worden, zoals bijvoorbeeld in

0,9999999
0,9999999

—————– +

1,8000000
0,1800000
0,0180000
0,0018000
0,0001800
0,0000180
0,0000018

—————– +

1,9999998

Immers, met doorlopende negens gaat dit onhandig cijferen precies hetzelfde
en duurt nauwelijks langer dan hierboven:

0,99999 . . .
0,99999 . . .

—————– +

1,80000 . . .
0,18000 . . .
0,01800 . . .
0,00180 . . .
0,00018 0..
0,00001 8..

(50.6)

..................
—————– +

1,99999 . . .

Gelukkig: 1 + 1 = 2!13 Weliswaar schendt de realistisch tussenstap hier wel
de regel dat we rechts geen doorlopende 0-en mogen hebben, de uitkomst

12Onhandig cijferen wordt ook wel kolomrekenen genoemd.
13Lees: één en één is twee uitroepteken.
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van de som is duidelijk: de 8 combineert steeds met de 1 op de volgende rij
tot een 9. De 18 op elke rij is de som van 9 en 9. Op de eerste rij betreft
het 0,9 + 0,9, op de tweede rij 0,09 + 0,09, op de derde rij 0,009 + 0,009,
enzovoorts. Het is instructief14 om zo’n sommetje als hierboven met twee
andere doorlopende getallen met voor de komma alleen maar 0-en te doen.
Dan vormen de twee cijfers op elke rij steeds een getal uit de rij

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

en bij elk van deze getallen kan zowel van boven een getal uit de rij

0 = 00, 10, 20, 30, 40, 50, 60, 70, 80, 90

en daarna vanonder ook een getal uit de veel kortere rij 0, 1 worden opgeteld.
Op zijn hoogst krijgen we dus 90 + 18 + 1 = 109.

Is de som groter dan 99 dan schuift er een 1 door naar links maar dat
overhevelen blijft beperkt. Optellend per tweetal kolommen kan er een 1
naar links doorschuiven en een 1 van rechts binnenkomen. Die 1 kan van
de 109 een 110 maken, maar ook die geeft nog steeds op zijn hoogst een 1
naar links door. Dat optellen van twee getallen onhandig cijferend per twee
kolommen tegelijk vanaf links gaat dus altijd wel lukken.

Hoe zit het met drie getallen? We nemen weer de moeilijkste som van
dat type, met de cijfers zo groot mogelijk, dus

0,99999 . . .
0,99999 . . .
0,99999 . . .

—————– +

2,70000 . . .
0,27000 . . .
0,02700 . . .
0,00270 . . .
0,00027 0..
0,00002 7..

(50.7)

..................
—————– +

2,99999 . . .

Gelukkig: 1 + 1 + 1 = 3. Opnieuw is het instructief om zo’n sommetje als
hierboven met drie andere doorlopende getallen met voor de komma alleen

14Wel doen!
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maar 0-en te doen. Dan vormen de twee cijfers op elke rij steeds een getal
uit de rij

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

en bij elk van deze getallen kan zowel een getal uit de rij

0 = 00, 10, 20, 30, 40, 50, 60, 70, 80, 90

en daarna ook een getal uit de veel kortere rij

0, 1, 2

worden opgeteld. Op zijn hoogst krijgen we nu 90 + 27 + 2 = 119. Het
overhevelen naar links blijft weer beperkt. Met enig werk gaan we hier wel
inzien dat drie zulke nul komma nog minstens wat getallen altijd cijferend
bij elkaar opgeteld kunnen worden en dat het niet uitmaakt15 of we er eerst
twee samen nemen en in welke volgorde we de getallen optellen, en dat in de
som voor de komma ook een 1 of een 2 kan komen te staan.

Willen we positieve getallen met ook voor de komma decimalen hebben
staan in de getallen die we bij elkaar optellen, dan doen we die apart. Bijvoor-
beeld

99, 9 + 88, 8 + 77, 7 = 99 + 88 + 77 + 0, 9 + 0, 8 + 0, 7,

waarbij
99

88

77

— +

264

nu ook (juist wel handig) van rechts af per kolom uitgecijferd16 kan worden,
en de som van de drie nul komma nog minstens wat getallen met de methode
hierboven gelijk is aan 2,6. Alles bij elkaar vinden we zo dat

99, 9 + 88, 8 + 77, 7 = 264 + 2,6 = 266,6,

al had dat vast handiger gekund.

15Lees: a+ b+ c = (a+ b) + c = c+ (a+ b) met alle gepermuteerde variaties.
16Ook kolomcijferen, maar wordt meestal mechanisch rekenen genoemd.
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Is zo’n positief kommagetal p groter dan een ander positief kommagetal
a, hetgeen betekent dat, na mogelijk een aantal gelijke decimalen van p en a,
er een eerste decimaal is van p die groter is dan de overeenkomstige decimaal
van a, dan kunnen we precies één (positieve) b vinden waarvoor geldt dat
p = a+ b. Het voorbeeldje

0,909090909090909090...

0,222222222222222222...

——————————– −

0,686868686868686868...

kan van linksaf kolomcijferend worden aangepakt. In eerste instantie is de
eerste decimaal achter de komma dan gelijk aan 7 maar bij de volgende
decimaal moet er van links 1 geleend worden om 10 − 2 = 8 te krijgen,
waarmee de 7 een 6 wordt. Al spelend zie je wel hoe het in het algemeen
gaat, en ook dat p > a gelijkwaardig is met p + w > a + w voor ieder
willekeurig ander positief getal w.

Nog een optelvoorbeeldje om het af te leren:

0,12345 . . .
0,99999 . . .

—————– +

1,00000 . . .
0,11000 . . .
0,01200 . . .
0,00130 . . .
0,00014 0..
0,00001 5..

(50.8)

..................
—————– +

1,12345 . . .

Bij een doorlopend kommagetal het getal 0,9 optellen laat uiteindelijk alle
cijfers achter de komma ongemoeid en telt een 1 op bij het getal voor de
komma. En zo hoort dat ook. Na wat oefenen lukt dat ook wel in één keer
en is het wellicht verstandig om nu verder te gaan met Sectie 50.1.4.
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50.1.2 Vermenigvuldigen?

Kunnen we ook vermenigvuldigen? Dit gemene17 sommetje bijvoorbeeld?

0,999999 .....
0,999999 .....

—————– ×

??????

In de vorige subsectie is het gelukt om de som van deze twee getallen kolom-
cijferend vanaf links zondere hogere wiskunde uit te werken. Kan dat met
het produkt ook? We laten ons niet afschrikken en schrijven het produkt
cijferend uit, waarbij we het cijferen symmetrisch houden in beide factoren,
net zoals in (50.6) en (50.7) de uitwerking van de som symmetrisch in de
bijdragen van de aparte termen was.

0,999999 .....
0,999999 .....

—————– ×

0,810000.....
0,081000.....
0,081000.....
0,008100.....
0,008100.....
0,008100.....
0,000810.....
0,000810.....
0,000810.....
0,000810.....
0,00008 10...
0,00008 10...
0,00008 10...
0,00008 10...
0,00008 10...

(50.9)

......................
—————– ×

????????

17Denk nog niet meteen aan 0,6× 0,6.
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Dat ziet er een stuk ingewikkelder uit dan (50.6). Misschien is het wel geen
goed idee het produkt van twee kommagetallen zo in één keer te willen doen.
In deze doorlopende som zien we tussen de horizontale strepen de termen
staan die we krijgen als we het produkt van de eerste decimaal van de eerste
factor met de eerste decimaal van de tweede factor nemen (één term), van
de eerste met de tweede en de tweede met de eerste (twee termen), van de
eerste met de derde, de tweede met de tweede en de derde met de eerste (drie
termen), enzovoorts. Gelukkig zien we links steeds meer nullen waardoor het
lijkt of het blokje 81 naar rechts opschuift.

Ieder zulk blokje is het produkt van twee decimalen op steeds twee andere
posities, decimalen die we hier toevallig allemaal gelijk aan 9 genomen hebben
om de som18 zo moeilijk mogelijk te maken. Het is de positie van het blokje
dat opschuift, en op het blokje staat steeds het produkt van twee cijfers. Dus
dit zijn de blokjes die voor kunnen komen:

00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 12, 14, 15, 16, 18, 20, 24,

25, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 49, 54, 56, 63, 64, 72, 81.

Met alle blokjes gelijk aan 81 gaat het in (50.9) om de som van de getallen
in het schema dat begint met

81

102

81

103

81

103

81

104

81

104

81

104

81

105

81

105

81

105

81

105
(50.10)

81

106

81

106

81

106

81

106

81

106

81

107

81

107

81

107

81

107

81

107

81

107

en naar beneden breder en breder doorloopt. Let wel, de volgorde waarin we
cijferend optellen in (50.9) komt overeen met per regel optellen in (50.10) en
leidt in de somnotatie tot

81×
∞∑
n=1

n

10n+1
(50.11)

18Het betreft 1× 1 = 1, maar dat terzijde.

732



als maximale uitkomst (vast wel gelijk19 aan 1) van een produkt van twee
nul komma (minstens) nog wat getallen.

En met drie zulke getallen gaat het om maximaal

729

103

729

104

729

104

729

104

729

105

729

105

729

105

729

105

729

105

729

105
(50.12)

729

106

729

106

729

106

729

106

729

106

729

106

729

106

729

106

729

106

729

106

enzovoorts, met 3, 6, 10, 15, 21, . . . termen op elke regel, en maximaal

729×
∞∑
n=1

n(n+ 1)

2
10n+2

als maximale20 uitkomst (vast wel gelijk aan 1) van een produkt van drie nul
komma (minstens) nog wat getallen.

Het wordt er niet eenvoudiger op. We kijken nog een keer naar (50.9)
waarmee we begonnen zijn. Het aantal niet-nullen is in de kolommen rechts
van de komma achtereenvolgens 1, 3, 5, 7, 9, . . . , en

in kolom 1 2 3 4 5 6 7 8 . . .
zien we 1 3 5 7 9 11 13 15 . . .

niet-nullen. Per kolom gaan we bij het optellen dus onvermijdelijk over de 9
heen, en daarbij blijft het niet als we doorcijferen naar rechts, met een ruwe
schatting

in kolom 1 2 3 4 5 6 7 8 . . .
maximaal 1× 9 3× 9 5× 9 7× 9 9 11× 9 13× 9 15× 9 . . .

voor de kolomsommen, hetgeen leidt tot de vraag of

9× (
1

10
+

3

102
+

5

103
+

7

103
+

9

104
+ · · · ) = 9×

∞∑
n=1

2n− 1

10n

19Equivalent met

∞∑
n=1

n

10n
=

10

81
, wat zou

∞∑
n=1

n2

10n
zijn? Zie verder.

20Het betreft immers 1× 1× 1 = 1.
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een decimaal ontwikkelbaar getal definieert waar elke eindige som van termen
in (50.9) niet boven kan komen, een vraag vergelijkbaar met de minder ruw
afgeleide vraag over (50.11). Maar het moge duidelijk zijn dat we opnieuw
afdwalen van de basisschoolstof waar het hier toch om zou moeten gaan21.

Het cijferen geeft wellicht meer begrip. Onhandig kolomcijferend zien we
in (50.9) kolomsommen

8, 17, 26, 35, 44, 53, 62, 71, 80, 89, 98, 107, 116, 125, 134, 143, 152, 161, 170, 179,

enzovoorts verschijnen. Cijferend optellen geeft dat met weglating van de
nul komma

8 7 6 5 4 3 2 1 0 9
1 2 3 4 5 6 7 8 8 9

1

8 7 6 5 4 3 2 1 0 9
0 1 2 3 4 5 6 7 7 8
1 1 1 1 1 1 1 1 1 1

en alles loopt niet alleen naar rechts maar ook naar beneden door.
Opnieuw optellen per kolom geeft

9 9 9 9 9 9 9 9 8 9
1

9 9 9 9 9 9 9 9 8 8
1 1

Enzovoorts. Zo te zien krijgen we op iedere plek inderdaad uiteindelijk een
negen, maar alles loopt nog steeds (rechts) naar beneden door, al past het
niet meer op de pagina.

De vraag is hoe we uitgaande van dit voorbeeld zien dat er voor twee
willekeurige getallen zo altijd een decimale ontwikkeling van het produkt
ontstaat, waarmee dan het produkt ondubbelzinnig vast ligt, en ook of er in
het geval van het “maximale” voorbeeld alleen maar negens uitkomen. En
ook voor produkten van drie getallen natuurlijk, met dezelfde overwegingen
als bij optellen22. Als we dat wiskundig precies willen maken hebben we nodig
dat volgordes en eerst samen nemen niet uit moet maken bij het optellen in
doorlopende schema’s beginnend als (50.12), als de breedte maar niet te
snel toeneemt. Dat idee verkennen we in de volgende subsectie, waarin we
opnieuw afdwalen van het cijferen.

50.1.3 Andere aftelbare sommen?

Een analysevraag om te stellen lijkt: voor welke rijen a1, a2, a3, . . . gehele
nietnegatieve getallen correspondeert een aftelbare maar niet eindige som

∞∑
n=1

an
10n

(50.13)

21Voor een analysecursus zijn dit vragen om te onthouden!
22Lees: a× b× c = (a× b)× c = c× (a× b), weer met alle gepermuteerde variaties.
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ondubbelzinnig met een getal
∞∑
n=1

dn
10n

waarin alle dn een cijfer zijn, i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8 of 9? Het liefst beant-
woorden we die vraag zonder over andere uitdrukkingen dan die van de vorm
(50.13) te praten.

Een noodzakelijke voorwaarde is dat de eindige sommen

A1 =
a1

10
, A2 =

a1

10
+

a2

102
, A3 =

a1

10
+

a2

102
+

a3

103
, . . . (50.14)

allemaal kleiner dan 1 = 0,9 zijn. Als 0,9 zo’n (strikte) bovengrens is dan is
wellicht 0,89 dat ook. Of niet. Kies het minimale cijfer d1 waarvoor 0,d19
zo’n bovengrens is. Kies vervolgens het minimale cijfer d2 waarvoor 0,d1d29
een bovengrens is, enzovoorts. Dit proces definieert ondubbelzinnig een getal

0 = d1d2d3 · · · =
∞∑
n=1

dn
10n

dat kleiner is dan alle bovengrenzen 0,d19, 0,d1d29, 0,d1d2d39, . . . , en voor
de bijbehorende

D1 =
d1

10
, D2 =

d1

10
+

d2

102
, D3 =

d1

10
+

d2

102
+

d3

103
, . . . ,

geldt dat

D1 +
1

10
, D2 +

1

102
, D3 +

1

103
, . . .

bovengrenzen zijn. We kunnen niet uitsluiten dat na verloop van tijd alle dn
nul zijn, maar ze zijn zeker niet allemaal nul.

Kan het zo zijn dat de An-tjes niet boven de D1 uitkomen? Wel, in dat
geval zijn alle An < D1 (want met An = D1 komt een volgende An boven D1),
voor alle n = 1, 2, 3, . . . , en was d1 kennelijk niet minimaal gekozen om alle
An onder 0,d19 te hebben. Dus An komt wel boven D1 en blijft dan groter
dan D1. Hetzelfde geldt met het zelfde argument voor D2, D3, etcetera.

Als n1 de eerste n is waarvoor An > D1, n2 de eerste n waarvoor An > D2,
n3 de eerste n waarvoor An > D3, etcetera, dan is n2 minstens n1, n3 minstens
n2, n4 minstens n3, enzovoorts. We concluderen dat voor iedere k geldt dat

Dk < An < Dk +
1

10k
(50.15)

voor alle n vanaf n = nk, en dat zou moeten betekenen dat

An → D = 0,d1d2d3d4 . . . , (50.16)
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een nog niet precies gemaakte uitspraak voor een rij breuken An, breuken
met noemers machten van 10 en An ≤ An+1, met strikte ongelijkheid voor
niet per se alle maar wel willekeurig grote n.

Elke An heeft decimalen genummerd door j = 1, 2, 3, 4, . . . . De eerste
decimaal kan niet kleiner worden met toenemende n. Dat betekent dat vanaf
zekere n = m1 de eerste decimaal van An niet meer verandert en gelijk is aan
een vast cijfer α1. Daarna geldt hetzelfde voor de tweede decimaal die vanaf
zekere n = m2 (waarbij we m2 minstens gelijk aan m1 kunnen nemen) niet
meer verandert en gelijk is aan een vast cijfer α2, enzovoorts.

Deze eigenschap moet voor de niet-dalende rij A,A2, A3, . . . toch wel de
enige zinvolle definitie van

An → 0,α1α2α3α4 . . .

zijn. Graag zouden23 we nu uit (50.15) concluderen dat

0,d1d2d3d4 · · · = 0,α1α2α3α4 . . . ,

waarbij we opmerken dat de ontwikkeling in het rechterlid bij constructie niet
af kan breken maar de ontwikkeling in het linkerlid wel. Het kan dus gebeuren
dat de eerste zoveel αn en dn hetzelfde zijn, daarna één keer αn + 1 = dn,
en vervolgens alle dn = 0 en alle αn = 9. Hoe het ook zij, de uitdrukking
in (50.13) definieert dus ondubbelzinnig een nul komma minstens nog wat
getal, mits we weten dat alle eindige sommen in (50.14) kleiner zijn dan 0,9.
Maar wie voor (50.10) en (50.12) meteen ziet dat dat inderdaad zo is mag
het zeggen. We zijn er dus nog niet uit wat betreft produkten van positieve
kommagetallen.

50.1.4 Een cijfer keer een kommagetal

Terug naar het cijferen. We houden ons nog even aan de afspraak dat posi-
tieve kommagetallen de getallen zijn met een na de komma doorlopende rij
cijfers waarin niet-nullen blijven voorkomen hoe ver je ook gaat in de dec-
imale ontwikkeling. Zo’n positief kommagetallen heeft voor de komma een
natuurlijke getal of een 0 staan. Het produkt van twee zulke getallen moet
wel de som van vier bijdragen zijn: wat je krijgt van voor de komma keer
voor de komma, van voor de komma keer achter de komma, van achter de
komma keer voor de komma, en van achter de komma keer achter de komma.

De laatste lijkt het moeilijkst. Als we die kunnen dan kunnen we daarna
ook alle produkten van positieve kommagetallen door eerst de komma’s naar

23Nog even nagaan dit dus.
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links te schuiven en in het antwoord de komma naar rechts te schuiven. Twee
keer naar rechts eigenlijk, om beide verschuivingen naar links goed te maken.
Helaas zijn we hierboven nog niet bevredigend uit produkten van zulke nul
komma nog wat getallen gekomen.

De eerste van de vier bijdragen is het makkelijkst, hoe het daarmee zit
is basisschoolstof. De volgende twee bijdragen zijn wat lastiger. Met een
1-cijferig natuurlijk getal 1, 2, 3, 4, 5, 6, 7, 8 of 9 is de moeilijkste 9 × 0,9.
Net zo moeilijk is 0,9× 0,9:

0,999999 .....
0,9

—————– ×

0,810000.....
0,081000.....
0,008100.....
0,000810.....
0,00008 10...

......................
—————– ×

0,899999 .....

Daarna zijn produkten van cijfers met kommagetallen geen probleem meer.
Met twee cijfers tegelijk in elke stap geeft een cijfers keer een blokje van twee
maximaal 9 × 99 = 891. Cijferend per blokjes van twee vanaf links schuift
er dus steeds maximaal een 8 naar links door. Bij het eerste blokje komt die
gewoon voor het blokje te staan. Van het tweede blokje schuift er maximaal
een 8 door naar links waarmee het blokje dat daar maximaal voor staat op
zijn hoogst 91 + 9 = 99 wordt. Enzovoorts. Het is weer instructief om een
paar voorbeeldjes te doen en in één keer het antwoord op te schrijven op
basis van de decimalen die je hebt in je voorbeeld.

50.1.5 Produkten van kommagetallen

Als het bovenstaande eenmaal in in één keer lukt als

0,999999 .....
0,9

—————– ×

0,899999 .....

737



dan kan daarna
0,999999 .....
0,999999 .....

—————– ×

0,899999 .....
0,089999 .....
0,008999 .....
0,000899 .....
0,000089 .....

(50.17)

......................

ook, en vervolgens kunnen we dan van boven af de kommagetallen term voor
term optellen met wat we kolomcijferend geleerd hebben in sommetjes als
(50.8).

De eerste stap is
0,899999 .....
0,089999 .....

—————– +

0,899999 .....
0,009999 .....
0,080000 .....

(50.18)

—————– +

0,909999 .....
0,080000 .....

—————– +

0,989999 .....

In (50.18) hebben we de tweede rij negens afgesplitst. Opgeteld bij het kom-
magetal erboven verhogen die de 89 tot 90, en met de 8 eronder maken ze
van de 89 een 98, waarbij de decimalen achter de 89 ongewijzigd blijven. Het
resultaat is de som van de eerste twee kommagetallen in (50.17), waarbij in
dit voorbeeld de 8 eentje opgeschoven is naar rechts.

Zo gaat dat verder. Nu we met (50.17) zijn gevorderd tot
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0,999999 .....
0,999999 .....

—————– ×

0,989999 .....
0,008999 .....
0,000899 .....
0,000089 .....

(50.19)

......................

zien we dat het patroon zich herhaalt in

0,989999 .....
0,008999 .....

—————– +

0,998999 .....

met als resultaat de som van de eerste drie kommagetallen in (50.17). De 8
is weer eentje opgeschoven en dat gaat zo door. In de volgende stap zien we

0,999999 .....
0,999999 .....

—————– ×

0,998999 .....
0,000899 .....
0,000089 .....

(50.20)

......................

met nu boven de drie nullen na de komma in (50.20) alleen het derde cijfer
dat nog zal veranderen bij verder cijferen. Zo vinden we al cijferend dat

0,9× 0,9 = 0,9,

hetgeen zoveel wil zeggen dat 1× 1 = 1.
Is ieder tweetal kommagetallen zo cijferend met elkaar te vermenigvuldigen?

Merk op dat een staartstuk in de ontwikkeling van de tweede factor steeds
maximaal uit een rij negens bestaat en zo het cijfer in het antwoord op de
positie waarna dat staartstuk begint maximaal met 1 verhoogt.
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Om nog verder uit te werken dit alles, maar niet hier. Het idee is wel
duidelijk nu. Zonder hier nu meteen Turing aan te roepen is het aardig om
deze sectie te besluiten met de opmerking dat je in gedachten een machientje
zou kunnen maken dat als input de doorlopende kommagetallen krijgt die
als het ware van de ene kant cijfer voor cijfer naar binnen schuiven, en dan
vervolgens aan de andere kant als output de som of produkt cijfer voor cijfer
als doorlopend kommagetal uitspuugt, en het machientje daarmee tot het
einde der tijden doorgaat.

50.2 Kleinste bovengrenzen

Net als de aftelbare som in (50.1) met k ≥ 0 is (50.3) een mooi voorbeeld
van

∞∑
n=0

an (50.21)

met an ≥ 0 voor alle n ∈ IN0 = IN ∪ {0}. Als de partiële sommen

SN =
N∑
n=0

an

begrensd zijn dan is de kleinste bovengrens van de aftelbare vereniging

∪N∈IN0{SN} = {S0, S1, S2, . . . }

per definitie de som van de reeks in (50.21), notatie

S =
∞∑
n=0

an.

In het geval van (50.1) is SN ≤ k + 1 voor alle N ∈ IN0 en kan deze
uitspraak dus als tautologie gezien worden: het reële getal S is de limiet van
zijn decimale ontwikkeling, een ontwikkeling waarin de decimalen dn uit de
cijfers 0 tot en met 9 gekozen worden.

Dat het überhaupt mogelijk is dat er uit een som met oneindig veel termen
als (50.21) een eindig getal kan komen is zo vanuit (50.1) vanzelfsprekend,
ook al dacht ene Zeno daar destijds anders over. Mooie voorbeelden waarbij
er uit de som geen eindig getal komt zijn

S =
∞∑
n=0

1 met SN = N, en S =
∞∑
n=0

1

n
. (50.22)
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Geen van deze twee definieert een S ∈ IR+.
Waarom eigenlijk niet? Wel, de eerste S zou een kleinste bovengrens in

IR voor de verzameling IN zijn. Maar dan is S − 1
2

geen bovengrens voor IN.
En dus is er een N ∈ IN met N > S − 1

2
en volgt dat N + 1 > S + 1

2
. Maar

N + 1 ∈ IN dus is S geen bovengrens voor IN, een tegenspraak24. Gelukkig
maar, want het zou wel heel gek zijn als IN wel begrensd is in IR. Komt
meteen te pas bij het tweede voorbeeld in (50.22), waarover we opmerken
dat

1 +
1

2
+

1

3
+

1

4︸ ︷︷ ︸
> 1

2︸ ︷︷ ︸
>1

+
1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸
> 1

2

+
1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16︸ ︷︷ ︸
> 1

2︸ ︷︷ ︸
>1

,

enzovoorts, en zo komen de bijbehorende SN boven elke n ∈ IN. Ook niet
begrensd dus. Maar de som

1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

heeft wel een uitkomst25, althans indien opgevat als

∞∑
n=1

(−1)n+1

n
,

al zijn noch de positieve termen

1 +
1

3
+

1

5
+

1

7
+ · · · ,

noch de negatieve termen

−1

2
− 1

4
− 1

6
− · · ·

op te tellen tot een eindige som. Sterker, gegeven een S ∈ IR kun je de
positieve en negatieve termen verweven26 tot een rij an op zo’n manier dat

S = a1 + a2 + a3 + a4 + · · · ,

een goede reden om zoveel mogelijk alleen maar over reeksen zoals in Sectie
50.3 te spreken.

24Overtuigd?
25Ik meen ln 2.
26Kies positieve termen om boven S te komen, dan negatieve om onder S, dan . . .

741



50.3 Absoluut convergente reeksen

Als we hadden leren rekenen met dn ∈ {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4} en
de tafels tot en met vijf, dan was (50.1) een voorbeeld geweest van (50.21)
zonder de a priori informatie dat an ≥ 0 maar wel met de eigenschap dat

∞∑
n=0

|an| <∞, (50.23)

omdat

∞∑
n=1

| dn
10n
| ≤

∞∑
n=0

5

10n
=

5

10
+

5

100
+

5

1000
+

5

10000
+

5

100000
+ · · · = 5

9
.

Ook nu geldt dat SN → S voor een unieke S ∈ IR, dus

S =
∞∑
n=0

an, (50.24)

en hernummeren van de som verandert niets aan die uitkomst. Reeksen van
de vorm (50.21) waarvoor (50.23) geldt heten absoluut convergent en zijn
onvoorwaardelijk convergent: de volgorde van sommeren maakt niet uit voor
de waarde S van de som en bovendien geldt dat

|S| = |
∞∑
n=0

an| ≤
∞∑
n=0

|an|. (50.25)

Wat betreft het bewijs van (50.24) gegeven (50.23), de invariantie onder
hernummeren en de aftelbare 3-hoeksongelijkheid (50.25): dat bewijs maakt
gebruik van het feit dat in de reële getallen Cauchyrijen, dat zijn rijen waar-
voor geldt dat

xn − xm → 0 als m,n→∞,

een unieke limiet x̄ hebben, een limiet x̄ die bestaat als dan inderdaad het
enige reële getal waarvoor

xn → x̄ als n→∞.

Zulke rijen heten convergent.
Uit Hoofdstuk 10 van [HM] of Hoofdstuk 8 van het Basisboek Wiskunde is

de lezer wellicht al bekend met de wiskundige definitie van het begrip (limiet
van een) convergente rij, waarin alleen 27 de “voor alle p > 0” nog door een

27Didactisch aardig in het basisboek is het gebruik van grote P naast kleine p.
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“voor alle ε > 0” moet worden vervangen om tot het gebruikelijke jargon
te komen, en later eventueel door ∀ε > 0. Wel is het in de analyse straks
praktischer om met

|xn − x̄| ≤ ε

te werken.
Wat ook elegant en praktisch is in het Basisboek Wiskunde is de zorgvuldige

manier waarop gesproken wordt over de rij waarvan het n-de element gelijk is
aan xn, en het aan de lezer wordt overgelaten zich daarbij te realiseren dat n
de getallen 1, 2, 3, 4, . . . doorloopt, of een andere steeds met stap 1 oplopende
rij gehele getallen. Wij zullen de notatie in het Basisboek Wiskunde afkorten
tot simpelweg de (door n genummerde) rij xn, vaak de rij reële getallen xn.
Evenzo spreken we over de rij rationale getallen qn of de rij qn ∈ IQ. De
laatste notatie wordt hieronder nog gebruikt.

De ε-definities van uitspraken als hierboven komen in deze cursus aan de
orde op het moment dat dat nodig is. Want ze zijn nodig, bijvoorbeeld om
precies te maken dat sommen als (50.24) bestaan du moment dat je met één
M ∈ IR+ een schatting

N∑
n=0

|an| ≤M

hebt voor alle partiële sommen tegelijk, en daaruit afleidt dat de door N
genummerde rij SN een Cauchyrij is. We merken hierbij op dat het in zo-
genaamde genormeerde ruimten dan om twee equivalente uitspraken gaat,
uitspraken waarin noch de limiet x̄ van de rij, noch de som S van de reeks
waar het om gaat expliciet voorkomen:

absoluut convergente reeksen convergent ⇐⇒ Cauchyrijen convergent

Je kunt dus weten of x̄ en S in IR bestaan zonder ze eerst te hebben bepaald.

50.4 Verzamelingen in de praktijk

Voor sommige wiskundigen van de meer zuivere inclinatie zijn de uitspraken
hierboven niet los te zien van een precieze maar voor de analyse zelf niet
altijd even verhelderende wiskundige constructie van de reële getallen. Maar
interessant zijn die constructies natuurlijk wel, en je moet ergens beginnen
als je de wiskunde per se axiomatisch en wiskundig streng wil opzetten28,
vanuit wat men de leer van verzamelingen noemt.

Deze verzamelingenleer is iets waarover Paul Halmos in zijn mooie boekje
Naive Set Theory 29 schreef: alle wiskundigen vinden dat je er wat van

28Een vriendje van Einstein heeft helaas laten zien dat dat nooit bevredigend zal lukken.
29Vertaald ooit als Prisma pocket verkrijgbaar.
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gezien moet hebben, maar ze zijn het oneens over wat precies. Je kunt
verzamelingenleer bijvoorbeeld bij het begin beginnen met het axioma dat
de lege verzameling30 bestaat.

Dat doen wij hier niet. Maar mocht je dat wel doen dan komen toch
op enig moment ook de axioma’s voor de verzameling van de natuurlijke
getallen IN voorbij, natuurlijke getallen die iedereen die op zijn vingers heeft
leren tellen allang kent. En tellen begint natuurlijk bij 131, al is het handig
om de verzameling

IN0 = IN ∪ {0} = {0, 1, 2, 3, . . . }

in te voeren, hier in een zuiver wiskundig gezien af te keuren maar wel zo
begrijpelijke notatie met onfatsoenlijke stippeltjes, waarin we het hierboven
al gebruikte verenigingssymbool ∪ weer terugzien32.

Het is wel goed om één van die axioma’s voor IN te relateren aan de
wiskundige praktijk van alledag. Want hoe bewijs je bijvoorbeeld dat voor
iedere N ∈ IN = {1, 2, 3, . . . } geldt dat de uitspraak

(PN) 12 + 22 + · · ·+N2 =
N3

3
+
N2

2
+
N

6

waar is, zonder voor elke N ∈ IN apart de uitspraak (PN) te moeten control-
eren?

Binnen de zuivere wiskunde hoort daar een verhaal bij waarin voor al
de puntjes hierboven eigenlijk geen plaats is. Dat verhaal eindigt met het
principe van volledige inductie33, dat er op neerkomt dat34 als je voor N = 1
de uitspraak controleert, en je vervolgens laat zien dat de implicatie

(PN) =⇒ (PN+1) (50.26)

geldt voor alle N waarvoor je hem nodig hebt, namelijk om via herhaald
toepassen van de inductiestap (50.26) tot

(P1) =⇒ (P2) =⇒ (P3) =⇒ (P4) =⇒ (P5) =⇒ (P6) =⇒ (P7) =⇒ · · ·

te komen, zover als je maar wil, de uitspraak inderdaad geldt voor alle N ∈
IN. De implicatie (50.26) moet daartoe voor alle N ∈ IN worden aangetoond
om beginnend met de juistheid voor N = 1 de keten hierboven zonder die
stippeltjes in één keer af te maken.

30In LaTeχ: ∅. Op het schoolbord liever 6o.
31Tellend is IN met nul een beetje flauwe kul, op 00 komen we nog terug.
32Gaat er dus eigenlijk om hoe je al die getallen zonder stippels tussen accolades vangt.
33Naamgeving volledig intimiderend, vriendelijker is: dominoprincipe.
34Nu komt een lange zin.
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Dit soort oefeningen kunnen elders gedaan worden. Zie bijvoorbeeld in
[HM] Sectie 6.1 en voetnoot 16. Relevant uit die sectie voor deze cursus
zijn bewijzen voor rekenpartijtjes als in (PN) hierboven, waarin niet alleen
N maar ook 3 = p ∈ IN een parameter is, en de inductiestap van de vorm

(P1) ∧ (P2) ∧ · · · ∧ (PN) =⇒ (PN+1) (50.27)

is35.
Wat we hier precies met (A) =⇒ (B) bedoelen moge duidelijk zijn:

als de uitspraak (A) waar is dan is ook de uitspraak (B) waar. Hetgeen in
onze wiskundige redenaties equivalent is met: als uitspraak (B) niet waar is
dan kan uitspraak (A) ook niet waar zijn. Deze logica kan geformaliseerd
worden met waarheidstabellen vol nullen en enen opgeleukt met bijzonder
fraaie algebra, maar wat dat betreft laten we hier liever de Boole de Boole36.

Du moment dat er over het bestaan van37 IN geen twijfel meer is, wor-
den in de verzamelingsleer, IZ, IQ en uiteindelijk IR wiskundig netjes gecon-
strueerd. De constructie van IR is in gebaseerd op de gedachte dat iedere
manier om IQ in twee stukken te knippen overeen zou moeten komen met
een reëel getal, waarbij de rationale getallen dan wel met de schaar te maken
krijgen en de overige getallen niet38.

Het is instructief om de constructies van IZ en IQ uit IN met elkaar te
vergelijken. Die van IZ is inderdaad tamelijk kunstmatig. Die van IQ is echter
heel natuurlijk en gebaseerd op hoe je eigenlijk altijd al met de rationale
getallen rekende, namelijk als breuken. Breuken met een teller en een noemer.
Bijvoorbeeld

14

333
=

42

999
= 0.042

met een streep die aangeeft dat de decimale ontwikkeling van de breuk zich
herhaalt. Anders dan gesuggereerd in de in

http://www.few.vu.nl/~jhulshof/TAL.pdf

besproken TAL-boekjes van het Freudenthal Instituut doe je echter het reke-
nen met rationale getallen bij voorkeur niet met zulke decimale ontwikkelin-
gen, maar juist wel met de niet unieke representatie van rationale getallen
als quotiënten van gehele getallen, dus in de vorm

q =
t

d

35De ∧ staat voor “en”, dat is logisch. Denken aan dominosteentjes is nu lastiger.
36https://www.youtube.com/watch?v=DOzqUyW7jog
37Eventueel via Peano’s axioma’s.
38Want ze bestaan op dat moment nog niet.
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met teller t en noemer d in IZ, de d niet gelijk aan 0, waarbij je moet afspreken
dat

t1
d1

=
t2
d2

als t1d2 = t2d1.

50.5 Equivalentierelaties

Wiskundigen noemen zo’n afspraak een equivalentierelatie. We komen nu
in relatie tot IR meer over dit belangrijke begrip te spreken, ook voor wie
van IR graag een inzichtelijke constructie wil zien. Een constructie waarvan
de details overigens niet thuis horen in of voorafgaand aan een eerste vak
Analyse. Ik meen dat ik zelf de constructie van IR voor het eerst zag bij een
college over de integraal van Lebesgue van Jan van de Craats in het vierde
semester van wat toen de kandidaatsstudie wiskunde in Leiden was.

De onderliggende maattheorie voor dat vak over die andere integraal be-
gint met de vraag wat de oppervlakte |A| is van een willekeurige deelverza-
meling A van IR2, en komt onvermijdelijk tot twee constateringen. Vroeger
of later zijn dat respectievelijk

(i) het komt voor dat A ⊂ B en |A| = |B|;

(ii) het zou kunnen voorkomen dat A eindige oppervlakte |A| heeft maar
opgeknipt kan worden in aftelbaar veel stukjes die allemaal dezelfde maat
zouden moeten hebben39,

en daar moet je mee omgaan. Leuk is dat (ii) ons dan later40 weer terugvoert
naar het boekje van Halmos. In een vroeger stadium doet (i) ons echter al
het dringende verzoek om A en B in zekere41 zin als hetzelfde te zien, en
bijvoorbeeld ook hetzelfde als een C met C ⊂ A en |C| = |A|, waarbij C
geen deelverzameling van B hoeft te zijn of omgekeerd. Hoe formuleer je dan
rechtstreeks dat B en C equivalent zijn?

Anders van aard is het gebruik van equivalentierelaties bij een inzichtelijke
constructie van IR, waarbij je denkt aan reële getallen als denkbeeldige lim-
ieten van Cauchyrijtjes rationale getallen, zoals bijvoorbeeld de hierboven
besproken decimale ontwikkelingen, maar dan moet je wel een goede af-
spraak maken over wat het betekent dat twee zulke Cauchijrijtjes hetzelfde
reële getal (zouden moeten) definiëren. Denk bijvoorbeeld aan binaire be-
naderingen met alleen maar nullen en enen, of aan benaderingen met ket-
tingbreuken, allebei erg fraai of juist minder42 fraai, omdat ze afstand nemen

39Waarom is dat een paradox?
40Maar niet hier.
41Lees: in maatheoretische zin.
42Over gebrek aan smaak valt niet te twisten.
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van de vingers waarin onze wiskunde zit. Kortom, een belangrijke vraag is
hoe je van twee Cauchyrijen rationale getallen qn en rn zegt dat ze hetzelfde
reële getal definiëren43.

Als je er even over nadenkt is het logisch dat dit een definitie zou kunnen
zijn:

qn ∼ rn ⇐⇒ qn − rn → 0 als n→∞
Deze tweezijdige equivalentiepijl definieert een equivalentierelatie op de verza-
meling van alle rijen rationale getallen. We walsen nu wellicht even over wat
belangrijke details heen, maar een equivalentierelatie is niets anders dan een
relatie met formeel dezelfde eigenschappen als de gelijkheidsrelatie voor ele-
menten van een willekeurige verzameling A. Voor alle a, b, c ∈ A geldt

a = a,

a = b =⇒ b = a,

a = b ∧ b = c =⇒ a = c

De relatie44 gedefinieerd door het = teken heet daarom reflexief, symmetrisch
en transitief, en ook ∼ is zo’n equivalentierelatie, op de verzameling van alle
rijen rationale getallen in dit geval. En die equivalentierelatie doet het!

Wat doet ∼ dan? De equivalentierelatie ∼ deelt de verzameling van alle
rijen rationale getallen in. Waarin? In equivalentieklassen natuurlijk. Iedere
rij rn ∈ IQ definieert een equivalentieklasse

[rn] = {qn ∈ IQ : qn ∼ rn} (50.28)

waar die rij zelf in zit, en een reëel getal is per definitie de equivalentieklasse
van een Cauchyrij rn ∈ IQ.

So much for the construction of the real numbers en we zullen het ∼
tekentje nu weer in laten leveren, omdat we dat symbool toch liever gebruiken
als

xn ∼ yn ⇐⇒ xn
yn
→ 1 als n→∞

voor een andere en in de praktijk vaker gebruikte equivalentierelatie45 op de
verzameling van alle reële rijen. Een voorbeeld is

n! ∼ (
n

e
)n
√

2πn,

uitvoerig besproken in [HM].

43In je hoofd of op de getallenlijn.
44Ook dat woord heeft een wiskundige definitie natuurlijk.
45Wel een goede vraag hierboven is: wat is de beste representant?
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50.6 Analyse in en van wat?

Of er nog andere verzamelingen zoals deze IR zijn is niet een standaardvraag
om hier te stellen. Wel belangrijk voor een eerste vak over analyse is dat
de rationale getallen IQ, dat zijn de getallen die ontstaan als quotiënten van
getallen in IZ en getallen in IN, de “Cauchy eigenschap” niet hebben. Dat is de
reden waarom we de analyse in IR doen, het unieke geordende getallenlichaam
waarin (alle) Cauchyrijen en absoluut convergente reeksen convergent zijn.

In het Basisboek Wiskunde worden deze getallen besproken in Hoofdstuk
24, en we gebruiken vrijwel dezelfde notaties, met de accolades ook. Lees
ook Hoofdstuk 25 nog even door, we nemen de daar gebruikte input-output
voorstelling voor functies46 hier graag over als

x
f−→ f(x) en Df

f−→ IR

met Df het domein van f . Het bereik en de grafiek47 van f zijn

Bf = {f(x) : x ∈ Df} en Gf = {(x, y) : x ∈ Df , y = f(x)}.

Soms zullen we liever over functies f : IR → IR spreken die op een
bepaalde deelverzameling van IR een bepaalde eigenschap hebben. Het domein
Df is dan de verzameling bestaande uit alle x ∈ IR waarvoor f(x) gedefinieerd
is. Is het domein van f niet heel IR, dan kun je natuurlijk altijd f(x) voor
x-waarden buiten het domein een waarde geven die je toevallig goed uitkomt,
nul bijvoorbeeld48.

In deze cursus behandelen we ondermeer de analyse die de calculus onder-
bouwt voor functies f : I → IR met I ⊂ IR een interval. Vaak, met a, b ∈ IR,
is I daarbij een gesloten begrensd interval

I = [a, b] = {x ∈ IR : a ≤ x ≤ b},

of een open begrensd interval

I = (a, b) = {x ∈ IR : a < x < b}.

We beginnen met integraalrekening, eerst voor monotone functies, zonder
over limieten te spreken, en daarna voor uniform continue functies f : [a, b]→
IR, waarbij we voor het eerst het limietbegrip tegenkomen en nodig hebben.

Voor zulke functies wordt ∫ b

a

f(x) dx
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via benaderende sommen gedefinieerd in relatie tot wat de oppervlakte van Teken
plaatje!

het gebied ingesloten door x = a, x = b, y = 0 en y = f(x) in het x, y-vlak
moet zijn in het geval dat f een positieve functie is. Je zou kunnen zeggen
dat dit de eerste probleemstelling is in dit boek, geformuleerd in drie punten
als:

hoe definieer je de oppervlakte van niet meteen arbitraire verzamelingen;

en hoe reken je die vervolgens uit?

wat kun je vervolgens leren van de oplossing?

Dat laatste doe je dan wellicht zonder meteen een nieuw probleem te willen
formuleren. Spelen met de verworven inzichten zonder een concreet doel op
zich.

Bijvoorbeeld: met een variabele bovengrens in de integraal ontdekken we
de opzet van de differentiaalrekening met behulp van lineaire benaderingen.
Die werken we later uit voor machtreeksen

P (x) = α0 + α1x+ α2x
2 + α3x

3 + · · · ,

waarmee we een grote klasse van standaardfuncties tot onze beschikking kri-
jgen, waarvoor “mag dat” vragen kort maar krachtig met “ja natuurlijk” te
beantwoorden zijn. Binnen die klasse is de analyse namelijk ondergeschikt
aan de algebra, en zodra je die algebra goed begrijpt, voor x7 of zo, ben je
wel klaar en daarmee dient een andere probleemstelling zich aan:

Hoe zit het met al die andere functies?

Als we buiten de klasse van machtreeksen treden verandert alles en moet er
gewerkt worden. Dat werk halen we nu naar voren, waar we dat in [HM] zo
lang mogelijk uitstelden.

De middelwaardestelling blijkt hier het belangrijkste hulpmiddel om ogen-
schijnlijk evidente uitspraken ook werkelijk te bewijzen. De uitspraak van
die stelling is dat differentiequotiënten als

F (b)− F (a)

b− a
,

de richtingcoëfficiënt van

de lijn door (x, y) = (a, F (a) en (x, y) = (b, F (b))

46Van het Latijnse fungor (deponens: een passieve vorm met actieve betekenis).
47Vaak slordig: de grafiek y = f(x) in het x, y-vlak.
48Zoals wel eens voorgesteld in relatie tot x→ 1

x en het rekenonderwijs.
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in het x, y-vlak, zelf doorgaans gelijk zijn aan de richtingscoëfficiënt van de
raaklijn aan de grafiek van F in een punt met x-waarde tussen a en b, lees:
aan de met de differentiaalrekening gedefinieerde

afgeleide van F ′(x) van F (x) in een tussenpunt.

Is F ′(x) overal tussen a en b gelijk aan nul, dan is F (x) kennelijk constant, al-
dus de NIET-TRIVIALE STELLING in [HM]. Die STELLING is niet zozeer
de oplossing van een probleem, maar formuleert juist iets dat je zeker wil
weten bij het oplossen van (bijvoorbeeld) differentiaalvergelijkingen. Het
bewijs van de STELLING maakt essentieel gebruik van een fundamentele
stelling over het bestaan van convergente deelrijen, die, triviaal49 of niet, toch
maar een apart hoofdstuk krijgt, waarin een wat minder bekende stelling die
ik ken via Han Peters wordt geformuleerd.

Vergelijkingen oplossen is een belangrijke tak van niet alleen maar recre-
atieve sport50 in de wiskunde. In de context van vergelijkingen van de vorm
F (x, y) = 0, waarbij F een functie is van twee variabelen, introduceren we
daarom ook meteen maar het begrip impliciete functie, met als speciaal geval
het al behandelde begrip inverse functie. Het bewijs van de impliciete func-
tiestelling draaien we binnenste buiten in een aparte sectie, gevolgd door
twee secties waarin weer met verworven inzichten wordt gespeeld en een ba-
sis wordt gelegd voor alles dat later komt. Na een zijstapje over de methode
van Newton wordt de basale theorie in afgesloten met differentiaalrekening
voor integralen met parameters, en partieel integreren en een stelling over
Taylorbenaderingen met polynomen.

Daarna nemen we de tijd voor voorbeelden en meer voorbeelden, en her-
halen de rekenregels nog een keer in de kale context van functies van één
variabele zonder er functies van x en y bij te halen, niet alleen voor wie dat
stuk heeft overgeslagen. We gaan uitvoerig in op de natuurlijke logaritme
ln als inverse van de exponentiële functie exp en introduceren in die context
ook zogenaamde asymptotische formules, waarvan de formule van Stirling51

voor n! als n→∞ een mooi voorbeeld52 is.
In het tweede deel kunnen we de meeste van de in het eerste deel gefor-

muleerde definities, stellingen en bewijzen uit de differentiaalrekening voor
functies van IR naar IR vrijwel letterlijk overnemen. Alleen de notaties ho-
even nog te worden uitgepakt. We beginnen daartoe met IC, de verzameling
van de complexe getallen, en een in ons Leidse wat vergeten maar wel zo
snel bewijs van de hoofdstelling van de algebra. Daarna komen functies van

49Denk ook aan valsspelen met meetwaarden.
50Geen sport zonder techniek.
51De voorbeeldformule met ∼ een paar pagina’s terug, uit te spreken als “twiddles”.
52En buitengewoon relevant voor probleemstellingen in de natuurkunde.
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IC naar IC en afbeeldingen en functies met meerdere variabelen. Lineaire
functies beschrijven we dan in matrixnotatie, en matrixrekening behandelen
we daartoe zo kort door de bocht als hier mogelijk en voor het uitpakken
voldoende is.

De kettingregel is een belangrijk voorbeeld en we laten zien hoe die regel
op verschillende manieren wordt gebruikt, ook in de door fysici gebruikte
manipulaties met afhankelijke en onafhankelijke grootheden bij het trans-
formeren en oplossen van partiële differentiaalvergelijkingen. Integraalreken-
ing in het vlak wordt nog wat kort behandeld, zowel in rechthoekige als in
de uitvoerig besproken poolcoördinaten.

Nieuw is daarna de opzet van complexe functietheorie met lijnintegralen
over alleen maar lijnstukjes en meteen de belangrijke hoofdstellingen, eerst
zonder kromme poespas. Daarna bekijken we onderzoekend wat voor kromme
krommen we na limietovergangen krijgen, en hoe we daarlangs kunnen in-
tegreren. De aanpak is zo precies tegenovergesteld aan de die van Conway,
wiens fraaie opzet met equivalentieklassen van rectificeerbare krommen hier
niet realiseerbaar is. Naast, voor of na de kromme aanpak, verkennen we de
toepassingen van de hoofdstellingen bij het uitbreiden van de definitie van
f(z) met z ∈ IC naar f(A), eerst voor A : IR2 → IR2 een lineaire afbeelding
gegeven door een matrix, en daarna algemener, voor A van een (uiteindeli-
jke complexe) Banachruimte X naar zichzelf. Een eerste kennismaking met
Banachalgebra’s53 ligt hier voor de hand.

Gewone differentiaalvergelijkingen, al aan de orde geweest in de context
van machtreeksen, motiveren het opnemen van een hoofdstuk waarin we ook
de calculus voor functies op en naar Banachruimten introduceren, met als
belangrijkste voorbeeld X = C([a, b]), de ruimte van de continue IR-waardige
functies op een interval [a, b], waarin we de bijbehorende integraalvergelijkin-
gen formuleren en oplossen.

De impliciete functiestelling kan dan weer worden overgeschreven. Dat
doen we in één moeite door in combinatie de multiplicatorenmethode van
Lagrange54 voor stationaire punten van gewone functies van meer variabelen
onder randvoorwaarden. Essentieel hier is het inzicht dat de oplossingsverza-
meling van een stelsel van bijvoorbeeld 3 vergelijkingen in IR5=2+3, lokaal te
schrijven is als de grafiek van een functie van x ∈ IR2 naar y ∈ IR3, tenzij er
te veel nullen in de relevante berekeningen voorkomen.

De term onderdompeling wordt hier nog niet geintroduceerd55. De meer
abstracte formulering van de methode van Lagrange is opgenomen for amuse-

53Door mijn medestudenten destijds ook wel Bananachalgebra’s genoemd.
54De eerste stelling die ik ooit zelf aan anderen uitlegde, maar nu heel anders.
55Zie www.encyclo.nl/begrip/Submersie èn www.encyclo.nl/begrip/Immersie.
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ment. Ook wat pittiger is de behandeling van tweede orde afgeleiden die we
pas in abstracte setting in meer detail doen. Het hoofdresultaat is het Lemma
van Morse, waarin met een coördinatentransformatie een functie waarvan
de tweede afgeleide continu is, in de buurt van een stationair punt puur
kwadratisch gemaakt wordt. Denk aan

F (x, y) = ax2 + bxy + cy2 + · · ·

en een transformatie die de puntjes wegwerkt als de discriminant niet gelijk
is aan 0.

Zo’n transformatie is van de vorm(
ξ

η

)
= A(x, y)

(
x

y

)
,

met A(x, y) een van x en y afhankelijke matrix met

A(0, 0) =

(
1 0

0 1

)
,

die maakt dat
F (x, y) = aξ2 + bξη + cη2.

We laten zien hoe A = A(x, y) gevonden kan worden als oplossing van een
kwadratische matrixvergelijking voor A die met worteltrekken kan worden
opgelost.

Natuurlijk behandelen we ook het gebruikelijke jargon met metrieken,
omgevingen en open en gesloten verzamelingen samenvatten voor wie zich
minder gelukkig voelt met informele uitdrukkingen als in de buurt van, zoals
ook Adams die gebruikt in zijn nu vrijwel overal gebruikte calculus boek, dat
door de theoretisch hoofdstukken in dit boek stevig wordt onderbouwd.
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